1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-29 07:24:13 +01:00
LibrePilot/flight/modules/PathFollower/pidcontrolne.cpp
abeck70 04c42bd316 OP-1760 autotakeoff
1. Make autotakeoff height configurable
2. Fix the pidcontroldown transfer to solve the rough transition between pid controllers for landing, takeoff, braking etc.
2015-04-16 21:22:37 +10:00

245 lines
7.8 KiB
C++

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup PathFollower CONTROL interface class
* @brief PID controller for NE
* @{
*
* @file PIDControlNE.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Executes PID control loops for NE directions
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <callbackinfo.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <pidstatus.h>
}
#include "pathfollowerfsm.h"
#include "pidcontrolne.h"
PIDControlNE::PIDControlNE()
: deltaTime(0), mNECommand(0), mNeutral(0), mVelocityMax(0), mMinCommand(0), mMaxCommand(0), mVelocityFeedforward(0), mActive(false)
{}
PIDControlNE::~PIDControlNE() {}
void PIDControlNE::Initialize()
{}
void PIDControlNE::Deactivate()
{
mActive = false;
}
void PIDControlNE::Activate()
{
mActive = true;
}
void PIDControlNE::UpdateParameters(float kp, float ki, float kd, float beta, float dT, float velocityMax)
{
// pid_configure(&PID, kp, ki, kd, ilimit);
float Ti = kp / ki;
float Td = kd / kp;
float Tt = (Ti + Td) / 2.0f;
float kt = 1.0f / Tt;
float u0 = 0.0f;
float N = 10.0f;
float Tf = Td / N;
if (ki < 1e-6f) {
// Avoid Ti being infinite
Ti = 1e6f;
// Tt antiwindup time constant - we don't need antiwindup with no I term
Tt = 1e6f;
kt = 0.0f;
}
if (kd < 1e-6f) {
// PI Controller
Tf = Ti / N;
}
if (beta > 1.0f) {
beta = 1.0f;
} else if (beta < 0.4f) {
beta = 0.4f;
}
pid2_configure(&PIDvel[0], kp, ki, kd, Tf, kt, dT, beta, u0, 0.0f, 1.0f);
pid2_configure(&PIDvel[1], kp, ki, kd, Tf, kt, dT, beta, u0, 0.0f, 1.0f);
deltaTime = dT;
mVelocityMax = velocityMax;
}
void PIDControlNE::UpdatePositionalParameters(float kp)
{
pid_configure(&PIDposH[0], kp, 0.0f, 0.0f, 0.0f);
pid_configure(&PIDposH[1], kp, 0.0f, 0.0f, 0.0f);
}
void PIDControlNE::UpdatePositionSetpoint(float setpointNorth, float setpointEast)
{
mPositionSetpointTarget[0] = setpointNorth;
mPositionSetpointTarget[1] = setpointEast;
}
void PIDControlNE::UpdatePositionState(float pvNorth, float pvEast)
{
mPositionState[0] = pvNorth;
mPositionState[1] = pvEast;
}
// This is a pure position hold position control
void PIDControlNE::ControlPosition()
{
// Current progress location relative to end
float velNorth = 0.0f;
float velEast = 0.0f;
velNorth = pid_apply(&PIDposH[0], mPositionSetpointTarget[0] - mPositionState[0], deltaTime);
velEast = pid_apply(&PIDposH[1], mPositionSetpointTarget[1] - mPositionState[1], deltaTime);
UpdateVelocitySetpoint(velNorth, velEast);
}
void PIDControlNE::ControlPositionWithPath(struct path_status *progress)
{
// Current progress location relative to end
float velNorth = progress->path_vector[0];
float velEast = progress->path_vector[1];
velNorth += pid_apply(&PIDposH[0], progress->correction_vector[0], deltaTime);
velEast += pid_apply(&PIDposH[1], progress->correction_vector[1], deltaTime);
UpdateVelocitySetpoint(velNorth, velEast);
}
void PIDControlNE::UpdateVelocitySetpoint(float setpointNorth, float setpointEast)
{
// scale velocity if it is above configured maximum
// for braking, we can not help it if initial velocity was greater
float velH = sqrtf(setpointNorth * setpointNorth + setpointEast * setpointEast);
if (velH > mVelocityMax) {
setpointNorth *= mVelocityMax / velH;
setpointEast *= mVelocityMax / velH;
}
mVelocitySetpointTarget[0] = setpointNorth;
mVelocitySetpointTarget[1] = setpointEast;
}
void PIDControlNE::UpdateBrakeVelocity(float startingVelocity, float dT, float brakeRate, float currentVelocity, float *updatedVelocity)
{
if (startingVelocity >= 0.0f) {
*updatedVelocity = startingVelocity - dT * brakeRate;
if (*updatedVelocity > currentVelocity) {
*updatedVelocity = currentVelocity;
}
if (*updatedVelocity < 0.0f) {
*updatedVelocity = 0.0f;
}
} else {
*updatedVelocity = startingVelocity + dT * brakeRate;
if (*updatedVelocity < currentVelocity) {
*updatedVelocity = currentVelocity;
}
if (*updatedVelocity > 0.0f) {
*updatedVelocity = 0.0f;
}
}
}
void PIDControlNE::UpdateVelocityStateWithBrake(float pvNorth, float pvEast, float path_time, float brakeRate)
{
mVelocityState[0] = pvNorth;
mVelocityState[1] = pvEast;
float velocitySetpointDesired[2];
UpdateBrakeVelocity(mVelocitySetpointTarget[0], path_time, brakeRate, pvNorth, &velocitySetpointDesired[0]);
UpdateBrakeVelocity(mVelocitySetpointTarget[1], path_time, brakeRate, pvEast, &velocitySetpointDesired[1]);
// If rate of change limits required, add here
for (int iaxis = 0; iaxis < 2; iaxis++) {
mVelocitySetpointCurrent[iaxis] = velocitySetpointDesired[iaxis];
}
}
void PIDControlNE::UpdateVelocityState(float pvNorth, float pvEast)
{
mVelocityState[0] = pvNorth;
mVelocityState[1] = pvEast;
// The FSM controls the actual descent velocity and introduces step changes as required
float velocitySetpointDesired[2];
velocitySetpointDesired[0] = mVelocitySetpointTarget[0];
velocitySetpointDesired[1] = mVelocitySetpointTarget[1];
// If rate of change limits required, add here
for (int iaxis = 0; iaxis < 2; iaxis++) {
mVelocitySetpointCurrent[iaxis] = velocitySetpointDesired[iaxis];
}
}
void PIDControlNE::UpdateCommandParameters(float minCommand, float maxCommand, float velocityFeedforward)
{
mMinCommand = minCommand;
mMaxCommand = maxCommand;
mVelocityFeedforward = velocityFeedforward;
}
void PIDControlNE::GetNECommand(float *northCommand, float *eastCommand)
{
PIDvel[0].va = mVelocitySetpointCurrent[0] * mVelocityFeedforward;
*northCommand = pid2_apply(&(PIDvel[0]), mVelocitySetpointCurrent[0], mVelocityState[0], mMinCommand, mMaxCommand);
PIDvel[1].va = mVelocitySetpointCurrent[1] * mVelocityFeedforward;
*eastCommand = pid2_apply(&(PIDvel[1]), mVelocitySetpointCurrent[1], mVelocityState[1], mMinCommand, mMaxCommand);
PIDStatusData pidStatus;
pidStatus.setpoint = mVelocitySetpointCurrent[0];
pidStatus.actual = mVelocityState[0];
pidStatus.error = mVelocitySetpointCurrent[0] - mVelocityState[0];
pidStatus.setpoint = mVelocitySetpointCurrent[0];
pidStatus.ulow = mMinCommand;
pidStatus.uhigh = mMaxCommand;
pidStatus.command = *northCommand;
pidStatus.P = PIDvel[0].P;
pidStatus.I = PIDvel[0].I;
pidStatus.D = PIDvel[0].D;
PIDStatusSet(&pidStatus);
}
void PIDControlNE::GetVelocityDesired(float *north, float *east)
{
*north = mVelocitySetpointCurrent[0];
*east = mVelocitySetpointCurrent[1];
}