mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-11-30 08:24:11 +01:00
0fd9fda7a6
gnuindent -npro -kr -i8 -ts8 -sob -ss -ncs -cp1 -il0 -hnl -l150 git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1836 ebee16cc-31ac-478f-84a7-5cbb03baadba
1025 lines
40 KiB
C
1025 lines
40 KiB
C
/**
|
|
******************************************************************************
|
|
*
|
|
* @file WorldMagModel.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
|
* @brief Source file for the World Magnetic Model
|
|
* This is a port of code available from the US NOAA.
|
|
* The hard coded coefficients should be valid until 2015.
|
|
* Major changes include:
|
|
* - No geoid model (altitude must be geodetic WGS-84)
|
|
* - Floating point calculation (not double precision)
|
|
* - Hard coded coefficients for model
|
|
* - Elimination of user interface
|
|
* - Elimination of dynamic memory allocation
|
|
*
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
*****************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
// I don't want this dependency, but currently using pvPortMalloc
|
|
#include "openpilot.h"
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
|
|
#include "WorldMagModel.h"
|
|
#include "WMMInternal.h"
|
|
|
|
static WMMtype_Ellipsoid *Ellip;
|
|
static WMMtype_MagneticModel *MagneticModel;
|
|
|
|
/**************************************************************************************
|
|
* Example use - very simple - only two exposed functions
|
|
*
|
|
* WMM_Initialize(); // Set default values and constants
|
|
*
|
|
* WMM_GetMagVector(float Lat, float Lon, float Alt, uint16_t Month, uint16_t Day, uint16_t Year, float B[3]);
|
|
* e.g. Iceland in may of 2012 = WMM_GetMagVector(65.0, -20.0, 0.0, 5, 5, 2012, B);
|
|
* Alt is above the WGS-84 Ellipsoid
|
|
* B is the NED (XYZ) magnetic vector in nTesla
|
|
**************************************************************************************/
|
|
|
|
int WMM_Initialize()
|
|
// Sets default values for WMM subroutines.
|
|
// UPDATES : Ellip and MagneticModel
|
|
{
|
|
// Sets WGS-84 parameters
|
|
Ellip->a = 6378.137; // semi-major axis of the ellipsoid in km
|
|
Ellip->b = 6356.7523142; // semi-minor axis of the ellipsoid in km
|
|
Ellip->fla = 1 / 298.257223563; // flattening
|
|
Ellip->eps = sqrt(1 - (Ellip->b * Ellip->b) / (Ellip->a * Ellip->a)); // first eccentricity
|
|
Ellip->epssq = (Ellip->eps * Ellip->eps); // first eccentricity squared
|
|
Ellip->re = 6371.2; // Earth's radius in km
|
|
|
|
// Sets Magnetic Model parameters
|
|
MagneticModel->nMax = WMM_MAX_MODEL_DEGREES;
|
|
MagneticModel->nMaxSecVar = WMM_MAX_SECULAR_VARIATION_MODEL_DEGREES;
|
|
MagneticModel->SecularVariationUsed = 0;
|
|
|
|
// Really, Really needs to be read from a file - out of date in 2015 at latest
|
|
MagneticModel->EditionDate = 5.7863328170559505e-307;
|
|
MagneticModel->epoch = 2010.0;
|
|
sprintf(MagneticModel->ModelName, "WMM-2010");
|
|
WMM_Set_Coeff_Array();
|
|
return 0;
|
|
}
|
|
|
|
void WMM_GetMagVector(float Lat, float Lon, float AltEllipsoid, uint16_t Month, uint16_t Day, uint16_t Year, float B[3])
|
|
{
|
|
char Error_Message[255];
|
|
|
|
Ellip = (WMMtype_Ellipsoid *) pvPortMalloc(sizeof(WMMtype_Ellipsoid));
|
|
MagneticModel = (WMMtype_MagneticModel *)
|
|
pvPortMalloc(sizeof(WMMtype_MagneticModel));
|
|
|
|
WMMtype_CoordSpherical *CoordSpherical = (WMMtype_CoordSpherical *)
|
|
pvPortMalloc(sizeof(CoordSpherical));
|
|
WMMtype_CoordGeodetic *CoordGeodetic = (WMMtype_CoordGeodetic *) pvPortMalloc(sizeof(CoordGeodetic));
|
|
WMMtype_Date *Date = (WMMtype_Date *) pvPortMalloc(sizeof(WMMtype_Date));
|
|
WMMtype_GeoMagneticElements *GeoMagneticElements = (WMMtype_GeoMagneticElements *)
|
|
pvPortMalloc(sizeof(GeoMagneticElements));
|
|
|
|
WMM_Initialize();
|
|
|
|
CoordGeodetic->lambda = Lon;
|
|
CoordGeodetic->phi = Lat;
|
|
CoordGeodetic->HeightAboveEllipsoid = AltEllipsoid;
|
|
WMM_GeodeticToSpherical(CoordGeodetic, CoordSpherical); /*Convert from geodeitic to Spherical Equations: 17-18, WMM Technical report */
|
|
|
|
Date->Month = Month;
|
|
Date->Day = Day;
|
|
Date->Year = Year;
|
|
WMM_DateToYear(Date, Error_Message);
|
|
WMM_TimelyModifyMagneticModel(Date);
|
|
WMM_Geomag(CoordSpherical, CoordGeodetic, GeoMagneticElements); /* Computes the geoMagnetic field elements and their time change */
|
|
|
|
B[0] = GeoMagneticElements->X;
|
|
B[1] = GeoMagneticElements->Y;
|
|
B[2] = GeoMagneticElements->Z;
|
|
|
|
vPortFree(Ellip);
|
|
vPortFree(MagneticModel);
|
|
vPortFree(CoordSpherical);
|
|
vPortFree(CoordGeodetic);
|
|
vPortFree(Date);
|
|
vPortFree(GeoMagneticElements);
|
|
}
|
|
|
|
uint16_t WMM_Geomag(WMMtype_CoordSpherical * CoordSpherical, WMMtype_CoordGeodetic * CoordGeodetic, WMMtype_GeoMagneticElements * GeoMagneticElements)
|
|
/*
|
|
The main subroutine that calls a sequence of WMM sub-functions to calculate the magnetic field elements for a single point.
|
|
The function expects the model coefficients and point coordinates as input and returns the magnetic field elements and
|
|
their rate of change. Though, this subroutine can be called successively to calculate a time series, profile or grid
|
|
of magnetic field, these are better achieved by the subroutine WMM_Grid.
|
|
|
|
INPUT: Ellip
|
|
CoordSpherical
|
|
CoordGeodetic
|
|
TimedMagneticModel
|
|
|
|
OUTPUT : GeoMagneticElements
|
|
|
|
CALLS: WMM_ComputeSphericalHarmonicVariables( Ellip, CoordSpherical, TimedMagneticModel->nMax, &SphVariables); (Compute Spherical Harmonic variables )
|
|
WMM_AssociatedLegendreFunction(CoordSpherical, TimedMagneticModel->nMax, LegendreFunction); Compute ALF
|
|
WMM_Summation(LegendreFunction, TimedMagneticModel, SphVariables, CoordSpherical, &MagneticResultsSph); Accumulate the spherical harmonic coefficients
|
|
WMM_SecVarSummation(LegendreFunction, TimedMagneticModel, SphVariables, CoordSpherical, &MagneticResultsSphVar); Sum the Secular Variation Coefficients
|
|
WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, MagneticResultsSph, &MagneticResultsGeo); Map the computed Magnetic fields to Geodeitic coordinates
|
|
WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, MagneticResultsSphVar, &MagneticResultsGeoVar); Map the secular variation field components to Geodetic coordinates
|
|
WMM_CalculateGeoMagneticElements(&MagneticResultsGeo, GeoMagneticElements); Calculate the Geomagnetic elements
|
|
WMM_CalculateSecularVariation(MagneticResultsGeoVar, GeoMagneticElements); Calculate the secular variation of each of the Geomagnetic elements
|
|
|
|
*/
|
|
{
|
|
WMMtype_LegendreFunction LegendreFunction;
|
|
WMMtype_SphericalHarmonicVariables SphVariables;
|
|
WMMtype_MagneticResults MagneticResultsSph, MagneticResultsGeo, MagneticResultsSphVar, MagneticResultsGeoVar;
|
|
|
|
WMM_ComputeSphericalHarmonicVariables(CoordSpherical, MagneticModel->nMax, &SphVariables); /* Compute Spherical Harmonic variables */
|
|
WMM_AssociatedLegendreFunction(CoordSpherical, MagneticModel->nMax, &LegendreFunction); /* Compute ALF */
|
|
WMM_Summation(&LegendreFunction, &SphVariables, CoordSpherical, &MagneticResultsSph); /* Accumulate the spherical harmonic coefficients */
|
|
WMM_SecVarSummation(&LegendreFunction, &SphVariables, CoordSpherical, &MagneticResultsSphVar); /*Sum the Secular Variation Coefficients */
|
|
WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, &MagneticResultsSph, &MagneticResultsGeo); /* Map the computed Magnetic fields to Geodeitic coordinates */
|
|
WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, &MagneticResultsSphVar, &MagneticResultsGeoVar); /* Map the secular variation field components to Geodetic coordinates */
|
|
WMM_CalculateGeoMagneticElements(&MagneticResultsGeo, GeoMagneticElements); /* Calculate the Geomagnetic elements, Equation 18 , WMM Technical report */
|
|
WMM_CalculateSecularVariation(&MagneticResultsGeoVar, GeoMagneticElements); /*Calculate the secular variation of each of the Geomagnetic elements */
|
|
return TRUE;
|
|
}
|
|
|
|
uint16_t WMM_ComputeSphericalHarmonicVariables(WMMtype_CoordSpherical *
|
|
CoordSpherical, uint16_t nMax, WMMtype_SphericalHarmonicVariables * SphVariables)
|
|
|
|
/* Computes Spherical variables
|
|
Variables computed are (a/r)^(n+2), cos_m(lamda) and sin_m(lambda) for spherical harmonic
|
|
summations. (Equations 10-12 in the WMM Technical Report)
|
|
INPUT Ellip data structure with the following elements
|
|
float a; semi-major axis of the ellipsoid
|
|
float b; semi-minor axis of the ellipsoid
|
|
float fla; flattening
|
|
float epssq; first eccentricity squared
|
|
float eps; first eccentricity
|
|
float re; mean radius of ellipsoid
|
|
CoordSpherical A data structure with the following elements
|
|
float lambda; ( longitude)
|
|
float phig; ( geocentric latitude )
|
|
float r; ( distance from the center of the ellipsoid)
|
|
nMax integer ( Maxumum degree of spherical harmonic secular model)\
|
|
|
|
OUTPUT SphVariables Pointer to the data structure with the following elements
|
|
float RelativeRadiusPower[WMM_MAX_MODEL_DEGREES+1]; [earth_reference_radius_km sph. radius ]^n
|
|
float cos_mlambda[WMM_MAX_MODEL_DEGREES+1]; cp(m) - cosine of (mspherical coord. longitude)
|
|
float sin_mlambda[WMM_MAX_MODEL_DEGREES+1]; sp(m) - sine of (mspherical coord. longitude)
|
|
CALLS : none
|
|
*/
|
|
{
|
|
float cos_lambda, sin_lambda;
|
|
uint16_t m, n;
|
|
cos_lambda = cos(DEG2RAD(CoordSpherical->lambda));
|
|
sin_lambda = sin(DEG2RAD(CoordSpherical->lambda));
|
|
/* for n = 0 ... model_order, compute (Radius of Earth / Spherica radius r)^(n+2)
|
|
for n 1..nMax-1 (this is much faster than calling pow MAX_N+1 times). */
|
|
SphVariables->RelativeRadiusPower[0] = (Ellip->re / CoordSpherical->r) * (Ellip->re / CoordSpherical->r);
|
|
for (n = 1; n <= nMax; n++) {
|
|
SphVariables->RelativeRadiusPower[n] = SphVariables->RelativeRadiusPower[n - 1] * (Ellip->re / CoordSpherical->r);
|
|
}
|
|
|
|
/*
|
|
Compute cos(m*lambda), sin(m*lambda) for m = 0 ... nMax
|
|
cos(a + b) = cos(a)*cos(b) - sin(a)*sin(b)
|
|
sin(a + b) = cos(a)*sin(b) + sin(a)*cos(b)
|
|
*/
|
|
SphVariables->cos_mlambda[0] = 1.0;
|
|
SphVariables->sin_mlambda[0] = 0.0;
|
|
|
|
SphVariables->cos_mlambda[1] = cos_lambda;
|
|
SphVariables->sin_mlambda[1] = sin_lambda;
|
|
for (m = 2; m <= nMax; m++) {
|
|
SphVariables->cos_mlambda[m] = SphVariables->cos_mlambda[m - 1] * cos_lambda - SphVariables->sin_mlambda[m - 1] * sin_lambda;
|
|
SphVariables->sin_mlambda[m] = SphVariables->cos_mlambda[m - 1] * sin_lambda + SphVariables->sin_mlambda[m - 1] * cos_lambda;
|
|
}
|
|
return TRUE;
|
|
} /*WMM_ComputeSphericalHarmonicVariables */
|
|
|
|
uint16_t WMM_AssociatedLegendreFunction(WMMtype_CoordSpherical * CoordSpherical, uint16_t nMax, WMMtype_LegendreFunction * LegendreFunction)
|
|
|
|
/* Computes all of the Schmidt-semi normalized associated Legendre
|
|
functions up to degree nMax. If nMax <= 16, function WMM_PcupLow is used.
|
|
Otherwise WMM_PcupHigh is called.
|
|
INPUT CoordSpherical A data structure with the following elements
|
|
float lambda; ( longitude)
|
|
float phig; ( geocentric latitude )
|
|
float r; ( distance from the center of the ellipsoid)
|
|
nMax integer ( Maxumum degree of spherical harmonic secular model)
|
|
LegendreFunction Pointer to data structure with the following elements
|
|
float *Pcup; ( pointer to store Legendre Function )
|
|
float *dPcup; ( pointer to store Derivative of Lagendre function )
|
|
|
|
OUTPUT LegendreFunction Calculated Legendre variables in the data structure
|
|
|
|
*/
|
|
{
|
|
float sin_phi;
|
|
uint16_t FLAG = 1;
|
|
|
|
sin_phi = sin(DEG2RAD(CoordSpherical->phig)); /* sin (geocentric latitude) */
|
|
|
|
if (nMax <= 16 || (1 - fabs(sin_phi)) < 1.0e-10) /* If nMax is less tha 16 or at the poles */
|
|
FLAG = WMM_PcupLow(LegendreFunction->Pcup, LegendreFunction->dPcup, sin_phi, nMax);
|
|
else
|
|
FLAG = WMM_PcupHigh(LegendreFunction->Pcup, LegendreFunction->dPcup, sin_phi, nMax);
|
|
if (FLAG == 0) /* Error while computing Legendre variables */
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
} /*WMM_AssociatedLegendreFunction */
|
|
|
|
uint16_t WMM_Summation(WMMtype_LegendreFunction * LegendreFunction,
|
|
WMMtype_SphericalHarmonicVariables * SphVariables,
|
|
WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults)
|
|
{
|
|
/* Computes Geomagnetic Field Elements X, Y and Z in Spherical coordinate system using
|
|
spherical harmonic summation.
|
|
|
|
The vector Magnetic field is given by -grad V, where V is Geomagnetic scalar potential
|
|
The gradient in spherical coordinates is given by:
|
|
|
|
dV ^ 1 dV ^ 1 dV ^
|
|
grad V = -- r + - -- t + -------- -- p
|
|
dr r dt r sin(t) dp
|
|
|
|
INPUT : LegendreFunction
|
|
MagneticModel
|
|
SphVariables
|
|
CoordSpherical
|
|
OUTPUT : MagneticResults
|
|
|
|
CALLS : WMM_SummationSpecial
|
|
|
|
Manoj Nair, June, 2009 Manoj.C.Nair@Noaa.Gov
|
|
*/
|
|
uint16_t m, n, index;
|
|
float cos_phi;
|
|
MagneticResults->Bz = 0.0;
|
|
MagneticResults->By = 0.0;
|
|
MagneticResults->Bx = 0.0;
|
|
for (n = 1; n <= MagneticModel->nMax; n++) {
|
|
for (m = 0; m <= n; m++) {
|
|
index = (n * (n + 1) / 2 + m);
|
|
|
|
/* nMax (n+2) n m m m
|
|
Bz = -SUM (a/r) (n+1) SUM [g cos(m p) + h sin(m p)] P (sin(phi))
|
|
n=1 m=0 n n n */
|
|
/* Equation 12 in the WMM Technical report. Derivative with respect to radius.*/
|
|
MagneticResults->Bz -=
|
|
SphVariables->RelativeRadiusPower[n] *
|
|
(MagneticModel->Main_Field_Coeff_G[index] *
|
|
SphVariables->cos_mlambda[m] + MagneticModel->Main_Field_Coeff_H[index] * SphVariables->sin_mlambda[m])
|
|
* (float)(n + 1) * LegendreFunction->Pcup[index];
|
|
|
|
/* 1 nMax (n+2) n m m m
|
|
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
|
n=1 m=0 n n n */
|
|
/* Equation 11 in the WMM Technical report. Derivative with respect to longitude, divided by radius. */
|
|
MagneticResults->By +=
|
|
SphVariables->RelativeRadiusPower[n] *
|
|
(MagneticModel->Main_Field_Coeff_G[index] *
|
|
SphVariables->sin_mlambda[m] - MagneticModel->Main_Field_Coeff_H[index] * SphVariables->cos_mlambda[m])
|
|
* (float)(m) * LegendreFunction->Pcup[index];
|
|
/* nMax (n+2) n m m m
|
|
Bx = - SUM (a/r) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
|
n=1 m=0 n n n */
|
|
/* Equation 10 in the WMM Technical report. Derivative with respect to latitude, divided by radius. */
|
|
|
|
MagneticResults->Bx -=
|
|
SphVariables->RelativeRadiusPower[n] *
|
|
(MagneticModel->Main_Field_Coeff_G[index] *
|
|
SphVariables->cos_mlambda[m] + MagneticModel->Main_Field_Coeff_H[index] * SphVariables->sin_mlambda[m])
|
|
* LegendreFunction->dPcup[index];
|
|
|
|
}
|
|
}
|
|
|
|
cos_phi = cos(DEG2RAD(CoordSpherical->phig));
|
|
if (fabs(cos_phi) > 1.0e-10) {
|
|
MagneticResults->By = MagneticResults->By / cos_phi;
|
|
} else
|
|
/* Special calculation for component - By - at Geographic poles.
|
|
* If the user wants to avoid using this function, please make sure that
|
|
* the latitude is not exactly +/-90. An option is to make use the function
|
|
* WMM_CheckGeographicPoles.
|
|
*/
|
|
|
|
{
|
|
WMM_SummationSpecial(SphVariables, CoordSpherical, MagneticResults);
|
|
}
|
|
return TRUE;
|
|
} /*WMM_Summation */
|
|
|
|
uint16_t WMM_SecVarSummation(WMMtype_LegendreFunction * LegendreFunction,
|
|
WMMtype_SphericalHarmonicVariables *
|
|
SphVariables, WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults)
|
|
{
|
|
/*This Function sums the secular variation coefficients to get the secular variation of the Magnetic vector.
|
|
INPUT : LegendreFunction
|
|
MagneticModel
|
|
SphVariables
|
|
CoordSpherical
|
|
OUTPUT : MagneticResults
|
|
|
|
CALLS : WMM_SecVarSummationSpecial
|
|
|
|
*/
|
|
uint16_t m, n, index;
|
|
float cos_phi;
|
|
MagneticModel->SecularVariationUsed = TRUE;
|
|
MagneticResults->Bz = 0.0;
|
|
MagneticResults->By = 0.0;
|
|
MagneticResults->Bx = 0.0;
|
|
for (n = 1; n <= MagneticModel->nMaxSecVar; n++) {
|
|
for (m = 0; m <= n; m++) {
|
|
index = (n * (n + 1) / 2 + m);
|
|
|
|
/* nMax (n+2) n m m m
|
|
Bz = -SUM (a/r) (n+1) SUM [g cos(m p) + h sin(m p)] P (sin(phi))
|
|
n=1 m=0 n n n */
|
|
/* Derivative with respect to radius.*/
|
|
MagneticResults->Bz -=
|
|
SphVariables->RelativeRadiusPower[n] *
|
|
(MagneticModel->Secular_Var_Coeff_G[index] *
|
|
SphVariables->cos_mlambda[m] + MagneticModel->Secular_Var_Coeff_H[index] * SphVariables->sin_mlambda[m])
|
|
* (float)(n + 1) * LegendreFunction->Pcup[index];
|
|
|
|
/* 1 nMax (n+2) n m m m
|
|
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
|
n=1 m=0 n n n */
|
|
/* Derivative with respect to longitude, divided by radius. */
|
|
MagneticResults->By +=
|
|
SphVariables->RelativeRadiusPower[n] *
|
|
(MagneticModel->Secular_Var_Coeff_G[index] *
|
|
SphVariables->sin_mlambda[m] - MagneticModel->Secular_Var_Coeff_H[index] * SphVariables->cos_mlambda[m])
|
|
* (float)(m) * LegendreFunction->Pcup[index];
|
|
/* nMax (n+2) n m m m
|
|
Bx = - SUM (a/r) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
|
n=1 m=0 n n n */
|
|
/* Derivative with respect to latitude, divided by radius. */
|
|
|
|
MagneticResults->Bx -=
|
|
SphVariables->RelativeRadiusPower[n] *
|
|
(MagneticModel->Secular_Var_Coeff_G[index] *
|
|
SphVariables->cos_mlambda[m] + MagneticModel->Secular_Var_Coeff_H[index] * SphVariables->sin_mlambda[m])
|
|
* LegendreFunction->dPcup[index];
|
|
}
|
|
}
|
|
cos_phi = cos(DEG2RAD(CoordSpherical->phig));
|
|
if (fabs(cos_phi) > 1.0e-10) {
|
|
MagneticResults->By = MagneticResults->By / cos_phi;
|
|
} else
|
|
/* Special calculation for component By at Geographic poles */
|
|
{
|
|
WMM_SecVarSummationSpecial(SphVariables, CoordSpherical, MagneticResults);
|
|
}
|
|
return TRUE;
|
|
} /*WMM_SecVarSummation */
|
|
|
|
uint16_t WMM_RotateMagneticVector(WMMtype_CoordSpherical * CoordSpherical,
|
|
WMMtype_CoordGeodetic * CoordGeodetic,
|
|
WMMtype_MagneticResults * MagneticResultsSph, WMMtype_MagneticResults * MagneticResultsGeo)
|
|
/* Rotate the Magnetic Vectors to Geodetic Coordinates
|
|
Manoj Nair, June, 2009 Manoj.C.Nair@Noaa.Gov
|
|
Equation 16, WMM Technical report
|
|
|
|
INPUT : CoordSpherical : Data structure WMMtype_CoordSpherical with the following elements
|
|
float lambda; ( longitude)
|
|
float phig; ( geocentric latitude )
|
|
float r; ( distance from the center of the ellipsoid)
|
|
|
|
CoordGeodetic : Data structure WMMtype_CoordGeodetic with the following elements
|
|
float lambda; (longitude)
|
|
float phi; ( geodetic latitude)
|
|
float HeightAboveEllipsoid; (height above the ellipsoid (HaE) )
|
|
float HeightAboveGeoid;(height above the Geoid )
|
|
|
|
MagneticResultsSph : Data structure WMMtype_MagneticResults with the following elements
|
|
float Bx; North
|
|
float By; East
|
|
float Bz; Down
|
|
|
|
OUTPUT: MagneticResultsGeo Pointer to the data structure WMMtype_MagneticResults, with the following elements
|
|
float Bx; North
|
|
float By; East
|
|
float Bz; Down
|
|
|
|
CALLS : none
|
|
|
|
*/
|
|
{
|
|
float Psi;
|
|
/* Difference between the spherical and Geodetic latitudes */
|
|
Psi = (M_PI / 180) * (CoordSpherical->phig - CoordGeodetic->phi);
|
|
|
|
/* Rotate spherical field components to the Geodeitic system */
|
|
MagneticResultsGeo->Bz = MagneticResultsSph->Bx * sin(Psi) + MagneticResultsSph->Bz * cos(Psi);
|
|
MagneticResultsGeo->Bx = MagneticResultsSph->Bx * cos(Psi) - MagneticResultsSph->Bz * sin(Psi);
|
|
MagneticResultsGeo->By = MagneticResultsSph->By;
|
|
return TRUE;
|
|
} /*WMM_RotateMagneticVector */
|
|
|
|
uint16_t WMM_CalculateGeoMagneticElements(WMMtype_MagneticResults * MagneticResultsGeo, WMMtype_GeoMagneticElements * GeoMagneticElements)
|
|
|
|
/* Calculate all the Geomagnetic elements from X,Y and Z components
|
|
INPUT MagneticResultsGeo Pointer to data structure with the following elements
|
|
float Bx; ( North )
|
|
float By; ( East )
|
|
float Bz; ( Down )
|
|
OUTPUT GeoMagneticElements Pointer to data structure with the following elements
|
|
float Decl; (Angle between the magnetic field vector and true north, positive east)
|
|
float Incl; Angle between the magnetic field vector and the horizontal plane, positive down
|
|
float F; Magnetic Field Strength
|
|
float H; Horizontal Magnetic Field Strength
|
|
float X; Northern component of the magnetic field vector
|
|
float Y; Eastern component of the magnetic field vector
|
|
float Z; Downward component of the magnetic field vector
|
|
CALLS : none
|
|
*/
|
|
{
|
|
GeoMagneticElements->X = MagneticResultsGeo->Bx;
|
|
GeoMagneticElements->Y = MagneticResultsGeo->By;
|
|
GeoMagneticElements->Z = MagneticResultsGeo->Bz;
|
|
|
|
GeoMagneticElements->H = sqrt(MagneticResultsGeo->Bx * MagneticResultsGeo->Bx + MagneticResultsGeo->By * MagneticResultsGeo->By);
|
|
GeoMagneticElements->F = sqrt(GeoMagneticElements->H * GeoMagneticElements->H + MagneticResultsGeo->Bz * MagneticResultsGeo->Bz);
|
|
GeoMagneticElements->Decl = RAD2DEG(atan2(GeoMagneticElements->Y, GeoMagneticElements->X));
|
|
GeoMagneticElements->Incl = RAD2DEG(atan2(GeoMagneticElements->Z, GeoMagneticElements->H));
|
|
|
|
return TRUE;
|
|
} /*WMM_CalculateGeoMagneticElements */
|
|
|
|
uint16_t WMM_CalculateSecularVariation(WMMtype_MagneticResults * MagneticVariation, WMMtype_GeoMagneticElements * MagneticElements)
|
|
/*This takes the Magnetic Variation in x, y, and z and uses it to calculate the secular variation of each of the Geomagnetic elements.
|
|
INPUT MagneticVariation Data structure with the following elements
|
|
float Bx; ( North )
|
|
float By; ( East )
|
|
float Bz; ( Down )
|
|
OUTPUT MagneticElements Pointer to the data structure with the following elements updated
|
|
float Decldot; Yearly Rate of change in declination
|
|
float Incldot; Yearly Rate of change in inclination
|
|
float Fdot; Yearly rate of change in Magnetic field strength
|
|
float Hdot; Yearly rate of change in horizontal field strength
|
|
float Xdot; Yearly rate of change in the northern component
|
|
float Ydot; Yearly rate of change in the eastern component
|
|
float Zdot; Yearly rate of change in the downward component
|
|
float GVdot;Yearly rate of chnage in grid variation
|
|
CALLS : none
|
|
|
|
*/
|
|
{
|
|
MagneticElements->Xdot = MagneticVariation->Bx;
|
|
MagneticElements->Ydot = MagneticVariation->By;
|
|
MagneticElements->Zdot = MagneticVariation->Bz;
|
|
MagneticElements->Hdot = (MagneticElements->X * MagneticElements->Xdot + MagneticElements->Y * MagneticElements->Ydot) / MagneticElements->H; //See equation 19 in the WMM technical report
|
|
MagneticElements->Fdot =
|
|
(MagneticElements->X * MagneticElements->Xdot +
|
|
MagneticElements->Y * MagneticElements->Ydot + MagneticElements->Z * MagneticElements->Zdot) / MagneticElements->F;
|
|
MagneticElements->Decldot =
|
|
180.0 / M_PI * (MagneticElements->X * MagneticElements->Ydot -
|
|
MagneticElements->Y * MagneticElements->Xdot) / (MagneticElements->H * MagneticElements->H);
|
|
MagneticElements->Incldot =
|
|
180.0 / M_PI * (MagneticElements->H * MagneticElements->Zdot -
|
|
MagneticElements->Z * MagneticElements->Hdot) / (MagneticElements->F * MagneticElements->F);
|
|
MagneticElements->GVdot = MagneticElements->Decldot;
|
|
return TRUE;
|
|
} /*WMM_CalculateSecularVariation */
|
|
|
|
uint16_t WMM_PcupHigh(float *Pcup, float *dPcup, float x, uint16_t nMax)
|
|
|
|
/* This function evaluates all of the Schmidt-semi normalized associated Legendre
|
|
functions up to degree nMax. The functions are initially scaled by
|
|
10^280 sin^m in order to minimize the effects of underflow at large m
|
|
near the poles (see Holmes and Featherstone 2002, J. Geodesy, 76, 279-299).
|
|
Note that this function performs the same operation as WMM_PcupLow.
|
|
However this function also can be used for high degree (large nMax) models.
|
|
|
|
Calling Parameters:
|
|
INPUT
|
|
nMax: Maximum spherical harmonic degree to compute.
|
|
x: cos(colatitude) or sin(latitude).
|
|
|
|
OUTPUT
|
|
Pcup: A vector of all associated Legendgre polynomials evaluated at
|
|
x up to nMax. The lenght must by greater or equal to (nMax+1)*(nMax+2)/2.
|
|
dPcup: Derivative of Pcup(x) with respect to latitude
|
|
|
|
CALLS : none
|
|
Notes:
|
|
|
|
Adopted from the FORTRAN code written by Mark Wieczorek September 25, 2005.
|
|
|
|
Manoj Nair, Nov, 2009 Manoj.C.Nair@Noaa.Gov
|
|
|
|
Change from the previous version
|
|
The prevous version computes the derivatives as
|
|
dP(n,m)(x)/dx, where x = sin(latitude) (or cos(colatitude) ).
|
|
However, the WMM Geomagnetic routines requires dP(n,m)(x)/dlatitude.
|
|
Hence the derivatives are multiplied by sin(latitude).
|
|
Removed the options for CS phase and normalizations.
|
|
|
|
Note: In geomagnetism, the derivatives of ALF are usually found with
|
|
respect to the colatitudes. Here the derivatives are found with respect
|
|
to the latitude. The difference is a sign reversal for the derivative of
|
|
the Associated Legendre Functions.
|
|
|
|
The derivates can't be computed for latitude = |90| degrees.
|
|
*/
|
|
{
|
|
float pm2, pm1, pmm, plm, rescalem, z, scalef;
|
|
float f1[NUMPCUP], f2[NUMPCUP], PreSqr[NUMPCUP];
|
|
uint16_t k, kstart, m, n;
|
|
|
|
if (fabs(x) == 1.0) {
|
|
// printf("Error in PcupHigh: derivative cannot be calculated at poles\n");
|
|
return FALSE;
|
|
}
|
|
|
|
scalef = 1.0e-280;
|
|
|
|
for (n = 0; n <= 2 * nMax + 1; ++n) {
|
|
PreSqr[n] = sqrt((float)(n));
|
|
}
|
|
|
|
k = 2;
|
|
|
|
for (n = 2; n <= nMax; n++) {
|
|
k = k + 1;
|
|
f1[k] = (float)(2 * n - 1) / (float)(n);
|
|
f2[k] = (float)(n - 1) / (float)(n);
|
|
for (m = 1; m <= n - 2; m++) {
|
|
k = k + 1;
|
|
f1[k] = (float)(2 * n - 1) / PreSqr[n + m] / PreSqr[n - m];
|
|
f2[k] = PreSqr[n - m - 1] * PreSqr[n + m - 1] / PreSqr[n + m] / PreSqr[n - m];
|
|
}
|
|
k = k + 2;
|
|
}
|
|
|
|
/*z = sin (geocentric latitude) */
|
|
z = sqrt((1.0 - x) * (1.0 + x));
|
|
pm2 = 1.0;
|
|
Pcup[0] = 1.0;
|
|
dPcup[0] = 0.0;
|
|
if (nMax == 0)
|
|
return FALSE;
|
|
pm1 = x;
|
|
Pcup[1] = pm1;
|
|
dPcup[1] = z;
|
|
k = 1;
|
|
|
|
for (n = 2; n <= nMax; n++) {
|
|
k = k + n;
|
|
plm = f1[k] * x * pm1 - f2[k] * pm2;
|
|
Pcup[k] = plm;
|
|
dPcup[k] = (float)(n) * (pm1 - x * plm) / z;
|
|
pm2 = pm1;
|
|
pm1 = plm;
|
|
}
|
|
|
|
pmm = PreSqr[2] * scalef;
|
|
rescalem = 1.0 / scalef;
|
|
kstart = 0;
|
|
|
|
for (m = 1; m <= nMax - 1; ++m) {
|
|
rescalem = rescalem * z;
|
|
|
|
/* Calculate Pcup(m,m) */
|
|
kstart = kstart + m + 1;
|
|
pmm = pmm * PreSqr[2 * m + 1] / PreSqr[2 * m];
|
|
Pcup[kstart] = pmm * rescalem / PreSqr[2 * m + 1];
|
|
dPcup[kstart] = -((float)(m) * x * Pcup[kstart] / z);
|
|
pm2 = pmm / PreSqr[2 * m + 1];
|
|
/* Calculate Pcup(m+1,m) */
|
|
k = kstart + m + 1;
|
|
pm1 = x * PreSqr[2 * m + 1] * pm2;
|
|
Pcup[k] = pm1 * rescalem;
|
|
dPcup[k] = ((pm2 * rescalem) * PreSqr[2 * m + 1] - x * (float)(m + 1) * Pcup[k]) / z;
|
|
/* Calculate Pcup(n,m) */
|
|
for (n = m + 2; n <= nMax; ++n) {
|
|
k = k + n;
|
|
plm = x * f1[k] * pm1 - f2[k] * pm2;
|
|
Pcup[k] = plm * rescalem;
|
|
dPcup[k] = (PreSqr[n + m] * PreSqr[n - m] * (pm1 * rescalem) - (float)(n) * x * Pcup[k]) / z;
|
|
pm2 = pm1;
|
|
pm1 = plm;
|
|
}
|
|
}
|
|
|
|
/* Calculate Pcup(nMax,nMax) */
|
|
rescalem = rescalem * z;
|
|
kstart = kstart + m + 1;
|
|
pmm = pmm / PreSqr[2 * nMax];
|
|
Pcup[kstart] = pmm * rescalem;
|
|
dPcup[kstart] = -(float)(nMax) * x * Pcup[kstart] / z;
|
|
|
|
return TRUE;
|
|
} /* WMM_PcupHigh */
|
|
|
|
uint16_t WMM_PcupLow(float *Pcup, float *dPcup, float x, uint16_t nMax)
|
|
|
|
/* This function evaluates all of the Schmidt-semi normalized associated Legendre
|
|
functions up to degree nMax.
|
|
|
|
Calling Parameters:
|
|
INPUT
|
|
nMax: Maximum spherical harmonic degree to compute.
|
|
x: cos(colatitude) or sin(latitude).
|
|
|
|
OUTPUT
|
|
Pcup: A vector of all associated Legendgre polynomials evaluated at
|
|
x up to nMax.
|
|
dPcup: Derivative of Pcup(x) with respect to latitude
|
|
|
|
Notes: Overflow may occur if nMax > 20 , especially for high-latitudes.
|
|
Use WMM_PcupHigh for large nMax.
|
|
|
|
Writted by Manoj Nair, June, 2009 . Manoj.C.Nair@Noaa.Gov.
|
|
|
|
Note: In geomagnetism, the derivatives of ALF are usually found with
|
|
respect to the colatitudes. Here the derivatives are found with respect
|
|
to the latitude. The difference is a sign reversal for the derivative of
|
|
the Associated Legendre Functions.
|
|
*/
|
|
{
|
|
uint16_t n, m, index, index1, index2;
|
|
float k, z, schmidtQuasiNorm[NUMPCUP];
|
|
Pcup[0] = 1.0;
|
|
dPcup[0] = 0.0;
|
|
/*sin (geocentric latitude) - sin_phi */
|
|
z = sqrt((1.0 - x) * (1.0 + x));
|
|
|
|
/* First, Compute the Gauss-normalized associated Legendre functions */
|
|
for (n = 1; n <= nMax; n++) {
|
|
for (m = 0; m <= n; m++) {
|
|
index = (n * (n + 1) / 2 + m);
|
|
if (n == m) {
|
|
index1 = (n - 1) * n / 2 + m - 1;
|
|
Pcup[index] = z * Pcup[index1];
|
|
dPcup[index] = z * dPcup[index1] + x * Pcup[index1];
|
|
} else if (n == 1 && m == 0) {
|
|
index1 = (n - 1) * n / 2 + m;
|
|
Pcup[index] = x * Pcup[index1];
|
|
dPcup[index] = x * dPcup[index1] - z * Pcup[index1];
|
|
} else if (n > 1 && n != m) {
|
|
index1 = (n - 2) * (n - 1) / 2 + m;
|
|
index2 = (n - 1) * n / 2 + m;
|
|
if (m > n - 2) {
|
|
Pcup[index] = x * Pcup[index2];
|
|
dPcup[index] = x * dPcup[index2] - z * Pcup[index2];
|
|
} else {
|
|
k = (float)(((n - 1) * (n - 1)) - (m * m)) / (float)((2 * n - 1)
|
|
* (2 * n - 3));
|
|
Pcup[index] = x * Pcup[index2] - k * Pcup[index1];
|
|
dPcup[index] = x * dPcup[index2] - z * Pcup[index2] - k * dPcup[index1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*Compute the ration between the Gauss-normalized associated Legendre
|
|
functions and the Schmidt quasi-normalized version. This is equivalent to
|
|
sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)! */
|
|
|
|
schmidtQuasiNorm[0] = 1.0;
|
|
for (n = 1; n <= nMax; n++) {
|
|
index = (n * (n + 1) / 2);
|
|
index1 = (n - 1) * n / 2;
|
|
/* for m = 0 */
|
|
schmidtQuasiNorm[index] = schmidtQuasiNorm[index1] * (float)(2 * n - 1) / (float)n;
|
|
|
|
for (m = 1; m <= n; m++) {
|
|
index = (n * (n + 1) / 2 + m);
|
|
index1 = (n * (n + 1) / 2 + m - 1);
|
|
schmidtQuasiNorm[index] = schmidtQuasiNorm[index1] * sqrt((float)((n - m + 1) * (m == 1 ? 2 : 1)) / (float)(n + m));
|
|
}
|
|
|
|
}
|
|
|
|
/* Converts the Gauss-normalized associated Legendre
|
|
functions to the Schmidt quasi-normalized version using pre-computed
|
|
relation stored in the variable schmidtQuasiNorm */
|
|
|
|
for (n = 1; n <= nMax; n++) {
|
|
for (m = 0; m <= n; m++) {
|
|
index = (n * (n + 1) / 2 + m);
|
|
Pcup[index] = Pcup[index] * schmidtQuasiNorm[index];
|
|
dPcup[index] = -dPcup[index] * schmidtQuasiNorm[index];
|
|
/* The sign is changed since the new WMM routines use derivative with respect to latitude
|
|
insted of co-latitude */
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
} /*WMM_PcupLow */
|
|
|
|
uint16_t WMM_SummationSpecial(WMMtype_SphericalHarmonicVariables *
|
|
SphVariables, WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults)
|
|
/* Special calculation for the component By at Geographic poles.
|
|
Manoj Nair, June, 2009 manoj.c.nair@noaa.gov
|
|
INPUT: MagneticModel
|
|
SphVariables
|
|
CoordSpherical
|
|
OUTPUT: MagneticResults
|
|
CALLS : none
|
|
See Section 1.4, "SINGULARITIES AT THE GEOGRAPHIC POLES", WMM Technical report
|
|
|
|
*/
|
|
{
|
|
uint16_t n, index;
|
|
float k, sin_phi, PcupS[NUMPCUPS], schmidtQuasiNorm1, schmidtQuasiNorm2, schmidtQuasiNorm3;
|
|
|
|
PcupS[0] = 1;
|
|
schmidtQuasiNorm1 = 1.0;
|
|
|
|
MagneticResults->By = 0.0;
|
|
sin_phi = sin(DEG2RAD(CoordSpherical->phig));
|
|
|
|
for (n = 1; n <= MagneticModel->nMax; n++) {
|
|
|
|
/*Compute the ration between the Gauss-normalized associated Legendre
|
|
functions and the Schmidt quasi-normalized version. This is equivalent to
|
|
sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)! */
|
|
|
|
index = (n * (n + 1) / 2 + 1);
|
|
schmidtQuasiNorm2 = schmidtQuasiNorm1 * (float)(2 * n - 1) / (float)n;
|
|
schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt((float)(n * 2) / (float)(n + 1));
|
|
schmidtQuasiNorm1 = schmidtQuasiNorm2;
|
|
if (n == 1) {
|
|
PcupS[n] = PcupS[n - 1];
|
|
} else {
|
|
k = (float)(((n - 1) * (n - 1)) - 1) / (float)((2 * n - 1) * (2 * n - 3));
|
|
PcupS[n] = sin_phi * PcupS[n - 1] - k * PcupS[n - 2];
|
|
}
|
|
|
|
/* 1 nMax (n+2) n m m m
|
|
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
|
n=1 m=0 n n n */
|
|
/* Equation 11 in the WMM Technical report. Derivative with respect to longitude, divided by radius. */
|
|
|
|
MagneticResults->By +=
|
|
SphVariables->RelativeRadiusPower[n] *
|
|
(MagneticModel->Main_Field_Coeff_G[index] *
|
|
SphVariables->sin_mlambda[1] - MagneticModel->Main_Field_Coeff_H[index] * SphVariables->cos_mlambda[1])
|
|
* PcupS[n] * schmidtQuasiNorm3;
|
|
}
|
|
|
|
return TRUE;
|
|
} /*WMM_SummationSpecial */
|
|
|
|
uint16_t WMM_SecVarSummationSpecial(WMMtype_SphericalHarmonicVariables *
|
|
SphVariables, WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults)
|
|
{
|
|
/*Special calculation for the secular variation summation at the poles.
|
|
|
|
INPUT: MagneticModel
|
|
SphVariables
|
|
CoordSpherical
|
|
OUTPUT: MagneticResults
|
|
CALLS : none
|
|
|
|
*/
|
|
uint16_t n, index;
|
|
float k, sin_phi, PcupS[NUMPCUPS], schmidtQuasiNorm1, schmidtQuasiNorm2, schmidtQuasiNorm3;
|
|
|
|
PcupS[0] = 1;
|
|
schmidtQuasiNorm1 = 1.0;
|
|
|
|
MagneticResults->By = 0.0;
|
|
sin_phi = sin(DEG2RAD(CoordSpherical->phig));
|
|
|
|
for (n = 1; n <= MagneticModel->nMaxSecVar; n++) {
|
|
index = (n * (n + 1) / 2 + 1);
|
|
schmidtQuasiNorm2 = schmidtQuasiNorm1 * (float)(2 * n - 1) / (float)n;
|
|
schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt((float)(n * 2) / (float)(n + 1));
|
|
schmidtQuasiNorm1 = schmidtQuasiNorm2;
|
|
if (n == 1) {
|
|
PcupS[n] = PcupS[n - 1];
|
|
} else {
|
|
k = (float)(((n - 1) * (n - 1)) - 1) / (float)((2 * n - 1) * (2 * n - 3));
|
|
PcupS[n] = sin_phi * PcupS[n - 1] - k * PcupS[n - 2];
|
|
}
|
|
|
|
/* 1 nMax (n+2) n m m m
|
|
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
|
n=1 m=0 n n n */
|
|
/* Derivative with respect to longitude, divided by radius. */
|
|
|
|
MagneticResults->By +=
|
|
SphVariables->RelativeRadiusPower[n] *
|
|
(MagneticModel->Secular_Var_Coeff_G[index] *
|
|
SphVariables->sin_mlambda[1] - MagneticModel->Secular_Var_Coeff_H[index] * SphVariables->cos_mlambda[1])
|
|
* PcupS[n] * schmidtQuasiNorm3;
|
|
}
|
|
|
|
return TRUE;
|
|
} /*SecVarSummationSpecial */
|
|
|
|
void WMM_TimelyModifyMagneticModel(WMMtype_Date * UserDate)
|
|
// Time change the Model coefficients from the base year of the model using secular variation coefficients.
|
|
//
|
|
// Modified to work on the global data structure to reduce memory footprint
|
|
{
|
|
uint16_t n, m, index, a, b;
|
|
|
|
a = MagneticModel->nMaxSecVar;
|
|
b = (a * (a + 1) / 2 + a);
|
|
for (n = 1; n <= MagneticModel->nMax; n++) {
|
|
for (m = 0; m <= n; m++) {
|
|
index = (n * (n + 1) / 2 + m);
|
|
if (index <= b) {
|
|
MagneticModel->Main_Field_Coeff_H[index] +=
|
|
(UserDate->DecimalYear - MagneticModel->epoch) * MagneticModel->Secular_Var_Coeff_H[index];
|
|
MagneticModel->Main_Field_Coeff_G[index] +=
|
|
(UserDate->DecimalYear - MagneticModel->epoch) * MagneticModel->Secular_Var_Coeff_G[index];
|
|
}
|
|
}
|
|
}
|
|
} /* WMM_TimelyModifyMagneticModel */
|
|
|
|
uint16_t WMM_DateToYear(WMMtype_Date * CalendarDate, char *Error)
|
|
// Converts a given calendar date into a decimal year
|
|
{
|
|
uint16_t temp = 0; // Total number of days
|
|
uint16_t MonthDays[13] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
|
|
uint16_t ExtraDay = 0;
|
|
uint16_t i;
|
|
|
|
if ((CalendarDate->Year % 4 == 0 && CalendarDate->Year % 100 != 0)
|
|
|| CalendarDate->Year % 400 == 0)
|
|
ExtraDay = 1;
|
|
MonthDays[2] += ExtraDay;
|
|
|
|
/******************Validation********************************/
|
|
if (CalendarDate->Month <= 0 || CalendarDate->Month > 12) {
|
|
strcpy(Error, "\nError: The Month entered is invalid, valid months are '1 to 12'\n");
|
|
return 0;
|
|
}
|
|
if (CalendarDate->Day <= 0 || CalendarDate->Day > MonthDays[CalendarDate->Month]) {
|
|
// printf("\nThe number of days in month %d is %d\n", CalendarDate->Month, MonthDays[CalendarDate->Month]);
|
|
strcpy(Error, "\nError: The day entered is invalid\n");
|
|
return 0;
|
|
}
|
|
/****************Calculation of t***************************/
|
|
for (i = 1; i <= CalendarDate->Month; i++)
|
|
temp += MonthDays[i - 1];
|
|
temp += CalendarDate->Day;
|
|
CalendarDate->DecimalYear = CalendarDate->Year + (temp - 1) / (365.0 + ExtraDay);
|
|
|
|
return 1;
|
|
} /*WMM_DateToYear */
|
|
|
|
void WMM_GeodeticToSpherical(WMMtype_CoordGeodetic * CoordGeodetic, WMMtype_CoordSpherical * CoordSpherical)
|
|
// Converts Geodetic coordinates to Spherical coordinates
|
|
// Convert geodetic coordinates, (defined by the WGS-84
|
|
// reference ellipsoid), to Earth Centered Earth Fixed Cartesian
|
|
// coordinates, and then to spherical coordinates.
|
|
{
|
|
float CosLat, SinLat, rc, xp, zp; // all local variables
|
|
|
|
CosLat = cos(DEG2RAD(CoordGeodetic->phi));
|
|
SinLat = sin(DEG2RAD(CoordGeodetic->phi));
|
|
|
|
// compute the local radius of curvature on the WGS-84 reference ellipsoid
|
|
rc = Ellip->a / sqrt(1.0 - Ellip->epssq * SinLat * SinLat);
|
|
|
|
// compute ECEF Cartesian coordinates of specified point (for longitude=0)
|
|
|
|
xp = (rc + CoordGeodetic->HeightAboveEllipsoid) * CosLat;
|
|
zp = (rc * (1.0 - Ellip->epssq) + CoordGeodetic->HeightAboveEllipsoid) * SinLat;
|
|
|
|
// compute spherical radius and angle lambda and phi of specified point
|
|
|
|
CoordSpherical->r = sqrt(xp * xp + zp * zp);
|
|
CoordSpherical->phig = RAD2DEG(asin(zp / CoordSpherical->r)); // geocentric latitude
|
|
CoordSpherical->lambda = CoordGeodetic->lambda; // longitude
|
|
|
|
} // WMM_GeodeticToSpherical
|
|
|
|
void WMM_Set_Coeff_Array()
|
|
{
|
|
// const should hopefully keep them in the flash region
|
|
static const float CoeffFile[91][6] = { {0, 0, 0, 0, 0, 0},
|
|
{1, 0, -29496.6, 0.0, 11.6, 0.0},
|
|
{1, 1, -1586.3, 4944.4, 16.5, -25.9},
|
|
{2, 0, -2396.6, 0.0, -12.1, 0.0},
|
|
{2, 1, 3026.1, -2707.7, -4.4, -22.5},
|
|
{2, 2, 1668.6, -576.1, 1.9, -11.8},
|
|
{3, 0, 1340.1, 0.0, 0.4, 0.0},
|
|
{3, 1, -2326.2, -160.2, -4.1, 7.3},
|
|
{3, 2, 1231.9, 251.9, -2.9, -3.9},
|
|
{3, 3, 634.0, -536.6, -7.7, -2.6},
|
|
{4, 0, 912.6, 0.0, -1.8, 0.0},
|
|
{4, 1, 808.9, 286.4, 2.3, 1.1},
|
|
{4, 2, 166.7, -211.2, -8.7, 2.7},
|
|
{4, 3, -357.1, 164.3, 4.6, 3.9},
|
|
{4, 4, 89.4, -309.1, -2.1, -0.8},
|
|
{5, 0, -230.9, 0.0, -1.0, 0.0},
|
|
{5, 1, 357.2, 44.6, 0.6, 0.4},
|
|
{5, 2, 200.3, 188.9, -1.8, 1.8},
|
|
{5, 3, -141.1, -118.2, -1.0, 1.2},
|
|
{5, 4, -163.0, 0.0, 0.9, 4.0},
|
|
{5, 5, -7.8, 100.9, 1.0, -0.6},
|
|
{6, 0, 72.8, 0.0, -0.2, 0.0},
|
|
{6, 1, 68.6, -20.8, -0.2, -0.2},
|
|
{6, 2, 76.0, 44.1, -0.1, -2.1},
|
|
{6, 3, -141.4, 61.5, 2.0, -0.4},
|
|
{6, 4, -22.8, -66.3, -1.7, -0.6},
|
|
{6, 5, 13.2, 3.1, -0.3, 0.5},
|
|
{6, 6, -77.9, 55.0, 1.7, 0.9},
|
|
{7, 0, 80.5, 0.0, 0.1, 0.0},
|
|
{7, 1, -75.1, -57.9, -0.1, 0.7},
|
|
{7, 2, -4.7, -21.1, -0.6, 0.3},
|
|
{7, 3, 45.3, 6.5, 1.3, -0.1},
|
|
{7, 4, 13.9, 24.9, 0.4, -0.1},
|
|
{7, 5, 10.4, 7.0, 0.3, -0.8},
|
|
{7, 6, 1.7, -27.7, -0.7, -0.3},
|
|
{7, 7, 4.9, -3.3, 0.6, 0.3},
|
|
{8, 0, 24.4, 0.0, -0.1, 0.0},
|
|
{8, 1, 8.1, 11.0, 0.1, -0.1},
|
|
{8, 2, -14.5, -20.0, -0.6, 0.2},
|
|
{8, 3, -5.6, 11.9, 0.2, 0.4},
|
|
{8, 4, -19.3, -17.4, -0.2, 0.4},
|
|
{8, 5, 11.5, 16.7, 0.3, 0.1},
|
|
{8, 6, 10.9, 7.0, 0.3, -0.1},
|
|
{8, 7, -14.1, -10.8, -0.6, 0.4},
|
|
{8, 8, -3.7, 1.7, 0.2, 0.3},
|
|
{9, 0, 5.4, 0.0, 0.0, 0.0},
|
|
{9, 1, 9.4, -20.5, -0.1, 0.0},
|
|
{9, 2, 3.4, 11.5, 0.0, -0.2},
|
|
{9, 3, -5.2, 12.8, 0.3, 0.0},
|
|
{9, 4, 3.1, -7.2, -0.4, -0.1},
|
|
{9, 5, -12.4, -7.4, -0.3, 0.1},
|
|
{9, 6, -0.7, 8.0, 0.1, 0.0},
|
|
{9, 7, 8.4, 2.1, -0.1, -0.2},
|
|
{9, 8, -8.5, -6.1, -0.4, 0.3},
|
|
{9, 9, -10.1, 7.0, -0.2, 0.2},
|
|
{10, 0, -2.0, 0.0, 0.0, 0.0},
|
|
{10, 1, -6.3, 2.8, 0.0, 0.1},
|
|
{10, 2, 0.9, -0.1, -0.1, -0.1},
|
|
{10, 3, -1.1, 4.7, 0.2, 0.0},
|
|
{10, 4, -0.2, 4.4, 0.0, -0.1},
|
|
{10, 5, 2.5, -7.2, -0.1, -0.1},
|
|
{10, 6, -0.3, -1.0, -0.2, 0.0},
|
|
{10, 7, 2.2, -3.9, 0.0, -0.1},
|
|
{10, 8, 3.1, -2.0, -0.1, -0.2},
|
|
{10, 9, -1.0, -2.0, -0.2, 0.0},
|
|
{10, 10, -2.8, -8.3, -0.2, -0.1},
|
|
{11, 0, 3.0, 0.0, 0.0, 0.0},
|
|
{11, 1, -1.5, 0.2, 0.0, 0.0},
|
|
{11, 2, -2.1, 1.7, 0.0, 0.1},
|
|
{11, 3, 1.7, -0.6, 0.1, 0.0},
|
|
{11, 4, -0.5, -1.8, 0.0, 0.1},
|
|
{11, 5, 0.5, 0.9, 0.0, 0.0},
|
|
{11, 6, -0.8, -0.4, 0.0, 0.1},
|
|
{11, 7, 0.4, -2.5, 0.0, 0.0},
|
|
{11, 8, 1.8, -1.3, 0.0, -0.1},
|
|
{11, 9, 0.1, -2.1, 0.0, -0.1},
|
|
{11, 10, 0.7, -1.9, -0.1, 0.0},
|
|
{11, 11, 3.8, -1.8, 0.0, -0.1},
|
|
{12, 0, -2.2, 0.0, 0.0, 0.0},
|
|
{12, 1, -0.2, -0.9, 0.0, 0.0},
|
|
{12, 2, 0.3, 0.3, 0.1, 0.0},
|
|
{12, 3, 1.0, 2.1, 0.1, 0.0},
|
|
{12, 4, -0.6, -2.5, -0.1, 0.0},
|
|
{12, 5, 0.9, 0.5, 0.0, 0.0},
|
|
{12, 6, -0.1, 0.6, 0.0, 0.1},
|
|
{12, 7, 0.5, 0.0, 0.0, 0.0},
|
|
{12, 8, -0.4, 0.1, 0.0, 0.0},
|
|
{12, 9, -0.4, 0.3, 0.0, 0.0},
|
|
{12, 10, 0.2, -0.9, 0.0, 0.0},
|
|
{12, 11, -0.8, -0.2, -0.1, 0.0},
|
|
{12, 12, 0.0, 0.9, 0.1, 0.0}
|
|
};
|
|
|
|
// TODO: If this works here, delete first two columns to save space
|
|
for (uint16_t i = 0; i < NUMTERMS; i++) {
|
|
MagneticModel->Main_Field_Coeff_G[i] = CoeffFile[i][2];
|
|
MagneticModel->Main_Field_Coeff_H[i] = CoeffFile[i][3];
|
|
MagneticModel->Secular_Var_Coeff_G[i] = CoeffFile[i][4];
|
|
MagneticModel->Secular_Var_Coeff_H[i] = CoeffFile[i][5];
|
|
}
|
|
|
|
}
|