mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-12-04 12:24:11 +01:00
2344 lines
71 KiB
C
2344 lines
71 KiB
C
/**
|
||
******************************************************************************
|
||
* @addtogroup PIOS PIOS Core hardware abstraction layer
|
||
* @{
|
||
* @addtogroup PIOS_RFM22B Radio Functions
|
||
* @brief PIOS interface for for the RFM22B radio
|
||
* @{
|
||
*
|
||
* @file pios_rfm22b.c
|
||
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
|
||
* @brief Implements a driver the the RFM22B driver
|
||
* @see The GNU Public License (GPL) Version 3
|
||
*
|
||
*****************************************************************************/
|
||
/*
|
||
* This program is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation; either version 3 of the License, or
|
||
* (at your option) any later version.
|
||
*
|
||
* This program is distributed in the hope that it will be useful, but
|
||
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
* for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License along
|
||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
*/
|
||
|
||
// *****************************************************************
|
||
// RFM22B hardware layer
|
||
//
|
||
// This module uses the RFM22B's internal packet handling hardware to
|
||
// encapsulate our own packet data.
|
||
//
|
||
// The RFM22B internal hardware packet handler configuration is as follows ..
|
||
//
|
||
// 4-byte (32-bit) preamble .. alternating 0's & 1's
|
||
// 4-byte (32-bit) sync
|
||
// 1-byte packet length (number of data bytes to follow)
|
||
// 0 to 255 user data bytes
|
||
//
|
||
// Our own packet data will also contain it's own header and 32-bit CRC
|
||
// as a single 16-bit CRC is not sufficient for wireless comms.
|
||
//
|
||
// *****************************************************************
|
||
|
||
/* Project Includes */
|
||
#include "pios.h"
|
||
|
||
#if defined(PIOS_INCLUDE_RFM22B)
|
||
|
||
#include <string.h> // memmove
|
||
|
||
#include <stm32f10x.h>
|
||
#include <stopwatch.h>
|
||
|
||
#include <packet_handler.h>
|
||
|
||
#include <pios_rfm22b_priv.h>
|
||
|
||
/* Local Defines */
|
||
#define STACK_SIZE_BYTES 200
|
||
|
||
// RTC timer is running at 625Hz (1.6ms or 5 ticks == 8ms).
|
||
// A 256 byte message at 56kbps should take less than 40ms
|
||
// Note: This timeout should be rate dependent.
|
||
#define PIOS_RFM22B_SUPERVISOR_TIMEOUT 65 // ~100ms
|
||
|
||
// this is too adjust the RF module so that it is on frequency
|
||
#define OSC_LOAD_CAP 0x7F // cap = 12.5pf .. default
|
||
#define OSC_LOAD_CAP_1 0x7D // board 1
|
||
#define OSC_LOAD_CAP_2 0x7B // board 2
|
||
#define OSC_LOAD_CAP_3 0x7E // board 3
|
||
#define OSC_LOAD_CAP_4 0x7F // board 4
|
||
|
||
// ************************************
|
||
|
||
#define TX_TEST_MODE_TIMELIMIT_MS 30000 // TX test modes time limit (in ms)
|
||
|
||
//#define TX_PREAMBLE_NIBBLES 8 // 7 to 511 (number of nibbles)
|
||
//#define RX_PREAMBLE_NIBBLES 5 // 5 to 31 (number of nibbles)
|
||
#define TX_PREAMBLE_NIBBLES 12 // 7 to 511 (number of nibbles)
|
||
#define RX_PREAMBLE_NIBBLES 6 // 5 to 31 (number of nibbles)
|
||
|
||
// the size of the rf modules internal transmit buffers.
|
||
#define TX_BUFFER_SIZE 256
|
||
// the size of the rf modules internal FIFO buffers
|
||
#define FIFO_SIZE 64
|
||
|
||
#define TX_FIFO_HI_WATERMARK 62 // 0-63
|
||
#define TX_FIFO_LO_WATERMARK 32 // 0-63
|
||
|
||
#define RX_FIFO_HI_WATERMARK 32 // 0-63
|
||
|
||
#define PREAMBLE_BYTE 0x55 // preamble byte (preceeds SYNC_BYTE's)
|
||
|
||
#define SYNC_BYTE_1 0x2D // RF sync bytes (32-bit in all)
|
||
#define SYNC_BYTE_2 0xD4 //
|
||
#define SYNC_BYTE_3 0x4B //
|
||
#define SYNC_BYTE_4 0x59 //
|
||
|
||
// ************************************
|
||
// the default TX power level
|
||
|
||
#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_0 // +1dBm ... 1.25mW
|
||
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_1 // +2dBm ... 1.6mW
|
||
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_2 // +5dBm ... 3.16mW
|
||
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_3 // +8dBm ... 6.3mW
|
||
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_4 // +11dBm .. 12.6mW
|
||
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_5 // +14dBm .. 25mW
|
||
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_6 // +17dBm .. 50mW
|
||
//#define RFM22_DEFAULT_RF_POWER RFM22_tx_pwr_txpow_7 // +20dBm .. 100mW
|
||
|
||
// ************************************
|
||
// the default RF datarate
|
||
|
||
//#define RFM22_DEFAULT_RF_DATARATE 500 // 500 bits per sec
|
||
//#define RFM22_DEFAULT_RF_DATARATE 1000 // 1k bits per sec
|
||
//#define RFM22_DEFAULT_RF_DATARATE 2000 // 2k bits per sec
|
||
//#define RFM22_DEFAULT_RF_DATARATE 4000 // 4k bits per sec
|
||
//#define RFM22_DEFAULT_RF_DATARATE 8000 // 8k bits per sec
|
||
//#define RFM22_DEFAULT_RF_DATARATE 9600 // 9.6k bits per sec
|
||
//#define RFM22_DEFAULT_RF_DATARATE 16000 // 16k bits per sec
|
||
//#define RFM22_DEFAULT_RF_DATARATE 19200 // 19k2 bits per sec
|
||
//#define RFM22_DEFAULT_RF_DATARATE 24000 // 24k bits per sec
|
||
//#define RFM22_DEFAULT_RF_DATARATE 32000 // 32k bits per sec
|
||
//#define RFM22_DEFAULT_RF_DATARATE 64000 // 64k bits per sec
|
||
#define RFM22_DEFAULT_RF_DATARATE 128000 // 128k bits per sec
|
||
//#define RFM22_DEFAULT_RF_DATARATE 192000 // 192k bits per sec
|
||
//#define RFM22_DEFAULT_RF_DATARATE 256000 // 256k bits per sec .. NOT YET WORKING
|
||
|
||
// ************************************
|
||
|
||
#define RFM22_DEFAULT_SS_RF_DATARATE 125 // 128bps
|
||
|
||
// ************************************
|
||
// Normal data streaming
|
||
// GFSK modulation
|
||
// no manchester encoding
|
||
// data whitening
|
||
// FIFO mode
|
||
// 5-nibble rx preamble length detection
|
||
// 10-nibble tx preamble length
|
||
// AFC enabled
|
||
|
||
/* Local type definitions */
|
||
enum pios_rfm22b_dev_magic {
|
||
PIOS_RFM22B_DEV_MAGIC = 0x68e971b6,
|
||
};
|
||
|
||
struct pios_rfm22b_dev {
|
||
enum pios_rfm22b_dev_magic magic;
|
||
struct pios_rfm22b_cfg cfg;
|
||
|
||
uint32_t deviceID;
|
||
|
||
// The COM callback functions.
|
||
pios_com_callback rx_in_cb;
|
||
uint32_t rx_in_context;
|
||
pios_com_callback tx_out_cb;
|
||
uint32_t tx_out_context;
|
||
|
||
// The supervisor countdown timer.
|
||
uint16_t supv_timer;
|
||
uint16_t resets;
|
||
};
|
||
|
||
uint32_t random32 = 0x459ab8d8;
|
||
|
||
/* Local function forwared declarations */
|
||
static void PIOS_RFM22B_Supervisor(uint32_t ppm_id);
|
||
static void rfm22_processInt(void);
|
||
static bool PIOS_RFM22_EXT_Int(void);
|
||
static void rfm22_setTxMode(uint8_t mode);
|
||
|
||
// SPI read/write functions
|
||
void rfm22_startBurstWrite(uint8_t addr);
|
||
inline void rfm22_burstWrite(uint8_t data)
|
||
{
|
||
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, data);
|
||
}
|
||
void rfm22_endBurstWrite(void);
|
||
void rfm22_write(uint8_t addr, uint8_t data);
|
||
void rfm22_startBurstRead(uint8_t addr);
|
||
inline uint8_t rfm22_burstRead(void)
|
||
{
|
||
return PIOS_SPI_TransferByte(RFM22_PIOS_SPI, 0xff);
|
||
}
|
||
void rfm22_endBurstRead(void);
|
||
uint8_t rfm22_read(uint8_t addr);
|
||
uint8_t rfm22_txStart();
|
||
|
||
/* Provide a COM driver */
|
||
static void PIOS_RFM22B_ChangeBaud(uint32_t rfm22b_id, uint32_t baud);
|
||
static void PIOS_RFM22B_RegisterRxCallback(uint32_t rfm22b_id, pios_com_callback rx_in_cb, uint32_t context);
|
||
static void PIOS_RFM22B_RegisterTxCallback(uint32_t rfm22b_id, pios_com_callback tx_out_cb, uint32_t context);
|
||
static void PIOS_RFM22B_TxStart(uint32_t rfm22b_id, uint16_t tx_bytes_avail);
|
||
static void PIOS_RFM22B_RxStart(uint32_t rfm22b_id, uint16_t rx_bytes_avail);
|
||
|
||
/* Local variables */
|
||
const struct pios_com_driver pios_rfm22b_com_driver = {
|
||
.set_baud = PIOS_RFM22B_ChangeBaud,
|
||
.tx_start = PIOS_RFM22B_TxStart,
|
||
.rx_start = PIOS_RFM22B_RxStart,
|
||
.bind_tx_cb = PIOS_RFM22B_RegisterTxCallback,
|
||
.bind_rx_cb = PIOS_RFM22B_RegisterRxCallback,
|
||
};
|
||
|
||
// External interrupt configuration
|
||
static const struct pios_exti_cfg pios_exti_rfm22b_cfg __exti_config = {
|
||
.vector = PIOS_RFM22_EXT_Int,
|
||
.line = PIOS_RFM22_EXTI_LINE,
|
||
.pin = {
|
||
.gpio = PIOS_RFM22_EXTI_GPIO_PORT,
|
||
.init = {
|
||
.GPIO_Pin = PIOS_RFM22_EXTI_GPIO_PIN,
|
||
.GPIO_Mode = GPIO_Mode_IN_FLOATING,
|
||
},
|
||
},
|
||
.irq = {
|
||
.init = {
|
||
.NVIC_IRQChannel = PIOS_RFM22_EXTI_IRQn,
|
||
.NVIC_IRQChannelPreemptionPriority = PIOS_RFM22_EXTI_PRIO,
|
||
.NVIC_IRQChannelSubPriority = 0,
|
||
.NVIC_IRQChannelCmd = ENABLE,
|
||
},
|
||
},
|
||
.exti = {
|
||
.init = {
|
||
.EXTI_Line = PIOS_RFM22_EXTI_LINE,
|
||
.EXTI_Mode = EXTI_Mode_Interrupt,
|
||
.EXTI_Trigger = EXTI_Trigger_Falling,
|
||
.EXTI_LineCmd = ENABLE,
|
||
},
|
||
},
|
||
};
|
||
|
||
// xtal 10 ppm, 434MHz
|
||
#define LOOKUP_SIZE 14
|
||
const uint32_t data_rate[] = { 500, 1000, 2000, 4000, 8000, 9600, 16000, 19200, 24000, 32000, 64000, 128000, 192000, 256000};
|
||
const uint8_t modulation_index[] = { 16, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
|
||
const uint32_t freq_deviation[] = { 4000, 4000, 4000, 4000, 4000, 4800, 8000, 9600, 12000, 16000, 32000, 64000, 96000, 128000};
|
||
const uint32_t rx_bandwidth[] = { 17500, 17500, 17500, 17500, 17500, 19400, 32200, 38600, 51200, 64100, 137900, 269300, 420200, 518800};
|
||
const int8_t est_rx_sens_dBm[] = { -118, -118, -117, -116, -115, -115, -112, -112, -110, -109, -106, -103, -101, -100}; // estimated receiver sensitivity for BER = 1E-3
|
||
|
||
const uint8_t reg_1C[] = { 0x37, 0x37, 0x37, 0x37, 0x3A, 0x3B, 0x26, 0x28, 0x2E, 0x16, 0x07, 0x83, 0x8A, 0x8C}; // rfm22_if_filter_bandwidth
|
||
|
||
const uint8_t reg_1D[] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44}; // rfm22_afc_loop_gearshift_override
|
||
const uint8_t reg_1E[] = { 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x02}; // rfm22_afc_timing_control
|
||
|
||
const uint8_t reg_1F[] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; // rfm22_clk_recovery_gearshift_override
|
||
const uint8_t reg_20[] = { 0xE8, 0xF4, 0xFA, 0x70, 0x3F, 0x34, 0x3F, 0x34, 0x2A, 0x3F, 0x3F, 0x5E, 0x3F, 0x2F}; // rfm22_clk_recovery_oversampling_ratio
|
||
const uint8_t reg_21[] = { 0x60, 0x20, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x02, 0x02, 0x01, 0x02, 0x02}; // rfm22_clk_recovery_offset2
|
||
const uint8_t reg_22[] = { 0x20, 0x41, 0x83, 0x06, 0x0C, 0x75, 0x0C, 0x75, 0x12, 0x0C, 0x0C, 0x5D, 0x0C, 0xBB}; // rfm22_clk_recovery_offset1
|
||
const uint8_t reg_23[] = { 0xC5, 0x89, 0x12, 0x25, 0x4A, 0x25, 0x4A, 0x25, 0x6F, 0x4A, 0x4A, 0x86, 0x4A, 0x0D}; // rfm22_clk_recovery_offset0
|
||
const uint8_t reg_24[] = { 0x00, 0x00, 0x00, 0x02, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x05, 0x07, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
|
||
const uint8_t reg_25[] = { 0x0A, 0x23, 0x85, 0x0E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x74, 0xFF, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
|
||
|
||
const uint8_t reg_2A[] = { 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0E, 0x12, 0x17, 0x31, 0x50, 0x50, 0x50}; // rfm22_afc_limiter .. AFC_pull_in_range = <20>AFCLimiter[7:0] x (hbsel+1) x 625 Hz
|
||
|
||
const uint8_t reg_6E[] = { 0x04, 0x08, 0x10, 0x20, 0x41, 0x4E, 0x83, 0x9D, 0xC4, 0x08, 0x10, 0x20, 0x31, 0x41}; // rfm22_tx_data_rate1
|
||
const uint8_t reg_6F[] = { 0x19, 0x31, 0x62, 0xC5, 0x89, 0xA5, 0x12, 0x49, 0x9C, 0x31, 0x62, 0xC5, 0x27, 0x89}; // rfm22_tx_data_rate0
|
||
|
||
const uint8_t reg_70[] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D}; // rfm22_modulation_mode_control1
|
||
const uint8_t reg_71[] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23}; // rfm22_modulation_mode_control2
|
||
|
||
const uint8_t reg_72[] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x08, 0x0D, 0x0F, 0x13, 0x1A, 0x33, 0x66, 0x9A, 0xCD}; // rfm22_frequency_deviation
|
||
|
||
// ************************************
|
||
// Scan Spectrum settings
|
||
// GFSK modulation
|
||
// no manchester encoding
|
||
// data whitening
|
||
// FIFO mode
|
||
// 5-nibble rx preamble length detection
|
||
// 10-nibble tx preamble length
|
||
#define SS_LOOKUP_SIZE 2
|
||
|
||
// xtal 1 ppm, 434MHz
|
||
const uint32_t ss_rx_bandwidth[] = { 2600, 10600};
|
||
|
||
const uint8_t ss_reg_1C[] = { 0x51, 0x32}; // rfm22_if_filter_bandwidth
|
||
const uint8_t ss_reg_1D[] = { 0x00, 0x00}; // rfm22_afc_loop_gearshift_override
|
||
|
||
const uint8_t ss_reg_20[] = { 0xE8, 0x38}; // rfm22_clk_recovery_oversampling_ratio
|
||
const uint8_t ss_reg_21[] = { 0x60, 0x02}; // rfm22_clk_recovery_offset2
|
||
const uint8_t ss_reg_22[] = { 0x20, 0x4D}; // rfm22_clk_recovery_offset1
|
||
const uint8_t ss_reg_23[] = { 0xC5, 0xD3}; // rfm22_clk_recovery_offset0
|
||
const uint8_t ss_reg_24[] = { 0x00, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
|
||
const uint8_t ss_reg_25[] = { 0x0F, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
|
||
|
||
const uint8_t ss_reg_2A[] = { 0xFF, 0xFF}; // rfm22_afc_limiter .. AFC_pull_in_range = <20>AFCLimiter[7:0] x (hbsel+1) x 625 Hz
|
||
|
||
const uint8_t ss_reg_70[] = { 0x24, 0x2D}; // rfm22_modulation_mode_control1
|
||
const uint8_t ss_reg_71[] = { 0x2B, 0x23}; // rfm22_modulation_mode_control2
|
||
|
||
// ************************************
|
||
|
||
volatile bool initialized = false;
|
||
|
||
#if defined(RFM22_EXT_INT_USE)
|
||
volatile bool exec_using_spi; // set this if you want to access the SPI bus outside of the interrupt
|
||
#endif
|
||
|
||
uint8_t device_type; // the RF chips device ID number
|
||
uint8_t device_version; // the RF chips revision number
|
||
|
||
volatile uint8_t rf_mode; // holds our current RF mode
|
||
|
||
uint32_t lower_carrier_frequency_limit_Hz; // the minimum RF frequency we can use
|
||
uint32_t upper_carrier_frequency_limit_Hz; // the maximum RF frequency we can use
|
||
uint32_t carrier_frequency_hz; // the current RF frequency we are on
|
||
|
||
uint32_t carrier_datarate_bps; // the RF data rate we are using
|
||
|
||
uint32_t rf_bandwidth_used; // the RF bandwidth currently used
|
||
uint32_t ss_rf_bandwidth_used; // the RF bandwidth currently used
|
||
|
||
uint8_t hbsel; // holds the hbsel (1 or 2)
|
||
float frequency_step_size; // holds the minimum frequency step size
|
||
|
||
uint8_t frequency_hop_channel; // current frequency hop channel
|
||
|
||
uint8_t frequency_hop_step_size_reg; //
|
||
|
||
uint8_t adc_config; // holds the adc config reg value
|
||
|
||
volatile uint8_t device_status; // device status register
|
||
volatile uint8_t int_status1; // interrupt status register 1
|
||
volatile uint8_t int_status2; // interrupt status register 2
|
||
volatile uint8_t ezmac_status; // ezmac status register
|
||
|
||
volatile int16_t afc_correction; // afc correction reading
|
||
volatile int32_t afc_correction_Hz; // afc correction reading (in Hz)
|
||
|
||
volatile int16_t temperature_reg; // the temperature sensor reading
|
||
|
||
#if defined(RFM22_DEBUG)
|
||
volatile uint8_t prev_device_status; // just for debugging
|
||
volatile uint8_t prev_int_status1; // " "
|
||
volatile uint8_t prev_int_status2; // " "
|
||
volatile uint8_t prev_ezmac_status; // " "
|
||
|
||
const char *debug_msg = "";
|
||
const char *error_msg = "";
|
||
static uint32_t debug_val = 0;
|
||
#endif
|
||
|
||
volatile uint8_t osc_load_cap; // xtal frequency calibration value
|
||
|
||
volatile uint8_t rssi; // the current RSSI (register value)
|
||
volatile int8_t rssi_dBm; // dBm value
|
||
|
||
// the transmit power to use for data transmissions
|
||
uint8_t tx_power;
|
||
// the tx power register read back
|
||
volatile uint8_t tx_pwr;
|
||
|
||
// The transmit buffer. Holds data that is being transmitted.
|
||
uint8_t tx_buffer[TX_BUFFER_SIZE] __attribute__ ((aligned(4)));
|
||
// The transmit buffer. Hosts data that is wating to be transmitted.
|
||
uint8_t tx_pre_buffer[TX_BUFFER_SIZE] __attribute__ ((aligned(4)));
|
||
// The tx pre-buffer write index.
|
||
uint16_t tx_pre_buffer_size;
|
||
// the tx data read index
|
||
volatile uint16_t tx_data_rd;
|
||
// the tx data write index
|
||
volatile uint16_t tx_data_wr;
|
||
|
||
// the current receive buffer in use (double buffer)
|
||
volatile uint8_t rx_buffer_current;
|
||
// the receive buffer .. received packet data is saved here
|
||
volatile uint8_t rx_buffer[258] __attribute__ ((aligned(4)));
|
||
// the receive buffer write index
|
||
volatile uint16_t rx_buffer_wr;
|
||
|
||
// the received packet
|
||
volatile int8_t rx_packet_start_rssi_dBm; //
|
||
volatile int8_t rx_packet_start_afc_Hz; //
|
||
volatile int8_t rx_packet_rssi_dBm; // the received packet signal strength
|
||
volatile int8_t rx_packet_afc_Hz; // the receive packet frequency offset
|
||
|
||
int lookup_index;
|
||
int ss_lookup_index;
|
||
|
||
volatile bool power_on_reset; // set if the RF module has reset itself
|
||
|
||
volatile uint16_t rfm22_int_timer; // used to detect if the RF module stops responding. thus act accordingly if it does stop responding.
|
||
volatile uint16_t rfm22_int_time_outs; // counter
|
||
volatile uint16_t prev_rfm22_int_time_outs; //
|
||
|
||
uint16_t timeout_ms = 20000; //
|
||
uint16_t timeout_sync_ms = 3; //
|
||
uint16_t timeout_data_ms = 20; //
|
||
|
||
struct pios_rfm22b_dev * rfm22b_dev_g;
|
||
|
||
|
||
static bool PIOS_RFM22B_validate(struct pios_rfm22b_dev * rfm22b_dev)
|
||
{
|
||
return (rfm22b_dev->magic == PIOS_RFM22B_DEV_MAGIC);
|
||
}
|
||
|
||
#if defined(PIOS_INCLUDE_FREERTOS)
|
||
static struct pios_rfm22b_dev * PIOS_RFM22B_alloc(void)
|
||
{
|
||
struct pios_rfm22b_dev * rfm22b_dev;
|
||
|
||
rfm22b_dev = (struct pios_rfm22b_dev *)pvPortMalloc(sizeof(*rfm22b_dev));
|
||
if (!rfm22b_dev) return(NULL);
|
||
rfm22b_dev_g = rfm22b_dev;
|
||
|
||
rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC;
|
||
return(rfm22b_dev);
|
||
}
|
||
#else
|
||
static struct pios_rfm22b_dev pios_rfm22b_devs[PIOS_RFM22B_MAX_DEVS];
|
||
static uint8_t pios_rfm22b_num_devs;
|
||
static struct pios_rfm22b_dev * PIOS_RFM22B_alloc(void)
|
||
{
|
||
struct pios_rfm22b_dev * rfm22b_dev;
|
||
|
||
if (pios_rfm22b_num_devs >= PIOS_RFM22B_MAX_DEVS)
|
||
return NULL;
|
||
|
||
rfm22b_dev = &pios_rfm22b_devs[pios_rfm22b_num_devs++];
|
||
rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC;
|
||
|
||
return (rfm22b_dev);
|
||
}
|
||
#endif
|
||
|
||
/**
|
||
* Initialise an RFM22B device
|
||
*/
|
||
int32_t PIOS_RFM22B_Init(uint32_t *rfm22b_id, const struct pios_rfm22b_cfg *cfg)
|
||
{
|
||
PIOS_DEBUG_Assert(rfm22b_id);
|
||
PIOS_DEBUG_Assert(cfg);
|
||
|
||
// Allocate the device structure.
|
||
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *) PIOS_RFM22B_alloc();
|
||
if (!rfm22b_dev)
|
||
return(-1);
|
||
|
||
// Bind the configuration to the device instance
|
||
rfm22b_dev->cfg = *cfg;
|
||
|
||
*rfm22b_id = (uint32_t)rfm22b_dev;
|
||
|
||
// Initialize the TX pre-buffer pointer.
|
||
tx_pre_buffer_size = 0;
|
||
|
||
// Create our (hopefully) unique 32 bit id from the processor serial number.
|
||
uint8_t crcs[] = { 0, 0, 0, 0 };
|
||
{
|
||
char serial_no_str[33];
|
||
PIOS_SYS_SerialNumberGet(serial_no_str);
|
||
// Create a 32 bit value using 4 8 bit CRC values.
|
||
for (uint8_t i = 0; serial_no_str[i] != 0; ++i)
|
||
crcs[i % 4] = PIOS_CRC_updateByte(crcs[i % 4], serial_no_str[i]);
|
||
}
|
||
rfm22b_dev->deviceID = crcs[0] | crcs[1] << 8 | crcs[2] << 16 | crcs[3] << 24;
|
||
DEBUG_PRINTF(2, "RF device ID: %x\n\r", rfm22b_dev->deviceID);
|
||
|
||
// Initialize the supervisor timer.
|
||
rfm22b_dev->supv_timer = PIOS_RFM22B_SUPERVISOR_TIMEOUT;
|
||
rfm22b_dev->resets = 0;
|
||
|
||
// Initialize the radio device.
|
||
int initval = rfm22_init_normal(rfm22b_dev->deviceID, cfg->minFrequencyHz, cfg->maxFrequencyHz, 50000);
|
||
|
||
if (initval < 0)
|
||
{
|
||
|
||
// RF module error .. flash the LED's
|
||
#if defined(PIOS_COM_DEBUG)
|
||
DEBUG_PRINTF(2, "RF ERROR res: %d\n\r\n\r", initval);
|
||
#endif
|
||
|
||
for(unsigned int j = 0; j < 16; j++)
|
||
{
|
||
USB_LED_ON;
|
||
LINK_LED_ON;
|
||
RX_LED_OFF;
|
||
TX_LED_OFF;
|
||
|
||
PIOS_DELAY_WaitmS(200);
|
||
|
||
USB_LED_OFF;
|
||
LINK_LED_OFF;
|
||
RX_LED_ON;
|
||
TX_LED_ON;
|
||
|
||
PIOS_DELAY_WaitmS(200);
|
||
}
|
||
|
||
PIOS_DELAY_WaitmS(1000);
|
||
|
||
return initval;
|
||
}
|
||
|
||
rfm22_setFreqCalibration(cfg->RFXtalCap);
|
||
rfm22_setNominalCarrierFrequency(cfg->frequencyHz);
|
||
rfm22_setDatarate(cfg->maxRFBandwidth, TRUE);
|
||
rfm22_setTxPower(cfg->maxTxPower);
|
||
|
||
DEBUG_PRINTF(2, "\n\r");
|
||
DEBUG_PRINTF(2, "RF device ID: %x\n\r", rfm22b_dev->deviceID);
|
||
DEBUG_PRINTF(2, "RF datarate: %dbps\n\r", rfm22_getDatarate());
|
||
DEBUG_PRINTF(2, "RF frequency: %dHz\n\r", rfm22_getNominalCarrierFrequency());
|
||
DEBUG_PRINTF(2, "RF TX power: %d\n\r", rfm22_getTxPower());
|
||
|
||
// Setup a real-time clock callback to kickstart the radio if a transfer lock sup.
|
||
if (!PIOS_RTC_RegisterTickCallback(PIOS_RFM22B_Supervisor, *rfm22b_id)) {
|
||
PIOS_DEBUG_Assert(0);
|
||
}
|
||
|
||
return(0);
|
||
}
|
||
|
||
uint32_t PIOS_RFM22B_DeviceID(uint32_t rfm22b_id)
|
||
{
|
||
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
|
||
|
||
return rfm22b_dev->deviceID;
|
||
}
|
||
|
||
int8_t PIOS_RFM22B_RSSI(uint32_t rfm22b_id)
|
||
{
|
||
return rfm22_receivedRSSI();
|
||
}
|
||
|
||
int16_t PIOS_RFM22B_Resets(uint32_t rfm22b_id)
|
||
{
|
||
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
|
||
|
||
return rfm22b_dev->resets;
|
||
}
|
||
|
||
static void PIOS_RFM22B_RxStart(uint32_t rfm22b_id, uint16_t rx_bytes_avail)
|
||
{
|
||
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
|
||
|
||
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
|
||
PIOS_Assert(valid);
|
||
|
||
}
|
||
|
||
static void PIOS_RFM22B_TxStart(uint32_t rfm22b_id, uint16_t tx_bytes_avail)
|
||
{
|
||
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
|
||
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
|
||
PIOS_Assert(valid);
|
||
|
||
// Get some data to send
|
||
bool need_yield = false;
|
||
if(tx_pre_buffer_size == 0)
|
||
tx_pre_buffer_size = (rfm22b_dev->tx_out_cb)(rfm22b_dev->tx_out_context, tx_pre_buffer,
|
||
TX_BUFFER_SIZE, NULL, &need_yield);
|
||
|
||
if(tx_pre_buffer_size > 0)
|
||
{
|
||
// already have data to be sent
|
||
if (tx_data_wr > 0)
|
||
return;
|
||
|
||
// we are currently transmitting or scanning the spectrum
|
||
if (rf_mode == TX_DATA_MODE || rf_mode == TX_STREAM_MODE || rf_mode == TX_CARRIER_MODE ||
|
||
rf_mode == TX_PN_MODE || rf_mode == RX_SCAN_SPECTRUM)
|
||
return;
|
||
|
||
// is the channel clear to transmit on?
|
||
if (!rfm22_channelIsClear())
|
||
return;
|
||
|
||
// Start the transmit
|
||
rfm22_txStart();
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Changes the baud rate of the RFM22B peripheral without re-initialising.
|
||
* \param[in] rfm22b_id RFM22B name (GPS, TELEM, AUX)
|
||
* \param[in] baud Requested baud rate
|
||
*/
|
||
static void PIOS_RFM22B_ChangeBaud(uint32_t rfm22b_id, uint32_t baud)
|
||
{
|
||
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
|
||
|
||
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
|
||
PIOS_Assert(valid);
|
||
|
||
}
|
||
|
||
static void PIOS_RFM22B_RegisterRxCallback(uint32_t rfm22b_id, pios_com_callback rx_in_cb, uint32_t context)
|
||
{
|
||
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
|
||
|
||
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
|
||
PIOS_Assert(valid);
|
||
|
||
/*
|
||
* Order is important in these assignments since ISR uses _cb
|
||
* field to determine if it's ok to dereference _cb and _context
|
||
*/
|
||
rfm22b_dev->rx_in_context = context;
|
||
rfm22b_dev->rx_in_cb = rx_in_cb;
|
||
}
|
||
|
||
static void PIOS_RFM22B_RegisterTxCallback(uint32_t rfm22b_id, pios_com_callback tx_out_cb, uint32_t context)
|
||
{
|
||
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
|
||
|
||
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
|
||
PIOS_Assert(valid);
|
||
|
||
/*
|
||
* Order is important in these assignments since ISR uses _cb
|
||
* field to determine if it's ok to dereference _cb and _context
|
||
*/
|
||
rfm22b_dev->tx_out_context = context;
|
||
rfm22b_dev->tx_out_cb = tx_out_cb;
|
||
}
|
||
|
||
static void PIOS_RFM22B_Supervisor(uint32_t rfm22b_id)
|
||
{
|
||
/* Recover our device context */
|
||
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
|
||
|
||
if (!PIOS_RFM22B_validate(rfm22b_dev)) {
|
||
/* Invalid device specified */
|
||
return;
|
||
}
|
||
|
||
/* If we're waiting for a receive, we just need to make sure that there are no packets waiting to be transmitted. */
|
||
if(rf_mode == RX_WAIT_PREAMBLE_MODE)
|
||
{
|
||
/* Start a packet transfer if one is available. */
|
||
PIOS_RFM22B_TxStart(rfm22b_id, 0);
|
||
return;
|
||
}
|
||
|
||
/* The radio must be locked up if the timer reaches 0 */
|
||
if(--(rfm22b_dev->supv_timer) != 0)
|
||
return;
|
||
++(rfm22b_dev->resets);
|
||
|
||
TX_LED_OFF;
|
||
TX_LED_OFF;
|
||
|
||
/* Clear the TX buffer in case we locked up in a transmit */
|
||
tx_data_wr = 0;
|
||
|
||
rfm22_init_normal(rfm22b_dev->deviceID, rfm22b_dev->cfg.minFrequencyHz, rfm22b_dev->cfg.maxFrequencyHz, 50000);
|
||
|
||
/* Start a packet transfer if one is available. */
|
||
rf_mode = RX_WAIT_PREAMBLE_MODE;
|
||
PIOS_RFM22B_TxStart(rfm22b_id, 0);
|
||
if(rf_mode == RX_WAIT_PREAMBLE_MODE)
|
||
{
|
||
/* Switch to RX mode */
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
|
||
}
|
||
}
|
||
|
||
static void rfm22_setDebug(const char* msg)
|
||
{
|
||
debug_msg = msg;
|
||
}
|
||
|
||
static void rfm22_setError(const char* msg)
|
||
{
|
||
error_msg = msg;
|
||
}
|
||
|
||
// ************************************
|
||
// SPI read/write
|
||
|
||
void rfm22_startBurstWrite(uint8_t addr)
|
||
{
|
||
// wait 1us .. so we don't toggle the CS line to quickly
|
||
PIOS_DELAY_WaituS(1);
|
||
|
||
// chip select line LOW
|
||
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0, 0);
|
||
|
||
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, 0x80 | addr);
|
||
}
|
||
|
||
void rfm22_endBurstWrite(void)
|
||
{
|
||
// chip select line HIGH
|
||
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0, 1);
|
||
}
|
||
|
||
void rfm22_write(uint8_t addr, uint8_t data)
|
||
{
|
||
// wait 1us .. so we don't toggle the CS line to quickly
|
||
PIOS_DELAY_WaituS(1);
|
||
|
||
// chip select line LOW
|
||
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0, 0);
|
||
|
||
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, 0x80 | addr);
|
||
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, data);
|
||
|
||
// chip select line HIGH
|
||
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0, 1);
|
||
}
|
||
|
||
void rfm22_startBurstRead(uint8_t addr)
|
||
{
|
||
// wait 1us .. so we don't toggle the CS line to quickly
|
||
PIOS_DELAY_WaituS(1);
|
||
|
||
// chip select line LOW
|
||
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0, 0);
|
||
|
||
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, addr & 0x7f);
|
||
}
|
||
|
||
void rfm22_endBurstRead(void)
|
||
{
|
||
// chip select line HIGH
|
||
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0, 1);
|
||
}
|
||
|
||
uint8_t rfm22_read(uint8_t addr)
|
||
{
|
||
uint8_t rdata;
|
||
|
||
// wait 1us .. so we don't toggle the CS line to quickly
|
||
PIOS_DELAY_WaituS(1);
|
||
|
||
// chip select line LOW
|
||
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0, 0);
|
||
|
||
PIOS_SPI_TransferByte(RFM22_PIOS_SPI, addr & 0x7f);
|
||
rdata = PIOS_SPI_TransferByte(RFM22_PIOS_SPI, 0xff);
|
||
|
||
// chip select line HIGH
|
||
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0, 1);
|
||
|
||
return rdata;
|
||
}
|
||
|
||
// ************************************
|
||
// external interrupt
|
||
|
||
|
||
static bool PIOS_RFM22_EXT_Int(void)
|
||
{
|
||
rfm22_setDebug("Ext Int");
|
||
if (!exec_using_spi)
|
||
rfm22_processInt();
|
||
rfm22_setDebug("Ext Done");
|
||
return false;
|
||
}
|
||
|
||
void rfm22_disableExtInt(void)
|
||
{
|
||
#if defined(RFM22_EXT_INT_USE)
|
||
rfm22_setDebug("Disable Int");
|
||
// Configure the external interrupt
|
||
GPIO_EXTILineConfig(PIOS_RFM22_EXTI_PORT_SOURCE, PIOS_RFM22_EXTI_PIN_SOURCE);
|
||
EXTI_InitTypeDef EXTI_InitStructure = pios_exti_rfm22b_cfg.exti.init;
|
||
EXTI_InitStructure.EXTI_LineCmd = DISABLE;
|
||
EXTI_Init(&EXTI_InitStructure);
|
||
|
||
EXTI_ClearFlag(PIOS_RFM22_EXTI_LINE);
|
||
rfm22_setDebug("Disable Int done");
|
||
#endif
|
||
}
|
||
|
||
void rfm22_enableExtInt(void)
|
||
{
|
||
#if defined(RFM22_EXT_INT_USE)
|
||
rfm22_setDebug("Ensable Int");
|
||
if (PIOS_EXTI_Init(&pios_exti_rfm22b_cfg))
|
||
PIOS_Assert(0);
|
||
rfm22_setDebug("Ensable Int done");
|
||
#endif
|
||
}
|
||
|
||
|
||
// ************************************
|
||
// set/get the current tx power setting
|
||
|
||
void rfm22_setTxPower(uint8_t tx_pwr)
|
||
{
|
||
switch (tx_pwr)
|
||
{
|
||
case 0: tx_power = RFM22_tx_pwr_txpow_0; break; // +1dBm ... 1.25mW
|
||
case 1: tx_power = RFM22_tx_pwr_txpow_1; break; // +2dBm ... 1.6mW
|
||
case 2: tx_power = RFM22_tx_pwr_txpow_2; break; // +5dBm ... 3.16mW
|
||
case 3: tx_power = RFM22_tx_pwr_txpow_3; break; // +8dBm ... 6.3mW
|
||
case 4: tx_power = RFM22_tx_pwr_txpow_4; break; // +11dBm .. 12.6mW
|
||
case 5: tx_power = RFM22_tx_pwr_txpow_5; break; // +14dBm .. 25mW
|
||
case 6: tx_power = RFM22_tx_pwr_txpow_6; break; // +17dBm .. 50mW
|
||
case 7: tx_power = RFM22_tx_pwr_txpow_7; break; // +20dBm .. 100mW
|
||
default: break;
|
||
}
|
||
}
|
||
|
||
uint8_t rfm22_getTxPower(void)
|
||
{
|
||
return tx_power;
|
||
}
|
||
|
||
// ************************************
|
||
|
||
uint32_t rfm22_minFrequency(void)
|
||
{
|
||
return lower_carrier_frequency_limit_Hz;
|
||
}
|
||
uint32_t rfm22_maxFrequency(void)
|
||
{
|
||
return upper_carrier_frequency_limit_Hz;
|
||
}
|
||
|
||
void rfm22_setNominalCarrierFrequency(uint32_t frequency_hz)
|
||
{
|
||
|
||
exec_using_spi = TRUE;
|
||
|
||
// *******
|
||
|
||
if (frequency_hz < lower_carrier_frequency_limit_Hz)
|
||
frequency_hz = lower_carrier_frequency_limit_Hz;
|
||
else if (frequency_hz > upper_carrier_frequency_limit_Hz)
|
||
frequency_hz = upper_carrier_frequency_limit_Hz;
|
||
|
||
if (frequency_hz < 480000000)
|
||
hbsel = 1;
|
||
else
|
||
hbsel = 2;
|
||
uint8_t fb = (uint8_t)(frequency_hz / (10000000 * hbsel));
|
||
|
||
uint32_t fc = (uint32_t)(frequency_hz - (10000000 * hbsel * fb));
|
||
|
||
fc = (fc * 64u) / (10000ul * hbsel);
|
||
fb -= 24;
|
||
|
||
// carrier_frequency_hz = frequency_hz;
|
||
carrier_frequency_hz = ((uint32_t)fb + 24 + ((float)fc / 64000)) * 10000000 * hbsel;
|
||
|
||
if (hbsel > 1)
|
||
fb |= RFM22_fbs_hbsel;
|
||
|
||
fb |= RFM22_fbs_sbse; // is this the RX LO polarity?
|
||
|
||
frequency_step_size = 156.25f * hbsel;
|
||
|
||
rfm22_write(RFM22_frequency_hopping_channel_select, frequency_hop_channel); // frequency hopping channel (0-255)
|
||
|
||
rfm22_write(RFM22_frequency_offset1, 0); // no frequency offset
|
||
rfm22_write(RFM22_frequency_offset2, 0); // no frequency offset
|
||
|
||
rfm22_write(RFM22_frequency_band_select, fb); // set the carrier frequency
|
||
rfm22_write(RFM22_nominal_carrier_frequency1, fc >> 8); // " "
|
||
rfm22_write(RFM22_nominal_carrier_frequency0, fc & 0xff); // " "
|
||
|
||
// *******
|
||
|
||
#if defined(RFM22_DEBUG)
|
||
//DEBUG_PRINTF(2, "rf setFreq: %u\n\r", carrier_frequency_hz);
|
||
// DEBUG_PRINTF(2, "rf setFreq frequency_step_size: %0.2f\n\r", frequency_step_size);
|
||
#endif
|
||
|
||
exec_using_spi = FALSE;
|
||
}
|
||
|
||
uint32_t rfm22_getNominalCarrierFrequency(void)
|
||
{
|
||
return carrier_frequency_hz;
|
||
}
|
||
|
||
float rfm22_getFrequencyStepSize(void)
|
||
{
|
||
return frequency_step_size;
|
||
}
|
||
|
||
void rfm22_setFreqHopChannel(uint8_t channel)
|
||
{ // set the frequency hopping channel
|
||
frequency_hop_channel = channel;
|
||
rfm22_write(RFM22_frequency_hopping_channel_select, frequency_hop_channel);
|
||
}
|
||
|
||
uint8_t rfm22_freqHopChannel(void)
|
||
{ // return the current frequency hopping channel
|
||
return frequency_hop_channel;
|
||
}
|
||
|
||
uint32_t rfm22_freqHopSize(void)
|
||
{ // return the frequency hopping step size
|
||
return ((uint32_t)frequency_hop_step_size_reg * 10000);
|
||
}
|
||
|
||
// ************************************
|
||
// radio datarate about 19200 Baud
|
||
// radio frequency deviation 45kHz
|
||
// radio receiver bandwidth 67kHz.
|
||
//
|
||
// Carson's rule:
|
||
// The signal bandwidth is about 2(Delta-f + fm) ..
|
||
//
|
||
// Delta-f = frequency deviation
|
||
// fm = maximum frequency of the signal
|
||
//
|
||
// This gives 2(45 + 9.6) = 109.2kHz.
|
||
|
||
void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening)
|
||
{
|
||
|
||
exec_using_spi = TRUE;
|
||
|
||
lookup_index = 0;
|
||
while (lookup_index < (LOOKUP_SIZE - 1) && data_rate[lookup_index] < datarate_bps)
|
||
lookup_index++;
|
||
|
||
carrier_datarate_bps = datarate_bps = data_rate[lookup_index];
|
||
|
||
rf_bandwidth_used = rx_bandwidth[lookup_index];
|
||
|
||
// rfm22_if_filter_bandwidth
|
||
rfm22_write(0x1C, reg_1C[lookup_index]);
|
||
|
||
// rfm22_afc_loop_gearshift_override
|
||
rfm22_write(0x1D, reg_1D[lookup_index]);
|
||
// RFM22_afc_timing_control
|
||
rfm22_write(0x1E, reg_1E[lookup_index]);
|
||
|
||
// RFM22_clk_recovery_gearshift_override
|
||
rfm22_write(0x1F, reg_1F[lookup_index]);
|
||
// rfm22_clk_recovery_oversampling_ratio
|
||
rfm22_write(0x20, reg_20[lookup_index]);
|
||
// rfm22_clk_recovery_offset2
|
||
rfm22_write(0x21, reg_21[lookup_index]);
|
||
// rfm22_clk_recovery_offset1
|
||
rfm22_write(0x22, reg_22[lookup_index]);
|
||
// rfm22_clk_recovery_offset0
|
||
rfm22_write(0x23, reg_23[lookup_index]);
|
||
// rfm22_clk_recovery_timing_loop_gain1
|
||
rfm22_write(0x24, reg_24[lookup_index]);
|
||
// rfm22_clk_recovery_timing_loop_gain0
|
||
rfm22_write(0x25, reg_25[lookup_index]);
|
||
|
||
// rfm22_afc_limiter
|
||
rfm22_write(0x2A, reg_2A[lookup_index]);
|
||
|
||
if (carrier_datarate_bps < 100000)
|
||
// rfm22_chargepump_current_trimming_override
|
||
rfm22_write(0x58, 0x80);
|
||
else
|
||
// rfm22_chargepump_current_trimming_override
|
||
rfm22_write(0x58, 0xC0);
|
||
|
||
// rfm22_tx_data_rate1
|
||
rfm22_write(0x6E, reg_6E[lookup_index]);
|
||
// rfm22_tx_data_rate0
|
||
rfm22_write(0x6F, reg_6F[lookup_index]);
|
||
|
||
// Enable data whitening
|
||
// uint8_t txdtrtscale_bit = rfm22_read(RFM22_modulation_mode_control1) & RFM22_mmc1_txdtrtscale;
|
||
// rfm22_write(RFM22_modulation_mode_control1, txdtrtscale_bit | RFM22_mmc1_enwhite);
|
||
|
||
if (!data_whitening)
|
||
// rfm22_modulation_mode_control1
|
||
rfm22_write(0x70, reg_70[lookup_index] & ~RFM22_mmc1_enwhite);
|
||
else
|
||
// rfm22_modulation_mode_control1
|
||
rfm22_write(0x70, reg_70[lookup_index] | RFM22_mmc1_enwhite);
|
||
|
||
// rfm22_modulation_mode_control2
|
||
rfm22_write(0x71, reg_71[lookup_index]);
|
||
|
||
// rfm22_frequency_deviation
|
||
rfm22_write(0x72, reg_72[lookup_index]);
|
||
|
||
rfm22_write(RFM22_ook_counter_value1, 0x00);
|
||
rfm22_write(RFM22_ook_counter_value2, 0x00);
|
||
|
||
// ********************************
|
||
// calculate the TX register values
|
||
/*
|
||
uint16_t fd = frequency_deviation / 625;
|
||
|
||
uint8_t mmc1 = RFM22_mmc1_enphpwdn | RFM22_mmc1_manppol;
|
||
uint16_t txdr;
|
||
if (datarate_bps < 30000)
|
||
{
|
||
txdr = (datarate_bps * 20972) / 10000;
|
||
mmc1 |= RFM22_mmc1_txdtrtscale;
|
||
}
|
||
else
|
||
txdr = (datarate_bps * 6553) / 100000;
|
||
|
||
uint8_t mmc2 = RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk; // FIFO mode, GFSK
|
||
// uint8_t mmc2 = RFM22_mmc2_dtmod_pn9 | RFM22_mmc2_modtyp_gfsk; // PN9 mode, GFSK .. TX TEST MODE
|
||
if (fd & 0x100) mmc2 |= RFM22_mmc2_fd;
|
||
|
||
rfm22_write(RFM22_frequency_deviation, fd); // set the TX peak frequency deviation
|
||
|
||
rfm22_write(RFM22_modulation_mode_control1, mmc1);
|
||
rfm22_write(RFM22_modulation_mode_control2, mmc2);
|
||
|
||
rfm22_write(RFM22_tx_data_rate1, txdr >> 8); // set the TX data rate
|
||
rfm22_write(RFM22_tx_data_rate0, txdr); // " "
|
||
*/
|
||
// ********************************
|
||
// determine a clear channel time
|
||
|
||
// initialise the stopwatch with a suitable resolution for the datarate
|
||
//STOPWATCH_init(4000000ul / carrier_datarate_bps); // set resolution to the time for 1 nibble (4-bits) at rf datarate
|
||
|
||
// ********************************
|
||
// determine suitable time-out periods
|
||
|
||
// milliseconds
|
||
timeout_sync_ms = (8000ul * 16) / carrier_datarate_bps;
|
||
if (timeout_sync_ms < 3)
|
||
// because out timer resolution is only 1ms
|
||
timeout_sync_ms = 3;
|
||
|
||
// milliseconds
|
||
timeout_data_ms = (8000ul * 100) / carrier_datarate_bps;
|
||
if (timeout_data_ms < 3)
|
||
// because out timer resolution is only 1ms
|
||
timeout_data_ms = 3;
|
||
|
||
// ********************************
|
||
|
||
#if defined(RFM22_DEBUG)
|
||
/*
|
||
DEBUG_PRINTF(2, "rf datarate_bps: %d\n\r", datarate_bps);
|
||
DEBUG_PRINTF(2, "rf frequency_deviation: %d\n\r", frequency_deviation);
|
||
uint32_t frequency_deviation = freq_deviation[lookup_index]; // Hz
|
||
uint32_t modulation_bandwidth = datarate_bps + (2 * frequency_deviation);
|
||
DEBUG_PRINTF(2, "rf modulation_bandwidth: %u\n\r", modulation_bandwidth);
|
||
DEBUG_PRINTF(2, "rf_rx_bandwidth[%u]: %u\n\r", lookup_index, rx_bandwidth[lookup_index]);
|
||
DEBUG_PRINTF(2, "rf est rx sensitivity[%u]: %ddBm\n\r", lookup_index, est_rx_sens_dBm[lookup_index]);
|
||
*/
|
||
#endif
|
||
|
||
// *******
|
||
|
||
exec_using_spi = FALSE;
|
||
}
|
||
|
||
uint32_t rfm22_getDatarate(void)
|
||
{
|
||
return carrier_datarate_bps;
|
||
}
|
||
|
||
// ************************************
|
||
|
||
void rfm22_setSSBandwidth(uint32_t bandwidth_index)
|
||
{
|
||
|
||
exec_using_spi = TRUE;
|
||
|
||
ss_lookup_index = bandwidth_index;
|
||
|
||
ss_rf_bandwidth_used = ss_rx_bandwidth[lookup_index];
|
||
|
||
// ********************************
|
||
|
||
rfm22_write(0x1C, ss_reg_1C[ss_lookup_index]); // rfm22_if_filter_bandwidth
|
||
rfm22_write(0x1D, ss_reg_1D[ss_lookup_index]); // rfm22_afc_loop_gearshift_override
|
||
|
||
rfm22_write(0x20, ss_reg_20[ss_lookup_index]); // rfm22_clk_recovery_oversampling_ratio
|
||
rfm22_write(0x21, ss_reg_21[ss_lookup_index]); // rfm22_clk_recovery_offset2
|
||
rfm22_write(0x22, ss_reg_22[ss_lookup_index]); // rfm22_clk_recovery_offset1
|
||
rfm22_write(0x23, ss_reg_23[ss_lookup_index]); // rfm22_clk_recovery_offset0
|
||
rfm22_write(0x24, ss_reg_24[ss_lookup_index]); // rfm22_clk_recovery_timing_loop_gain1
|
||
rfm22_write(0x25, ss_reg_25[ss_lookup_index]); // rfm22_clk_recovery_timing_loop_gain0
|
||
|
||
rfm22_write(0x2A, ss_reg_2A[ss_lookup_index]); // rfm22_afc_limiter
|
||
|
||
rfm22_write(0x58, 0x80); // rfm22_chargepump_current_trimming_override
|
||
|
||
rfm22_write(0x70, ss_reg_70[ss_lookup_index]); // rfm22_modulation_mode_control1
|
||
rfm22_write(0x71, ss_reg_71[ss_lookup_index]); // rfm22_modulation_mode_control2
|
||
|
||
rfm22_write(RFM22_ook_counter_value1, 0x00);
|
||
rfm22_write(RFM22_ook_counter_value2, 0x00);
|
||
|
||
// ********************************
|
||
|
||
#if defined(RFM22_DEBUG)
|
||
DEBUG_PRINTF(2, "ss_rf_rx_bandwidth[%u]: %u\n\r", ss_lookup_index, ss_rx_bandwidth[ss_lookup_index]);
|
||
#endif
|
||
|
||
// *******
|
||
|
||
exec_using_spi = FALSE;
|
||
}
|
||
|
||
// ************************************
|
||
|
||
void rfm22_setRxMode(uint8_t mode, bool multi_packet_mode)
|
||
{
|
||
exec_using_spi = TRUE;
|
||
|
||
// disable interrupts
|
||
rfm22_write(RFM22_interrupt_enable1, 0x00);
|
||
rfm22_write(RFM22_interrupt_enable2, 0x00);
|
||
|
||
// Switch to TUNE mode
|
||
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon);
|
||
|
||
RX_LED_OFF;
|
||
TX_LED_OFF;
|
||
|
||
if (rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE)
|
||
{
|
||
// FIFO mode, GFSK modulation
|
||
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
|
||
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo |
|
||
RFM22_mmc2_modtyp_gfsk);
|
||
}
|
||
|
||
// empty the rx buffer
|
||
rx_buffer_wr = 0;
|
||
// reset the timer
|
||
rfm22_int_timer = 0;
|
||
rf_mode = mode;
|
||
|
||
// Clear the TX buffer.
|
||
tx_data_rd = tx_data_wr = 0;
|
||
|
||
// clear FIFOs
|
||
if (!multi_packet_mode)
|
||
{
|
||
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
|
||
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
|
||
} else {
|
||
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_rxmpk | RFM22_opfc2_ffclrrx |
|
||
RFM22_opfc2_ffclrtx);
|
||
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_rxmpk);
|
||
}
|
||
|
||
// enable RX interrupts
|
||
rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_encrcerror | RFM22_ie1_enpkvalid |
|
||
RFM22_ie1_enrxffafull | RFM22_ie1_enfferr);
|
||
rfm22_write(RFM22_interrupt_enable2, RFM22_ie2_enpreainval | RFM22_ie2_enpreaval |
|
||
RFM22_ie2_enswdet);
|
||
|
||
// enable the receiver
|
||
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_rxon);
|
||
|
||
exec_using_spi = FALSE;
|
||
}
|
||
|
||
// ************************************
|
||
|
||
uint16_t rfm22_addHeader()
|
||
{
|
||
uint16_t i = 0;
|
||
|
||
for (uint16_t j = (TX_PREAMBLE_NIBBLES + 1) / 2; j > 0; j--)
|
||
{
|
||
rfm22_burstWrite(PREAMBLE_BYTE);
|
||
i++;
|
||
}
|
||
rfm22_burstWrite(SYNC_BYTE_1); i++;
|
||
rfm22_burstWrite(SYNC_BYTE_2); i++;
|
||
|
||
return i;
|
||
}
|
||
|
||
// ************************************
|
||
|
||
uint8_t rfm22_txStart()
|
||
{
|
||
if((tx_pre_buffer_size == 0) || (exec_using_spi == TRUE))
|
||
{
|
||
// Clear the TX buffer.
|
||
tx_data_rd = tx_data_wr = 0;
|
||
return 0;
|
||
}
|
||
|
||
exec_using_spi = TRUE;
|
||
|
||
// Disable interrrupts.
|
||
PIOS_IRQ_Disable();
|
||
|
||
// Initialize the supervisor timer.
|
||
rfm22b_dev_g->supv_timer = PIOS_RFM22B_SUPERVISOR_TIMEOUT;
|
||
|
||
// disable interrupts
|
||
rfm22_write(RFM22_interrupt_enable1, 0x00);
|
||
rfm22_write(RFM22_interrupt_enable2, 0x00);
|
||
|
||
// TUNE mode
|
||
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon);
|
||
|
||
// Queue the data up for sending
|
||
memcpy(tx_buffer, tx_pre_buffer, tx_pre_buffer_size);
|
||
tx_data_rd = 0;
|
||
tx_data_wr = tx_pre_buffer_size;
|
||
tx_pre_buffer_size = 0;
|
||
|
||
RX_LED_OFF;
|
||
|
||
// Set the destination address in the transmit header.
|
||
// The destination address is the first 4 bytes of the message.
|
||
rfm22_write(RFM22_transmit_header0, tx_buffer[0]);
|
||
rfm22_write(RFM22_transmit_header1, tx_buffer[1]);
|
||
rfm22_write(RFM22_transmit_header2, tx_buffer[2]);
|
||
rfm22_write(RFM22_transmit_header3, tx_buffer[3]);
|
||
|
||
// FIFO mode, GFSK modulation
|
||
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
|
||
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo |
|
||
RFM22_mmc2_modtyp_gfsk);
|
||
|
||
// set the tx power
|
||
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_1 |
|
||
RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power);
|
||
|
||
// clear FIFOs
|
||
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
|
||
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
|
||
|
||
// *******************
|
||
// add some data to the chips TX FIFO before enabling the transmitter
|
||
|
||
// set the total number of data bytes we are going to transmit
|
||
rfm22_write(RFM22_transmit_packet_length, tx_data_wr);
|
||
|
||
// add some data
|
||
rfm22_startBurstWrite(RFM22_fifo_access);
|
||
for (uint16_t i = 0; (tx_data_rd < tx_data_wr) && (i < FIFO_SIZE); ++tx_data_rd, ++i)
|
||
rfm22_burstWrite(tx_buffer[tx_data_rd]);
|
||
rfm22_endBurstWrite();
|
||
|
||
// *******************
|
||
|
||
// reset the timer
|
||
rfm22_int_timer = 0;
|
||
|
||
rf_mode = TX_DATA_MODE;
|
||
|
||
// enable TX interrupts
|
||
rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem);
|
||
|
||
// enable the transmitter
|
||
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_txon);
|
||
|
||
// Re-ensable interrrupts.
|
||
PIOS_IRQ_Enable();
|
||
|
||
TX_LED_ON;
|
||
|
||
exec_using_spi = FALSE;
|
||
return 1;
|
||
}
|
||
|
||
|
||
static void rfm22_setTxMode(uint8_t mode)
|
||
{
|
||
rfm22_setDebug("setTxMode");
|
||
if (mode != TX_DATA_MODE && mode != TX_STREAM_MODE && mode != TX_CARRIER_MODE && mode != TX_PN_MODE)
|
||
return; // invalid mode
|
||
|
||
exec_using_spi = TRUE;
|
||
|
||
// disable interrupts
|
||
rfm22_write(RFM22_interrupt_enable1, 0x00);
|
||
rfm22_write(RFM22_interrupt_enable2, 0x00);
|
||
|
||
// TUNE mode
|
||
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon);
|
||
|
||
RX_LED_OFF;
|
||
|
||
// set the tx power
|
||
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_1 |
|
||
RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power);
|
||
|
||
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
|
||
if (mode == TX_CARRIER_MODE)
|
||
// blank carrier mode - for testing
|
||
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_pn9 |
|
||
RFM22_mmc2_modtyp_none); // FIFO mode, Blank carrier
|
||
else if (mode == TX_PN_MODE)
|
||
// psuedo random data carrier mode - for testing
|
||
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_pn9 |
|
||
RFM22_mmc2_modtyp_gfsk); // FIFO mode, PN9 carrier
|
||
else
|
||
// data transmission
|
||
// FIFO mode, GFSK modulation
|
||
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo |
|
||
RFM22_mmc2_modtyp_gfsk);
|
||
|
||
// clear FIFOs
|
||
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
|
||
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
|
||
|
||
// add some data to the chips TX FIFO before enabling the transmitter
|
||
{
|
||
uint16_t rd = 0;
|
||
uint16_t wr = tx_data_wr;
|
||
|
||
if (mode == TX_DATA_MODE)
|
||
// set the total number of data bytes we are going to transmit
|
||
rfm22_write(RFM22_transmit_packet_length, wr);
|
||
|
||
uint16_t max_bytes = FIFO_SIZE - 1;
|
||
uint16_t i = 0;
|
||
rfm22_startBurstWrite(RFM22_fifo_access);
|
||
if (mode == TX_STREAM_MODE) {
|
||
if (rd >= wr) {
|
||
// no data to send - yet .. just send preamble pattern
|
||
while (true) {
|
||
rfm22_burstWrite(PREAMBLE_BYTE);
|
||
if (++i >= max_bytes) break;
|
||
}
|
||
} else // add the RF heaader
|
||
i += rfm22_addHeader();
|
||
}
|
||
|
||
// add some data
|
||
for (uint16_t j = wr - rd; j > 0; j--) {
|
||
rfm22_burstWrite(tx_buffer[rd++]);
|
||
if (++i >= max_bytes)
|
||
break;
|
||
}
|
||
|
||
rfm22_endBurstWrite();
|
||
|
||
tx_data_rd = rd;
|
||
}
|
||
|
||
// reset the timer
|
||
rfm22_int_timer = 0;
|
||
|
||
rf_mode = mode;
|
||
|
||
// enable TX interrupts
|
||
// rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem | RFM22_ie1_enfferr);
|
||
rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem);
|
||
|
||
// read interrupt status - clear interrupts
|
||
rfm22_read(RFM22_interrupt_status1);
|
||
rfm22_read(RFM22_interrupt_status2);
|
||
|
||
// enable the transmitter
|
||
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton | RFM22_opfc1_txon);
|
||
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_txon);
|
||
|
||
TX_LED_ON;
|
||
|
||
// *******************
|
||
|
||
exec_using_spi = FALSE;
|
||
|
||
rfm22_setDebug("setTxMode end");
|
||
}
|
||
|
||
// ************************************
|
||
// external interrupt line triggered (or polled) from the rf chip
|
||
|
||
void rfm22_processRxInt(void)
|
||
{
|
||
register uint8_t int_stat1 = int_status1;
|
||
register uint8_t int_stat2 = int_status2;
|
||
rfm22_setDebug("processRxInt");
|
||
|
||
// FIFO under/over flow error. Restart RX mode.
|
||
if (device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
|
||
{
|
||
rfm22_setError("R_UNDER/OVERRUN");
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
|
||
return;
|
||
}
|
||
|
||
// Valid preamble detected
|
||
if (int_stat2 & RFM22_is2_ipreaval && (rf_mode == RX_WAIT_PREAMBLE_MODE))
|
||
{
|
||
rf_mode = RX_WAIT_SYNC_MODE;
|
||
RX_LED_ON;
|
||
rfm22_setDebug("pream_det");
|
||
}
|
||
|
||
// Sync word detected
|
||
if (int_stat2 & RFM22_is2_iswdet && ((rf_mode == RX_WAIT_PREAMBLE_MODE || rf_mode == RX_WAIT_SYNC_MODE)))
|
||
{
|
||
rf_mode = RX_DATA_MODE;
|
||
RX_LED_ON;
|
||
rfm22_setDebug("sync_det");
|
||
|
||
// read the 10-bit signed afc correction value
|
||
// bits 9 to 2
|
||
afc_correction = (uint16_t)rfm22_read(RFM22_afc_correction_read) << 8;
|
||
// bits 1 & 0
|
||
afc_correction |= (uint16_t)rfm22_read(RFM22_ook_counter_value1) & 0x00c0;
|
||
afc_correction >>= 6;
|
||
// convert the afc value to Hz
|
||
afc_correction_Hz = (int32_t)(frequency_step_size * afc_correction + 0.5f);
|
||
|
||
// remember the rssi for this packet
|
||
rx_packet_start_rssi_dBm = rssi_dBm;
|
||
// remember the afc value for this packet
|
||
rx_packet_start_afc_Hz = afc_correction_Hz;
|
||
}
|
||
|
||
// RX FIFO almost full, it needs emptying
|
||
if (int_stat1 & RFM22_is1_irxffafull)
|
||
{
|
||
if (rf_mode == RX_DATA_MODE)
|
||
{
|
||
// read data from the rf chips FIFO buffer
|
||
// read the total length of the packet data
|
||
uint16_t len = rfm22_read(RFM22_received_packet_length);
|
||
|
||
// The received packet is going to be larger than the specified length
|
||
if ((rx_buffer_wr + RX_FIFO_HI_WATERMARK) > len)
|
||
{
|
||
rfm22_setError("r_size_error1");
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
|
||
return;
|
||
}
|
||
|
||
// Another packet length error.
|
||
if (((rx_buffer_wr + RX_FIFO_HI_WATERMARK) >= len) && !(int_stat1 & RFM22_is1_ipkvalid))
|
||
{
|
||
rfm22_setError("r_size_error2");
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
|
||
return;
|
||
}
|
||
|
||
// Fetch the data from the RX FIFO
|
||
rfm22_startBurstRead(RFM22_fifo_access);
|
||
for (uint8_t i = 0; i < RX_FIFO_HI_WATERMARK; ++i)
|
||
rx_buffer[rx_buffer_wr++] = rfm22_burstRead();
|
||
rfm22_endBurstRead();
|
||
}
|
||
else
|
||
{ // just clear the RX FIFO
|
||
rfm22_startBurstRead(RFM22_fifo_access);
|
||
for (register uint16_t i = RX_FIFO_HI_WATERMARK; i > 0; i--)
|
||
rfm22_burstRead(); // read a byte from the rf modules RX FIFO buffer
|
||
rfm22_endBurstRead();
|
||
}
|
||
}
|
||
|
||
// CRC error .. discard the received data
|
||
if (int_stat1 & RFM22_is1_icrerror)
|
||
{
|
||
rfm22_int_timer = 0; // reset the timer
|
||
rfm22_setError("CRC_ERR");
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
|
||
return;
|
||
}
|
||
|
||
// Valid packet received
|
||
if (int_stat1 & RFM22_is1_ipkvalid)
|
||
{
|
||
|
||
// read the total length of the packet data
|
||
register uint16_t len = rfm22_read(RFM22_received_packet_length);
|
||
|
||
// their must still be data in the RX FIFO we need to get
|
||
if (rx_buffer_wr < len)
|
||
{
|
||
// Fetch the data from the RX FIFO
|
||
rfm22_startBurstRead(RFM22_fifo_access);
|
||
while (rx_buffer_wr < len)
|
||
rx_buffer[rx_buffer_wr++] = rfm22_burstRead();
|
||
rfm22_endBurstRead();
|
||
}
|
||
|
||
if (rx_buffer_wr != len)
|
||
{
|
||
// we have a packet length error .. discard the packet
|
||
rfm22_setError("r_pack_len_error");
|
||
debug_val = len;
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
|
||
return;
|
||
}
|
||
|
||
// we have a valid received packet
|
||
rfm22_setDebug("VALID_R_PACKET");
|
||
|
||
if (rx_buffer_wr > 0)
|
||
{
|
||
// remember the rssi for this packet
|
||
rx_packet_rssi_dBm = rx_packet_start_rssi_dBm;
|
||
// remember the afc offset for this packet
|
||
rx_packet_afc_Hz = rx_packet_start_afc_Hz;
|
||
// Add the rssi and afc to the end of the packet.
|
||
rx_buffer[rx_buffer_wr++] = rx_packet_start_rssi_dBm;
|
||
rx_buffer[rx_buffer_wr++] = rx_packet_start_afc_Hz;
|
||
// Pass this packet on
|
||
bool need_yield = false;
|
||
if (rfm22b_dev_g->rx_in_cb)
|
||
(rfm22b_dev_g->rx_in_cb)(rfm22b_dev_g->rx_in_context, (uint8_t*)rx_buffer,
|
||
rx_buffer_wr, NULL, &need_yield);
|
||
rx_buffer_wr = 0;
|
||
}
|
||
|
||
// Send a packet if it's available.
|
||
if(!rfm22_txStart())
|
||
{
|
||
// Switch to RX mode
|
||
rfm22_setDebug(" Set RX");
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
|
||
}
|
||
}
|
||
|
||
rfm22_setDebug("processRxInt end");
|
||
}
|
||
|
||
void rfm22_processTxInt(void)
|
||
{
|
||
register uint8_t int_stat1 = int_status1;
|
||
|
||
// reset the timer
|
||
rfm22_int_timer = 0;
|
||
|
||
// FIFO under/over flow error. Back to RX mode.
|
||
if (device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
|
||
{
|
||
rfm22_setError("T_UNDER/OVERRUN");
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
|
||
return;
|
||
}
|
||
|
||
// Transmit timeout. Abort the transmit.
|
||
if (rfm22_int_timer >= timeout_data_ms)
|
||
{
|
||
rfm22_int_time_outs++;
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
|
||
return;
|
||
}
|
||
|
||
// the rf module is not in tx mode
|
||
if ((device_status & RFM22_ds_cps_mask) != RFM22_ds_cps_tx)
|
||
{
|
||
if (rfm22_int_timer >= 100)
|
||
{
|
||
rfm22_int_time_outs++;
|
||
rfm22_setError("T_TIMEOUT");
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode
|
||
return;
|
||
}
|
||
}
|
||
|
||
// TX FIFO almost empty, it needs filling up
|
||
if (int_stat1 & RFM22_is1_ixtffaem)
|
||
{
|
||
// top-up the rf chips TX FIFO buffer
|
||
uint16_t max_bytes = FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1;
|
||
rfm22_startBurstWrite(RFM22_fifo_access);
|
||
for (uint16_t i = 0; (tx_data_rd < tx_data_wr) && (i < max_bytes); ++i, ++tx_data_rd)
|
||
rfm22_burstWrite(tx_buffer[tx_data_rd]);
|
||
rfm22_endBurstWrite();
|
||
}
|
||
|
||
// Packet has been sent
|
||
if (int_stat1 & RFM22_is1_ipksent)
|
||
{
|
||
rfm22_setDebug(" T_Sent");
|
||
|
||
// Send another packet if it's available.
|
||
if(!rfm22_txStart())
|
||
{
|
||
// Switch to RX mode
|
||
rfm22_setDebug(" Set RX");
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
|
||
return;
|
||
}
|
||
}
|
||
|
||
rfm22_setDebug("ProcessTxInt done");
|
||
}
|
||
|
||
static void rfm22_processInt(void)
|
||
{
|
||
rfm22_setDebug("ProcessInt");
|
||
// this is called from the external interrupt handler
|
||
|
||
if (!initialized || power_on_reset)
|
||
// we haven't yet been initialized
|
||
return;
|
||
|
||
exec_using_spi = TRUE;
|
||
|
||
// Reset the supervisor timer.
|
||
rfm22b_dev_g->supv_timer = PIOS_RFM22B_SUPERVISOR_TIMEOUT;
|
||
|
||
// read interrupt status registers - clears the interrupt line
|
||
int_status1 = rfm22_read(RFM22_interrupt_status1);
|
||
int_status2 = rfm22_read(RFM22_interrupt_status2);
|
||
|
||
// read device status register
|
||
device_status = rfm22_read(RFM22_device_status);
|
||
|
||
// read ezmac status register
|
||
ezmac_status = rfm22_read(RFM22_ezmac_status);
|
||
|
||
// Read the RSSI if we're in RX mode
|
||
if (rf_mode != TX_DATA_MODE && rf_mode != TX_STREAM_MODE &&
|
||
rf_mode != TX_CARRIER_MODE && rf_mode != TX_PN_MODE)
|
||
{
|
||
// read rx signal strength .. 45 = -100dBm, 205 = -20dBm
|
||
rssi = rfm22_read(RFM22_rssi);
|
||
// convert to dBm
|
||
rssi_dBm = (int8_t)(rssi >> 1) - 122;
|
||
}
|
||
else
|
||
// read the tx power register
|
||
tx_pwr = rfm22_read(RFM22_tx_power);
|
||
|
||
// the RF module has gone and done a reset - we need to re-initialize the rf module
|
||
if (int_status2 & RFM22_is2_ipor)
|
||
{
|
||
initialized = FALSE;
|
||
power_on_reset = TRUE;
|
||
rfm22_setError("Reset");
|
||
// Need to do something here!
|
||
return;
|
||
}
|
||
|
||
switch (rf_mode)
|
||
{
|
||
case RX_SCAN_SPECTRUM:
|
||
break;
|
||
|
||
case RX_WAIT_PREAMBLE_MODE:
|
||
case RX_WAIT_SYNC_MODE:
|
||
case RX_DATA_MODE:
|
||
|
||
rfm22_processRxInt();
|
||
break;
|
||
|
||
case TX_DATA_MODE:
|
||
case TX_STREAM_MODE:
|
||
|
||
rfm22_processTxInt();
|
||
break;
|
||
|
||
case TX_CARRIER_MODE:
|
||
case TX_PN_MODE:
|
||
|
||
// if (rfm22_int_timer >= TX_TEST_MODE_TIMELIMIT_MS) // 'nn'ms limit
|
||
// {
|
||
// rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // back to rx mode
|
||
// tx_data_rd = tx_data_wr = 0; // wipe TX buffer
|
||
// break;
|
||
// }
|
||
|
||
break;
|
||
|
||
default: // unknown mode - this should NEVER happen, maybe we should do a complete CPU reset here
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false); // to rx mode
|
||
break;
|
||
}
|
||
|
||
exec_using_spi = FALSE;
|
||
|
||
rfm22_setDebug("ProcessInt done");
|
||
}
|
||
|
||
// ************************************
|
||
|
||
int8_t rfm22_getRSSI(void)
|
||
{
|
||
exec_using_spi = TRUE;
|
||
|
||
rssi = rfm22_read(RFM22_rssi); // read rx signal strength .. 45 = -100dBm, 205 = -20dBm
|
||
rssi_dBm = (int8_t)(rssi >> 1) - 122; // convert to dBm
|
||
|
||
exec_using_spi = FALSE;
|
||
return rssi_dBm;
|
||
}
|
||
|
||
int8_t rfm22_receivedRSSI(void)
|
||
{ // return the packets signal strength
|
||
if (!initialized)
|
||
return -127;
|
||
else
|
||
return rx_packet_rssi_dBm;
|
||
}
|
||
|
||
int32_t rfm22_receivedAFCHz(void)
|
||
{ // return the packets offset frequency
|
||
if (!initialized)
|
||
return 0;
|
||
else
|
||
return rx_packet_afc_Hz;
|
||
}
|
||
|
||
// ************************************
|
||
|
||
// ************************************
|
||
|
||
void rfm22_setTxStream(void) // TEST ONLY
|
||
{
|
||
if (!initialized)
|
||
return;
|
||
|
||
tx_data_rd = tx_data_wr = 0;
|
||
|
||
rfm22_setTxMode(TX_STREAM_MODE);
|
||
}
|
||
|
||
// ************************************
|
||
|
||
void rfm22_setTxNormal(void)
|
||
{
|
||
if (!initialized)
|
||
return;
|
||
|
||
// if (rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE)
|
||
if (rf_mode != RX_SCAN_SPECTRUM)
|
||
{
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
|
||
tx_data_rd = tx_data_wr = 0;
|
||
|
||
rx_packet_start_rssi_dBm = 0;
|
||
rx_packet_start_afc_Hz = 0;
|
||
rx_packet_rssi_dBm = 0;
|
||
rx_packet_afc_Hz = 0;
|
||
}
|
||
}
|
||
|
||
// enable a blank tx carrier (for frequency alignment)
|
||
void rfm22_setTxCarrierMode(void)
|
||
{
|
||
if (!initialized)
|
||
return;
|
||
|
||
if (rf_mode != TX_CARRIER_MODE && rf_mode != RX_SCAN_SPECTRUM)
|
||
rfm22_setTxMode(TX_CARRIER_MODE);
|
||
}
|
||
|
||
// enable a psuedo random data tx carrier (for spectrum inspection)
|
||
void rfm22_setTxPNMode(void)
|
||
{
|
||
if (!initialized)
|
||
return;
|
||
|
||
if (rf_mode != TX_PN_MODE && rf_mode != RX_SCAN_SPECTRUM)
|
||
rfm22_setTxMode(TX_PN_MODE);
|
||
}
|
||
|
||
// ************************************
|
||
|
||
// return the current mode
|
||
int8_t rfm22_currentMode(void)
|
||
{
|
||
return rf_mode;
|
||
}
|
||
|
||
// return TRUE if we are transmitting
|
||
bool rfm22_transmitting(void)
|
||
{
|
||
return (rf_mode == TX_DATA_MODE || rf_mode == TX_STREAM_MODE || rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE);
|
||
}
|
||
|
||
// return TRUE if the channel is clear to transmit on
|
||
bool rfm22_channelIsClear(void)
|
||
{
|
||
if (!initialized)
|
||
// we haven't yet been initialized
|
||
return FALSE;
|
||
|
||
if (rf_mode != RX_WAIT_PREAMBLE_MODE && rf_mode != RX_WAIT_SYNC_MODE)
|
||
// we are receiving something or we are transmitting or we are scanning the spectrum
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
// return TRUE if the transmiter is ready for use
|
||
bool rfm22_txReady(void)
|
||
{
|
||
if (!initialized)
|
||
// we haven't yet been initialized
|
||
return FALSE;
|
||
|
||
return (tx_data_rd == 0 && tx_data_wr == 0 && rf_mode != TX_DATA_MODE &&
|
||
rf_mode != TX_STREAM_MODE && rf_mode != TX_CARRIER_MODE && rf_mode != TX_PN_MODE &&
|
||
rf_mode != RX_SCAN_SPECTRUM);
|
||
}
|
||
|
||
// ************************************
|
||
// set/get the frequency calibration value
|
||
|
||
void rfm22_setFreqCalibration(uint8_t value)
|
||
{
|
||
osc_load_cap = value;
|
||
|
||
if (!initialized || power_on_reset)
|
||
return; // we haven't yet been initialized
|
||
|
||
uint8_t prev_rf_mode = rf_mode;
|
||
|
||
if (rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE)
|
||
{
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
|
||
tx_data_rd = tx_data_wr = 0;
|
||
}
|
||
|
||
exec_using_spi = TRUE;
|
||
|
||
rfm22_write(RFM22_xtal_osc_load_cap, osc_load_cap);
|
||
|
||
exec_using_spi = FALSE;
|
||
|
||
if (prev_rf_mode == TX_CARRIER_MODE || prev_rf_mode == TX_PN_MODE)
|
||
rfm22_setTxMode(prev_rf_mode);
|
||
}
|
||
|
||
uint8_t rfm22_getFreqCalibration(void)
|
||
{
|
||
return osc_load_cap;
|
||
}
|
||
|
||
// ************************************
|
||
// can be called from an interrupt if you wish
|
||
|
||
void rfm22_1ms_tick(void)
|
||
{ // call this once every ms
|
||
if (!initialized) return; // we haven't yet been initialized
|
||
|
||
if (rf_mode != RX_SCAN_SPECTRUM)
|
||
{
|
||
if (rfm22_int_timer < 0xffff) rfm22_int_timer++;
|
||
}
|
||
}
|
||
|
||
// ************************************
|
||
// reset the RF module
|
||
|
||
int rfm22_resetModule(uint8_t mode, uint32_t min_frequency_hz, uint32_t max_frequency_hz)
|
||
{
|
||
initialized = false;
|
||
|
||
#if defined(RFM22_EXT_INT_USE)
|
||
rfm22_disableExtInt();
|
||
#endif
|
||
|
||
power_on_reset = false;
|
||
|
||
// ****************
|
||
|
||
exec_using_spi = TRUE;
|
||
|
||
// ****************
|
||
// setup the SPI port
|
||
|
||
// chip select line HIGH
|
||
PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0, 1);
|
||
|
||
// set SPI port SCLK frequency .. 4.5MHz
|
||
PIOS_SPI_SetClockSpeed(RFM22_PIOS_SPI, PIOS_SPI_PRESCALER_16);
|
||
// set SPI port SCLK frequency .. 2.25MHz
|
||
// PIOS_SPI_SetClockSpeed(RFM22_PIOS_SPI, PIOS_SPI_PRESCALER_32);
|
||
|
||
// set SPI port SCLK frequency .. 285kHz .. purely for hardware fault finding
|
||
// PIOS_SPI_SetClockSpeed(RFM22_PIOS_SPI, PIOS_SPI_PRESCALER_256);
|
||
|
||
// ****************
|
||
// software reset the RF chip .. following procedure according to Si4x3x Errata (rev. B)
|
||
|
||
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_swres); // software reset the radio
|
||
|
||
PIOS_DELAY_WaitmS(26); // wait 26ms
|
||
|
||
for (int i = 50; i > 0; i--)
|
||
{
|
||
PIOS_DELAY_WaitmS(1); // wait 1ms
|
||
|
||
// read the status registers
|
||
int_status1 = rfm22_read(RFM22_interrupt_status1);
|
||
int_status2 = rfm22_read(RFM22_interrupt_status2);
|
||
if (int_status2 & RFM22_is2_ichiprdy) break;
|
||
}
|
||
|
||
// ****************
|
||
|
||
// read status - clears interrupt
|
||
device_status = rfm22_read(RFM22_device_status);
|
||
int_status1 = rfm22_read(RFM22_interrupt_status1);
|
||
int_status2 = rfm22_read(RFM22_interrupt_status2);
|
||
ezmac_status = rfm22_read(RFM22_ezmac_status);
|
||
|
||
// disable all interrupts
|
||
rfm22_write(RFM22_interrupt_enable1, 0x00);
|
||
rfm22_write(RFM22_interrupt_enable2, 0x00);
|
||
|
||
// ****************
|
||
|
||
exec_using_spi = FALSE;
|
||
|
||
// ****************
|
||
|
||
rf_mode = mode;
|
||
|
||
device_status = int_status1 = int_status2 = ezmac_status = 0;
|
||
|
||
rssi = 0;
|
||
rssi_dBm = -127;
|
||
|
||
rx_buffer_current = 0;
|
||
rx_buffer_wr = 0;
|
||
rx_packet_rssi_dBm = -127;
|
||
rx_packet_afc_Hz = 0;
|
||
|
||
tx_data_rd = tx_data_wr = 0;
|
||
|
||
lookup_index = 0;
|
||
ss_lookup_index = 0;
|
||
|
||
rf_bandwidth_used = 0;
|
||
ss_rf_bandwidth_used = 0;
|
||
|
||
rfm22_int_timer = 0;
|
||
rfm22_int_time_outs = 0;
|
||
prev_rfm22_int_time_outs = 0;
|
||
|
||
hbsel = 0;
|
||
frequency_step_size = 0.0f;
|
||
|
||
frequency_hop_channel = 0;
|
||
|
||
afc_correction = 0;
|
||
afc_correction_Hz = 0;
|
||
|
||
temperature_reg = 0;
|
||
|
||
// set the TX power
|
||
tx_power = RFM22_DEFAULT_RF_POWER;
|
||
|
||
tx_pwr = 0;
|
||
|
||
// ****************
|
||
// read the RF chip ID bytes
|
||
|
||
device_type = rfm22_read(RFM22_DEVICE_TYPE) & RFM22_DT_MASK; // read the device type
|
||
device_version = rfm22_read(RFM22_DEVICE_VERSION) & RFM22_DV_MASK; // read the device version
|
||
|
||
#if defined(RFM22_DEBUG)
|
||
DEBUG_PRINTF(2, "rf device type: %d\n\r", device_type);
|
||
DEBUG_PRINTF(2, "rf device version: %d\n\r", device_version);
|
||
#endif
|
||
|
||
if (device_type != 0x08)
|
||
{
|
||
#if defined(RFM22_DEBUG)
|
||
DEBUG_PRINTF(2, "rf device type: INCORRECT - should be 0x08\n\r");
|
||
#endif
|
||
return -1; // incorrect RF module type
|
||
}
|
||
|
||
// if (device_version != RFM22_DEVICE_VERSION_V2) // V2
|
||
// return -2; // incorrect RF module version
|
||
// if (device_version != RFM22_DEVICE_VERSION_A0) // A0
|
||
// return -2; // incorrect RF module version
|
||
if (device_version != RFM22_DEVICE_VERSION_B1) // B1
|
||
{
|
||
#if defined(RFM22_DEBUG)
|
||
DEBUG_PRINTF(2, "rf device version: INCORRECT\n\r");
|
||
#endif
|
||
return -2; // incorrect RF module version
|
||
}
|
||
|
||
// ****************
|
||
// set the minimum and maximum carrier frequency allowed
|
||
|
||
if (min_frequency_hz < RFM22_MIN_CARRIER_FREQUENCY_HZ) min_frequency_hz = RFM22_MIN_CARRIER_FREQUENCY_HZ;
|
||
else
|
||
if (min_frequency_hz > RFM22_MAX_CARRIER_FREQUENCY_HZ) min_frequency_hz = RFM22_MAX_CARRIER_FREQUENCY_HZ;
|
||
|
||
if (max_frequency_hz < RFM22_MIN_CARRIER_FREQUENCY_HZ) max_frequency_hz = RFM22_MIN_CARRIER_FREQUENCY_HZ;
|
||
else
|
||
if (max_frequency_hz > RFM22_MAX_CARRIER_FREQUENCY_HZ) max_frequency_hz = RFM22_MAX_CARRIER_FREQUENCY_HZ;
|
||
|
||
if (min_frequency_hz > max_frequency_hz)
|
||
{ // swap them over
|
||
uint32_t tmp = min_frequency_hz;
|
||
min_frequency_hz = max_frequency_hz;
|
||
max_frequency_hz = tmp;
|
||
}
|
||
|
||
lower_carrier_frequency_limit_Hz = min_frequency_hz;
|
||
upper_carrier_frequency_limit_Hz = max_frequency_hz;
|
||
|
||
// ****************
|
||
// calibrate our RF module to be exactly on frequency .. different for every module
|
||
|
||
osc_load_cap = OSC_LOAD_CAP; // default
|
||
rfm22_write(RFM22_xtal_osc_load_cap, osc_load_cap);
|
||
|
||
// ****************
|
||
|
||
// disable Low Duty Cycle Mode
|
||
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
|
||
|
||
rfm22_write(RFM22_cpu_output_clk, RFM22_coc_1MHz); // 1MHz clock output
|
||
|
||
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton); // READY mode
|
||
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); // TUNE mode
|
||
|
||
// choose the 3 GPIO pin functions
|
||
rfm22_write(RFM22_io_port_config, RFM22_io_port_default); // GPIO port use default value
|
||
rfm22_write(RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_txstate); // GPIO0 = TX State (to control RF Switch)
|
||
rfm22_write(RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_rxstate); // GPIO1 = RX State (to control RF Switch)
|
||
rfm22_write(RFM22_gpio2_config, RFM22_gpio2_config_drv3 | RFM22_gpio2_config_cca); // GPIO2 = Clear Channel Assessment
|
||
|
||
// ****************
|
||
|
||
return 0; // OK
|
||
}
|
||
|
||
// ************************************
|
||
|
||
int rfm22_init_scan_spectrum(uint32_t min_frequency_hz, uint32_t max_frequency_hz)
|
||
{
|
||
#if defined(RFM22_DEBUG)
|
||
DEBUG_PRINTF(2, "\n\rRF init scan spectrum\n\r");
|
||
#endif
|
||
|
||
int res = rfm22_resetModule(RX_SCAN_SPECTRUM, min_frequency_hz, max_frequency_hz);
|
||
if (res < 0)
|
||
return res;
|
||
|
||
// rfm22_setSSBandwidth(0);
|
||
rfm22_setSSBandwidth(1);
|
||
|
||
// FIFO mode, GFSK modulation
|
||
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
|
||
rfm22_write(RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk);
|
||
|
||
rfm22_write(RFM22_cpu_output_clk, RFM22_coc_1MHz); // 1MHz clock output
|
||
|
||
rfm22_write(RFM22_rssi_threshold_clear_chan_indicator, 0);
|
||
|
||
rfm22_write(RFM22_preamble_detection_ctrl1, 31 << 3); // 31-nibbles rx preamble detection
|
||
|
||
// avoid packet detection
|
||
rfm22_write(RFM22_data_access_control, RFM22_dac_enpacrx | RFM22_dac_encrc);
|
||
rfm22_write(RFM22_header_control1, 0x0f);
|
||
rfm22_write(RFM22_header_control2, 0x77);
|
||
|
||
rfm22_write(RFM22_sync_word3, SYNC_BYTE_1);
|
||
rfm22_write(RFM22_sync_word2, SYNC_BYTE_2);
|
||
rfm22_write(RFM22_sync_word1, SYNC_BYTE_3 ^ 0xff);
|
||
rfm22_write(RFM22_sync_word0, SYNC_BYTE_4 ^ 0xff);
|
||
|
||
// all the bits to be checked
|
||
rfm22_write(RFM22_header_enable3, 0xff);
|
||
rfm22_write(RFM22_header_enable2, 0xff);
|
||
rfm22_write(RFM22_header_enable1, 0xff);
|
||
rfm22_write(RFM22_header_enable0, 0xff);
|
||
|
||
// set frequency hopping channel step size (multiples of 10kHz)
|
||
// rfm22_write(RFM22_frequency_hopping_step_size, 0);
|
||
|
||
// set our nominal carrier frequency
|
||
rfm22_setNominalCarrierFrequency(min_frequency_hz);
|
||
|
||
// set minimum tx power
|
||
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_lna_sw | 0);
|
||
|
||
rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_sgi | RFM22_agc_ovr1_agcen);
|
||
|
||
// rfm22_write(RFM22_vco_current_trimming, 0x7f);
|
||
// rfm22_write(RFM22_vco_calibration_override, 0x40);
|
||
// rfm22_write(RFM22_chargepump_current_trimming_override, 0x80);
|
||
|
||
// Enable RF module external interrupt
|
||
rfm22_enableExtInt();
|
||
|
||
rfm22_setRxMode(RX_SCAN_SPECTRUM, true);
|
||
|
||
initialized = true;
|
||
|
||
return 0; // OK
|
||
}
|
||
|
||
// ************************************
|
||
|
||
int rfm22_init_tx_stream(uint32_t min_frequency_hz, uint32_t max_frequency_hz)
|
||
{
|
||
#if defined(RFM22_DEBUG)
|
||
DEBUG_PRINTF(2, "\n\rRF init TX stream\n\r");
|
||
#endif
|
||
|
||
int res = rfm22_resetModule(TX_STREAM_MODE, min_frequency_hz, max_frequency_hz);
|
||
if (res < 0)
|
||
return res;
|
||
|
||
frequency_hop_step_size_reg = 0;
|
||
|
||
// set the RF datarate
|
||
rfm22_setDatarate(RFM22_DEFAULT_RF_DATARATE, FALSE);
|
||
|
||
// FIFO mode, GFSK modulation
|
||
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
|
||
rfm22_write(RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk);
|
||
|
||
// disable the internal Tx & Rx packet handlers (without CRC)
|
||
rfm22_write(RFM22_data_access_control, 0);
|
||
|
||
rfm22_write(RFM22_preamble_length, TX_PREAMBLE_NIBBLES); // x-nibbles tx preamble
|
||
rfm22_write(RFM22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3); // x-nibbles rx preamble detection
|
||
|
||
rfm22_write(RFM22_header_control1, RFM22_header_cntl1_bcen_none | RFM22_header_cntl1_hdch_none); // header control - we are not using the header
|
||
rfm22_write(RFM22_header_control2, RFM22_header_cntl2_fixpklen | RFM22_header_cntl2_hdlen_none | RFM22_header_cntl2_synclen_32 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01)); // no header bytes, synchronization word length 3, 2 used, packet length not included in header (fixed packet length).
|
||
|
||
rfm22_write(RFM22_sync_word3, SYNC_BYTE_1); // sync word
|
||
rfm22_write(RFM22_sync_word2, SYNC_BYTE_2); //
|
||
|
||
// rfm22_write(RFM22_modem_test, 0x01);
|
||
|
||
rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_agcen);
|
||
// rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_sgi | RFM22_agc_ovr1_agcen);
|
||
|
||
rfm22_write(RFM22_frequency_hopping_step_size, frequency_hop_step_size_reg); // set frequency hopping channel step size (multiples of 10kHz)
|
||
|
||
rfm22_setNominalCarrierFrequency((min_frequency_hz + max_frequency_hz) / 2); // set our nominal carrier frequency
|
||
|
||
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | tx_power); // set the tx power
|
||
// rfm22_write(RFM22_tx_power, RFM22_tx_pwr_lna_sw | tx_power); // set the tx power
|
||
|
||
// rfm22_write(RFM22_vco_current_trimming, 0x7f);
|
||
// rfm22_write(RFM22_vco_calibration_override, 0x40);
|
||
// rfm22_write(RFM22_chargepump_current_trimming_override, 0x80);
|
||
|
||
rfm22_write(RFM22_tx_fifo_control1, TX_FIFO_HI_WATERMARK); // TX FIFO Almost Full Threshold (0 - 63)
|
||
rfm22_write(RFM22_tx_fifo_control2, TX_FIFO_LO_WATERMARK); // TX FIFO Almost Empty Threshold (0 - 63)
|
||
|
||
// Enable RF module external interrupt
|
||
rfm22_enableExtInt();
|
||
|
||
initialized = true;
|
||
|
||
return 0; // OK
|
||
}
|
||
|
||
// ************************************
|
||
|
||
int rfm22_init_rx_stream(uint32_t min_frequency_hz, uint32_t max_frequency_hz)
|
||
{
|
||
#if defined(RFM22_DEBUG)
|
||
DEBUG_PRINTF(2, "\n\rRF init RX stream\n\r");
|
||
#endif
|
||
|
||
int res = rfm22_resetModule(RX_WAIT_PREAMBLE_MODE, min_frequency_hz, max_frequency_hz);
|
||
if (res < 0)
|
||
return res;
|
||
|
||
frequency_hop_step_size_reg = 0;
|
||
|
||
// set the RF datarate
|
||
rfm22_setDatarate(RFM22_DEFAULT_RF_DATARATE, FALSE);
|
||
|
||
// FIFO mode, GFSK modulation
|
||
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
|
||
rfm22_write(RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk);
|
||
|
||
// disable the internal Tx & Rx packet handlers (without CRC)
|
||
rfm22_write(RFM22_data_access_control, 0);
|
||
|
||
rfm22_write(RFM22_preamble_length, TX_PREAMBLE_NIBBLES); // x-nibbles tx preamble
|
||
rfm22_write(RFM22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3); // x-nibbles rx preamble detection
|
||
|
||
rfm22_write(RFM22_header_control1, RFM22_header_cntl1_bcen_none | RFM22_header_cntl1_hdch_none); // header control - we are not using the header
|
||
rfm22_write(RFM22_header_control2, RFM22_header_cntl2_fixpklen | RFM22_header_cntl2_hdlen_none | RFM22_header_cntl2_synclen_32 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01)); // no header bytes, synchronization word length 3, 2 used, packet length not included in header (fixed packet length).
|
||
|
||
rfm22_write(RFM22_sync_word3, SYNC_BYTE_1); // sync word
|
||
rfm22_write(RFM22_sync_word2, SYNC_BYTE_2); //
|
||
|
||
// no header bits to be checked
|
||
rfm22_write(RFM22_header_enable3, 0x00);
|
||
rfm22_write(RFM22_header_enable2, 0x00);
|
||
rfm22_write(RFM22_header_enable1, 0x00);
|
||
rfm22_write(RFM22_header_enable0, 0x00);
|
||
|
||
// rfm22_write(RFM22_modem_test, 0x01);
|
||
|
||
rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_agcen);
|
||
// rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_sgi | RFM22_agc_ovr1_agcen);
|
||
|
||
rfm22_write(RFM22_frequency_hopping_step_size, frequency_hop_step_size_reg); // set frequency hopping channel step size (multiples of 10kHz)
|
||
|
||
rfm22_setNominalCarrierFrequency((min_frequency_hz + max_frequency_hz) / 2); // set our nominal carrier frequency
|
||
|
||
// rfm22_write(RFM22_vco_current_trimming, 0x7f);
|
||
// rfm22_write(RFM22_vco_calibration_override, 0x40);
|
||
// rfm22_write(RFM22_chargepump_current_trimming_override, 0x80);
|
||
|
||
// RX FIFO Almost Full Threshold (0 - 63)
|
||
rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK);
|
||
|
||
// Enable RF module external interrupt
|
||
rfm22_enableExtInt();
|
||
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
|
||
|
||
initialized = true;
|
||
|
||
return 0; // OK
|
||
}
|
||
|
||
// ************************************
|
||
// Initialise this hardware layer module and the rf module
|
||
|
||
int rfm22_init_normal(uint32_t id, uint32_t min_frequency_hz, uint32_t max_frequency_hz, uint32_t freq_hop_step_size)
|
||
{
|
||
int res = rfm22_resetModule(RX_WAIT_PREAMBLE_MODE, min_frequency_hz, max_frequency_hz);
|
||
if (res < 0)
|
||
return res;
|
||
|
||
// initialize the frequency hopping step size
|
||
freq_hop_step_size /= 10000; // in 10kHz increments
|
||
if (freq_hop_step_size > 255) freq_hop_step_size = 255;
|
||
frequency_hop_step_size_reg = freq_hop_step_size;
|
||
|
||
// set the RF datarate
|
||
rfm22_setDatarate(RFM22_DEFAULT_RF_DATARATE, TRUE);
|
||
|
||
// FIFO mode, GFSK modulation
|
||
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
|
||
rfm22_write(RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk);
|
||
|
||
// setup to read the internal temperature sensor
|
||
|
||
// ADC used to sample the temperature sensor
|
||
adc_config = RFM22_ac_adcsel_temp_sensor | RFM22_ac_adcref_bg;
|
||
rfm22_write(RFM22_adc_config, adc_config);
|
||
|
||
// adc offset
|
||
rfm22_write(RFM22_adc_sensor_amp_offset, 0);
|
||
|
||
// temp sensor calibration .. <20>40C to +64C 0.5C resolution
|
||
rfm22_write(RFM22_temp_sensor_calib, RFM22_tsc_tsrange0 | RFM22_tsc_entsoffs);
|
||
|
||
// temp sensor offset
|
||
rfm22_write(RFM22_temp_value_offset, 0);
|
||
|
||
// start an ADC conversion
|
||
rfm22_write(RFM22_adc_config, adc_config | RFM22_ac_adcstartbusy);
|
||
|
||
// set the RSSI threshold interrupt to about -90dBm
|
||
rfm22_write(RFM22_rssi_threshold_clear_chan_indicator, (-90 + 122) * 2);
|
||
|
||
// enable the internal Tx & Rx packet handlers (without CRC)
|
||
rfm22_write(RFM22_data_access_control, RFM22_dac_enpacrx | RFM22_dac_enpactx);
|
||
|
||
// x-nibbles tx preamble
|
||
rfm22_write(RFM22_preamble_length, TX_PREAMBLE_NIBBLES);
|
||
// x-nibbles rx preamble detection
|
||
rfm22_write(RFM22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3);
|
||
|
||
#ifdef PIOS_RFM22_NO_HEADER
|
||
// header control - we are not using the header
|
||
rfm22_write(RFM22_header_control1, RFM22_header_cntl1_bcen_none | RFM22_header_cntl1_hdch_none);
|
||
|
||
// no header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header.
|
||
rfm22_write(RFM22_header_control2, RFM22_header_cntl2_hdlen_none |
|
||
RFM22_header_cntl2_synclen_3210 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01));
|
||
#else
|
||
// header control - using a 4 by header with broadcast of 0xffffffff
|
||
rfm22_write(RFM22_header_control1,
|
||
RFM22_header_cntl1_bcen_0 |
|
||
RFM22_header_cntl1_bcen_1 |
|
||
RFM22_header_cntl1_bcen_2 |
|
||
RFM22_header_cntl1_bcen_3 |
|
||
RFM22_header_cntl1_hdch_0 |
|
||
RFM22_header_cntl1_hdch_1 |
|
||
RFM22_header_cntl1_hdch_2 |
|
||
RFM22_header_cntl1_hdch_3);
|
||
// Check all bit of all bytes of the header
|
||
rfm22_write(RFM22_header_enable0, 0xff);
|
||
rfm22_write(RFM22_header_enable1, 0xff);
|
||
rfm22_write(RFM22_header_enable2, 0xff);
|
||
rfm22_write(RFM22_header_enable3, 0xff);
|
||
// Set the ID to be checked
|
||
rfm22_write(RFM22_check_header0, id & 0xff);
|
||
rfm22_write(RFM22_check_header1, (id >> 8) & 0xff);
|
||
rfm22_write(RFM22_check_header2, (id >> 16) & 0xff);
|
||
rfm22_write(RFM22_check_header3, (id >> 24) & 0xff);
|
||
// 4 header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header.
|
||
rfm22_write(RFM22_header_control2,
|
||
RFM22_header_cntl2_hdlen_3210 |
|
||
RFM22_header_cntl2_synclen_3210 |
|
||
((TX_PREAMBLE_NIBBLES >> 8) & 0x01));
|
||
#endif
|
||
|
||
// sync word
|
||
rfm22_write(RFM22_sync_word3, SYNC_BYTE_1);
|
||
rfm22_write(RFM22_sync_word2, SYNC_BYTE_2);
|
||
rfm22_write(RFM22_sync_word1, SYNC_BYTE_3);
|
||
rfm22_write(RFM22_sync_word0, SYNC_BYTE_4);
|
||
|
||
rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_agcen);
|
||
|
||
// set frequency hopping channel step size (multiples of 10kHz)
|
||
rfm22_write(RFM22_frequency_hopping_step_size, frequency_hop_step_size_reg);
|
||
|
||
// set our nominal carrier frequency
|
||
rfm22_setNominalCarrierFrequency((min_frequency_hz + max_frequency_hz) / 2);
|
||
|
||
// set the tx power
|
||
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 |
|
||
RFM22_tx_pwr_lna_sw | tx_power);
|
||
|
||
// TX FIFO Almost Full Threshold (0 - 63)
|
||
rfm22_write(RFM22_tx_fifo_control1, TX_FIFO_HI_WATERMARK);
|
||
|
||
// TX FIFO Almost Empty Threshold (0 - 63)
|
||
rfm22_write(RFM22_tx_fifo_control2, TX_FIFO_LO_WATERMARK);
|
||
|
||
// RX FIFO Almost Full Threshold (0 - 63)
|
||
rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK);
|
||
|
||
// Enable RF module external interrupt
|
||
rfm22_enableExtInt();
|
||
|
||
rfm22_setRxMode(RX_WAIT_PREAMBLE_MODE, false);
|
||
|
||
initialized = true;
|
||
|
||
return 0; // ok
|
||
}
|
||
|
||
// ************************************
|
||
|
||
#endif
|
||
|
||
/**
|
||
* @}
|
||
* @}
|
||
*/
|