1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-11 19:24:10 +01:00
LibrePilot/flight/Modules/Attitude/revolution/attitude.c
James Cotton f7d13ebd57 Hack to tweak the gyro gain for now although its too far out at the moment so
something isn't configured properly.  Possibly it is staying in 250 deg/s mode.
Also make sure if the MPU6000 fifo backs up to pull extra data.
2011-11-27 01:22:37 -06:00

477 lines
14 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup Attitude Copter Control Attitude Estimation
* @brief Acquires sensor data and computes attitude estimate
* Specifically updates the the @ref AttitudeActual "AttitudeActual" and @ref AttitudeRaw "AttitudeRaw" settings objects
* @{
*
* @file attitude.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Module to handle all comms to the AHRS on a periodic basis.
*
* @see The GNU Public License (GPL) Version 3
*
******************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input objects: None, takes sensor data via pios
* Output objects: @ref AttitudeRaw @ref AttitudeActual
*
* This module computes an attitude estimate from the sensor data
*
* The module executes in its own thread.
*
* UAVObjects are automatically generated by the UAVObjectGenerator from
* the object definition XML file.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include "pios.h"
#include "attitude.h"
#include "attituderaw.h"
#include "attitudeactual.h"
#include "attitudesettings.h"
#include "baroaltitude.h"
#include "flightstatus.h"
#include "CoordinateConversions.h"
// Private constants
#define STACK_SIZE_BYTES 1540
#define TASK_PRIORITY (tskIDLE_PRIORITY+3)
#define F_PI 3.14159265358979323846f
#define PI_MOD(x) (fmod(x + F_PI, F_PI * 2) - F_PI)
// Private types
// Private variables
static xTaskHandle taskHandle;
// Private functions
static void AttitudeTask(void *parameters);
static float gyro_correct_int[3] = {0,0,0};
static int8_t updateSensors(AttitudeRawData *);
static void updateAttitude(AttitudeRawData *);
static void settingsUpdatedCb(UAVObjEvent * objEv);
static float accelKi = 0;
static float accelKp = 0;
static float yawBiasRate = 0;
static float gyroGain = 0.42;
static int16_t accelbias[3];
static float R[3][3];
static int8_t rotate = 0;
static bool zero_during_arming = false;
static bool bias_correct_gyro = true;
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t AttitudeStart(void)
{
// Start main task
xTaskCreate(AttitudeTask, (signed char *)"Attitude", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &taskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_ATTITUDE, taskHandle);
PIOS_WDG_RegisterFlag(PIOS_WDG_ATTITUDE);
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t AttitudeInitialize(void)
{
AttitudeActualInitialize();
AttitudeRawInitialize();
AttitudeSettingsInitialize();
BaroAltitudeInitialize();
// Initialize quaternion
AttitudeActualData attitude;
AttitudeActualGet(&attitude);
attitude.q1 = 1;
attitude.q2 = 0;
attitude.q3 = 0;
attitude.q4 = 0;
AttitudeActualSet(&attitude);
// Cannot trust the values to init right above if BL runs
gyro_correct_int[0] = 0;
gyro_correct_int[1] = 0;
gyro_correct_int[2] = 0;
for(uint8_t i = 0; i < 3; i++)
for(uint8_t j = 0; j < 3; j++)
R[i][j] = 0;
AttitudeSettingsConnectCallback(&settingsUpdatedCb);
return 0;
}
MODULE_INITCALL(AttitudeInitialize, AttitudeStart)
int32_t accel_test;
int32_t gyro_test;
int32_t mag_test;
//int32_t pressure_test;
/**
* Module thread, should not return.
*/
static void AttitudeTask(void *parameters)
{
uint8_t init = 0;
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
// Force settings update to make sure rotation loaded
settingsUpdatedCb(AttitudeSettingsHandle());
accel_test = PIOS_BMA180_Test();
gyro_test = PIOS_MPU6000_Test();
mag_test = PIOS_HMC5883_Test();
// pressure_test = PIOS_BMP085_Test();
// Kick of pressure conversions
// PIOS_BMP085_StartADC(TemperatureConv);
// Main task loop
while (1) {
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
if((xTaskGetTickCount() < 7000) && (xTaskGetTickCount() > 1000)) {
// For first 7 seconds use accels to get gyro bias
accelKp = 1;
accelKi = 0.9;
yawBiasRate = 0.23;
init = 0;
}
else if (zero_during_arming && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) {
accelKp = 1;
accelKi = 0.9;
yawBiasRate = 0.23;
init = 0;
} else if (init == 0) {
// Reload settings (all the rates)
AttitudeSettingsAccelKiGet(&accelKi);
AttitudeSettingsAccelKpGet(&accelKp);
AttitudeSettingsYawBiasRateGet(&yawBiasRate);
init = 1;
}
PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);
AttitudeRawData attitudeRaw;
AttitudeRawGet(&attitudeRaw);
if(updateSensors(&attitudeRaw) != 0)
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
else {
// Only update attitude when sensor data is good
updateAttitude(&attitudeRaw);
AttitudeRawSet(&attitudeRaw);
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
}
vTaskDelay(1);
}
}
uint32_t accel_samples;
uint32_t gyro_samples;
struct pios_bma180_data accel;
struct pios_mpu6000_data gyro;
AttitudeRawData raw;
int32_t accel_accum[3] = {0, 0, 0};
int32_t gyro_accum[3] = {0,0,0};
float scaling;
/**
* Get an update from the sensors
* @param[in] attitudeRaw Populate the UAVO instead of saving right here
* @return 0 if successfull, -1 if not
*/
static int8_t updateSensors(AttitudeRawData * attitudeRaw)
{
int32_t read_good;
int32_t count;
for (int i = 0; i < 3; i++) {
accel_accum[i] = 0;
gyro_accum[i] = 0;
}
accel_samples = 0;
gyro_samples = 0;
// Make sure we get one sample
count = 0;
while((read_good = PIOS_BMA180_ReadFifo(&accel)) != 0);
while(read_good == 0) {
count++;
accel_accum[0] += accel.x;
accel_accum[1] += accel.y;
accel_accum[2] += accel.z;
read_good = PIOS_BMA180_ReadFifo(&accel);
}
accel_samples = count;
float accels[3] = {(float) accel_accum[1] / accel_samples, (float) accel_accum[0] / accel_samples, -(float) accel_accum[2] / accel_samples};
// Not the swaping of channel orders
scaling = PIOS_BMA180_GetScale();
attitudeRaw->accels[ATTITUDERAW_ACCELS_X] = (accels[0] - accelbias[0]) * scaling;
attitudeRaw->accels[ATTITUDERAW_ACCELS_Y] = (accels[1] - accelbias[1]) * scaling;
attitudeRaw->accels[ATTITUDERAW_ACCELS_Z] = (accels[2] - accelbias[2]) * scaling;
// Make sure we get one sample
count = 0;
while((read_good = PIOS_MPU6000_ReadFifo(&gyro)) != 0);
while(read_good == 0) {
count++;
gyro_accum[0] += gyro.gyro_x;
gyro_accum[1] += gyro.gyro_y;
gyro_accum[2] += gyro.gyro_z;
read_good = PIOS_MPU6000_ReadFifo(&gyro);
}
gyro_samples = count;
float gyros[3] = {(float) gyro_accum[1] / gyro_samples, (float) gyro_accum[0] / gyro_samples, -(float) gyro_accum[2] / gyro_samples};
scaling = PIOS_MPU6000_GetScale();
attitudeRaw->gyros[ATTITUDERAW_GYROS_X] = gyros[0] * scaling;
attitudeRaw->gyros[ATTITUDERAW_GYROS_Y] = gyros[1] * scaling;
attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] = gyros[2] * scaling;
// From data sheet 35 deg C corresponds to -13200, and 280 LSB per C
attitudeRaw->temperature[ATTITUDERAW_TEMPERATURE_GYRO] = 35.0f + ((float) gyro.temperature + 512.0f) / 340.0f;
// From the data sheet 25 deg C corresponds to 2 and 2 LSB per C
attitudeRaw->temperature[ATTITUDERAW_TEMPERATURE_ACCEL] = 25.0f + ((float) accel.temperature - 2.0f) / 2.0f;
if(bias_correct_gyro) {
// Applying integral component here so it can be seen on the gyros and correct bias
attitudeRaw->gyros[ATTITUDERAW_GYROS_X] += gyro_correct_int[0];
attitudeRaw->gyros[ATTITUDERAW_GYROS_Y] += gyro_correct_int[1];
attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] += gyro_correct_int[2];
}
// Hack for tweaking gyro gains with the old settings
scaling = gyroGain / 0.42;
attitudeRaw->gyros[ATTITUDERAW_GYROS_X] *= scaling;
attitudeRaw->gyros[ATTITUDERAW_GYROS_Y] *= scaling;
attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] *= scaling;
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
// and make it average zero (weakly)
gyro_correct_int[2] += - attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] * yawBiasRate;
if (PIOS_HMC5883_NewDataAvailable()) {
int16_t values[3];
PIOS_HMC5883_ReadMag(values);
attitudeRaw->magnetometers[ATTITUDERAW_MAGNETOMETERS_X] = -values[0];
attitudeRaw->magnetometers[ATTITUDERAW_MAGNETOMETERS_Y] = -values[1];
attitudeRaw->magnetometers[ATTITUDERAW_MAGNETOMETERS_Z] = -values[2];
}
AttitudeRawSet(&raw);
/*
int32_t retval = PIOS_BMP085_ReadADC();
if (retval == 0) { // Conversion completed
static uint32_t baro_conversions;
if((baro_conversions++) % 2)
PIOS_BMP085_StartADC(PressureConv);
else {
PIOS_BMP085_StartADC(TemperatureConv);
float pressure;
pressure = PIOS_BMP085_GetPressure();
BaroAltitudeData data;
BaroAltitudeGet(&data);
data.Altitude = (1.0f - powf(pressure / BMP085_P0, (1.0f / 5.255f))) * 44330.0f;
data.Pressure = pressure / 1000.0f;
data.Temperature = PIOS_BMP085_GetTemperature() / 10.0f; // Convert to deg C
BaroAltitudeSet(&data);
}
}*/
return 0;
}
float accel_mag;
float qmag;
static void updateAttitude(AttitudeRawData * attitudeRaw)
{
static int32_t timeval;
float dT = PIOS_DELAY_DiffuS(timeval) / 1000000.0f;
timeval = PIOS_DELAY_GetRaw();
float q[4];
AttitudeActualData attitudeActual;
AttitudeActualGet(&attitudeActual);
float gyro[3];
gyro[0] = attitudeRaw->gyros[0];
gyro[1] = attitudeRaw->gyros[1];
gyro[2] = attitudeRaw->gyros[2];
float accels[3];
accels[0] = attitudeRaw->accels[0];
accels[1] = attitudeRaw->accels[1];
accels[2] = attitudeRaw->accels[2];
float grot[3];
float accel_err[3];
// Get the current attitude estimate
quat_copy(&attitudeActual.q1, q);
// Rotate gravity to body frame and cross with accels
grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2]));
grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1]));
grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]);
CrossProduct((const float *) accels, (const float *) grot, accel_err);
// Account for accel magnitude
accel_mag = accels[0]*accels[0] + accels[1]*accels[1] + accels[2]*accels[2];
accel_mag = sqrtf(accel_mag);
accel_err[0] /= accel_mag;
accel_err[1] /= accel_mag;
accel_err[2] /= accel_mag;
// Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s
gyro_correct_int[0] += accel_err[0] * accelKi;
gyro_correct_int[1] += accel_err[1] * accelKi;
// Correct rates based on error, integral component dealt with in updateSensors
gyro[0] += accel_err[0] * accelKp / dT;
gyro[1] += accel_err[1] * accelKp / dT;
gyro[2] += accel_err[2] * accelKp / dT;
// Work out time derivative from INSAlgo writeup
// Also accounts for the fact that gyros are in deg/s
float qdot[4];
qdot[0] = (-q[1] * gyro[0] - q[2] * gyro[1] - q[3] * gyro[2]) * dT * F_PI / 180 / 2;
qdot[1] = (q[0] * gyro[0] - q[3] * gyro[1] + q[2] * gyro[2]) * dT * F_PI / 180 / 2;
qdot[2] = (q[3] * gyro[0] + q[0] * gyro[1] - q[1] * gyro[2]) * dT * F_PI / 180 / 2;
qdot[3] = (-q[2] * gyro[0] + q[1] * gyro[1] + q[0] * gyro[2]) * dT * F_PI / 180 / 2;
// Take a time step
q[0] = q[0] + qdot[0];
q[1] = q[1] + qdot[1];
q[2] = q[2] + qdot[2];
q[3] = q[3] + qdot[3];
if(q[0] < 0) {
q[0] = -q[0];
q[1] = -q[1];
q[2] = -q[2];
q[3] = -q[3];
}
// Renomalize
qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
q[0] = q[0] / qmag;
q[1] = q[1] / qmag;
q[2] = q[2] / qmag;
q[3] = q[3] / qmag;
// If quaternion has become inappropriately short or is nan reinit.
// THIS SHOULD NEVER ACTUALLY HAPPEN
if((fabs(qmag) < 1.0e-3f) || (qmag != qmag)) {
q[0] = 1;
q[1] = 0;
q[2] = 0;
q[3] = 0;
}
quat_copy(q, &attitudeActual.q1);
// Convert into eueler degrees (makes assumptions about RPY order)
Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll);
AttitudeActualSet(&attitudeActual);
}
static void settingsUpdatedCb(UAVObjEvent * objEv) {
AttitudeSettingsData attitudeSettings;
AttitudeSettingsGet(&attitudeSettings);
accelKp = attitudeSettings.AccelKp;
accelKi = attitudeSettings.AccelKi;
yawBiasRate = attitudeSettings.YawBiasRate;
gyroGain = attitudeSettings.GyroGain;
zero_during_arming = attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE;
bias_correct_gyro = attitudeSettings.BiasCorrectGyro == ATTITUDESETTINGS_BIASCORRECTGYRO_TRUE;
accelbias[0] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_X];
accelbias[1] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Y];
accelbias[2] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Z];
gyro_correct_int[0] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_X] / 100.0f;
gyro_correct_int[1] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Y] / 100.0f;
gyro_correct_int[2] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Z] / 100.0f;
// Indicates not to expend cycles on rotation
if(attitudeSettings.BoardRotation[0] == 0 && attitudeSettings.BoardRotation[1] == 0 &&
attitudeSettings.BoardRotation[2] == 0) {
rotate = 0;
// Shouldn't be used but to be safe
float rotationQuat[4] = {1,0,0,0};
Quaternion2R(rotationQuat, R);
} else {
float rotationQuat[4];
const float rpy[3] = {attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_ROLL],
attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_PITCH],
attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_YAW]};
RPY2Quaternion(rpy, rotationQuat);
Quaternion2R(rotationQuat, R);
rotate = 1;
}
}
/**
* @}
* @}
*/