mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2025-01-18 03:52:11 +01:00
0fd9fda7a6
gnuindent -npro -kr -i8 -ts8 -sob -ss -ncs -cp1 -il0 -hnl -l150 git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1836 ebee16cc-31ac-478f-84a7-5cbb03baadba
218 lines
6.7 KiB
C
218 lines
6.7 KiB
C
/**
|
|
******************************************************************************
|
|
*
|
|
* @file CoordinateConversions.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
|
* @brief General conversions with different coordinate systems.
|
|
* - all angles in deg
|
|
* - distances in meters
|
|
* - altitude above WGS-84 elipsoid
|
|
*
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
*****************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include "CoordinateConversions.h"
|
|
|
|
#define RAD2DEG (180.0/M_PI)
|
|
#define DEG2RAD (M_PI/180.0)
|
|
|
|
// ****** convert Lat,Lon,Alt to ECEF ************
|
|
void LLA2ECEF(double LLA[3], double ECEF[3])
|
|
{
|
|
const double a = 6378137.0; // Equatorial Radius
|
|
const double e = 8.1819190842622e-2; // Eccentricity
|
|
double sinLat, sinLon, cosLat, cosLon;
|
|
double N;
|
|
|
|
sinLat = sin(DEG2RAD * LLA[0]);
|
|
sinLon = sin(DEG2RAD * LLA[1]);
|
|
cosLat = cos(DEG2RAD * LLA[0]);
|
|
cosLon = cos(DEG2RAD * LLA[1]);
|
|
|
|
N = a / sqrt(1.0 - e * e * sinLat * sinLat); //prime vertical radius of curvature
|
|
|
|
ECEF[0] = (N + LLA[2]) * cosLat * cosLon;
|
|
ECEF[1] = (N + LLA[2]) * cosLat * sinLon;
|
|
ECEF[2] = ((1 - e * e) * N + LLA[2]) * sinLat;
|
|
}
|
|
|
|
// ****** convert ECEF to Lat,Lon,Alt (ITERATIVE!) *********
|
|
uint16_t ECEF2LLA(double ECEF[3], double LLA[3])
|
|
{
|
|
/**
|
|
* LLA parameter is used to prime the iteration.
|
|
* A position within 1 meter of the specified LLA
|
|
* will be calculated within at most 3 iterations.
|
|
* If unknown: Call with any valid LLA coordinate
|
|
* will compute within at most 5 iterations.
|
|
* Suggestion: [0,0,0]
|
|
**/
|
|
|
|
const double a = 6378137.0; // Equatorial Radius
|
|
const double e = 8.1819190842622e-2; // Eccentricity
|
|
double x = ECEF[0], y = ECEF[1], z = ECEF[2];
|
|
double Lat, N, NplusH, delta, esLat;
|
|
uint16_t iter;
|
|
#define MAX_ITER 10 // should not take more than 5 for valid coordinates
|
|
#define ACCURACY 1.0e-11 // used to be e-14, but we don't need sub micrometer exact calculations
|
|
|
|
LLA[1] = RAD2DEG * atan2(y, x);
|
|
Lat = DEG2RAD * LLA[0];
|
|
esLat = e * sin(Lat);
|
|
N = a / sqrt(1 - esLat * esLat);
|
|
NplusH = N + LLA[2];
|
|
delta = 1;
|
|
iter = 0;
|
|
|
|
while (((delta > ACCURACY) || (delta < -ACCURACY))
|
|
&& (iter < MAX_ITER)) {
|
|
delta = Lat - atan(z / (sqrt(x * x + y * y) * (1 - (N * e * e / NplusH))));
|
|
Lat = Lat - delta;
|
|
esLat = e * sin(Lat);
|
|
N = a / sqrt(1 - esLat * esLat);
|
|
NplusH = sqrt(x * x + y * y) / cos(Lat);
|
|
iter += 1;
|
|
}
|
|
|
|
LLA[0] = RAD2DEG * Lat;
|
|
LLA[2] = NplusH - N;
|
|
|
|
return (iter < MAX_ITER);
|
|
}
|
|
|
|
// ****** find ECEF to NED rotation matrix ********
|
|
void RneFromLLA(double LLA[3], float Rne[3][3])
|
|
{
|
|
float sinLat, sinLon, cosLat, cosLon;
|
|
|
|
sinLat = (float)sin(DEG2RAD * LLA[0]);
|
|
sinLon = (float)sin(DEG2RAD * LLA[1]);
|
|
cosLat = (float)cos(DEG2RAD * LLA[0]);
|
|
cosLon = (float)cos(DEG2RAD * LLA[1]);
|
|
|
|
Rne[0][0] = -sinLat * cosLon;
|
|
Rne[0][1] = -sinLat * sinLon;
|
|
Rne[0][2] = cosLat;
|
|
Rne[1][0] = -sinLon;
|
|
Rne[1][1] = cosLon;
|
|
Rne[1][2] = 0;
|
|
Rne[2][0] = -cosLat * cosLon;
|
|
Rne[2][1] = -cosLat * sinLon;
|
|
Rne[2][2] = -sinLat;
|
|
}
|
|
|
|
// ****** find roll, pitch, yaw from quaternion ********
|
|
void Quaternion2RPY(float q[4], float rpy[3])
|
|
{
|
|
float R13, R11, R12, R23, R33;
|
|
float q0s = q[0] * q[0];
|
|
float q1s = q[1] * q[1];
|
|
float q2s = q[2] * q[2];
|
|
float q3s = q[3] * q[3];
|
|
|
|
R13 = 2 * (q[1] * q[3] - q[0] * q[2]);
|
|
R11 = q0s + q1s - q2s - q3s;
|
|
R12 = 2 * (q[1] * q[2] + q[0] * q[3]);
|
|
R23 = 2 * (q[2] * q[3] + q[0] * q[1]);
|
|
R33 = q0s - q1s - q2s + q3s;
|
|
|
|
rpy[1] = RAD2DEG * asinf(-R13); // pitch always between -pi/2 to pi/2
|
|
rpy[2] = RAD2DEG * atan2f(R12, R11);
|
|
rpy[0] = RAD2DEG * atan2f(R23, R33);
|
|
}
|
|
|
|
// ****** find quaternion from roll, pitch, yaw ********
|
|
void RPY2Quaternion(float rpy[3], float q[4])
|
|
{
|
|
float phi, theta, psi;
|
|
float cphi, sphi, ctheta, stheta, cpsi, spsi;
|
|
|
|
phi = DEG2RAD * rpy[0] / 2;
|
|
theta = DEG2RAD * rpy[1] / 2;
|
|
psi = DEG2RAD * rpy[2] / 2;
|
|
cphi = cosf(phi);
|
|
sphi = sinf(phi);
|
|
ctheta = cosf(theta);
|
|
stheta = sinf(theta);
|
|
cpsi = cosf(psi);
|
|
spsi = sinf(psi);
|
|
|
|
q[0] = cphi * ctheta * cpsi + sphi * stheta * spsi;
|
|
q[1] = sphi * ctheta * cpsi - cphi * stheta * spsi;
|
|
q[2] = cphi * stheta * cpsi + sphi * ctheta * spsi;
|
|
q[3] = cphi * ctheta * spsi - sphi * stheta * cpsi;
|
|
|
|
if (q[0] < 0) { // q0 always positive for uniqueness
|
|
q[0] = -q[0];
|
|
q[1] = -q[1];
|
|
q[2] = -q[2];
|
|
q[3] = -q[3];
|
|
}
|
|
}
|
|
|
|
//** Find Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
|
|
void Quaternion2R(float q[4], float Rbe[3][3])
|
|
{
|
|
|
|
float q0s = q[0] * q[0], q1s = q[1] * q[1], q2s = q[2] * q[2], q3s = q[3] * q[3];
|
|
|
|
Rbe[0][0] = q0s + q1s - q2s - q3s;
|
|
Rbe[0][1] = 2 * (q[1] * q[2] + q[0] * q[3]);
|
|
Rbe[0][2] = 2 * (q[1] * q[3] - q[0] * q[2]);
|
|
Rbe[1][0] = 2 * (q[1] * q[2] - q[0] * q[3]);
|
|
Rbe[1][1] = q0s - q1s + q2s - q3s;
|
|
Rbe[1][2] = 2 * (q[2] * q[3] + q[0] * q[1]);
|
|
Rbe[2][0] = 2 * (q[1] * q[3] + q[0] * q[2]);
|
|
Rbe[2][1] = 2 * (q[2] * q[3] - q[0] * q[1]);
|
|
Rbe[2][2] = q0s - q1s - q2s + q3s;
|
|
}
|
|
|
|
// ****** Express LLA in a local NED Base Frame ********
|
|
void LLA2Base(double LLA[3], double BaseECEF[3], float Rne[3][3], float NED[3])
|
|
{
|
|
double ECEF[3];
|
|
float diff[3];
|
|
|
|
LLA2ECEF(LLA, ECEF);
|
|
|
|
diff[0] = (float)(ECEF[0] - BaseECEF[0]);
|
|
diff[1] = (float)(ECEF[1] - BaseECEF[1]);
|
|
diff[2] = (float)(ECEF[2] - BaseECEF[2]);
|
|
|
|
NED[0] = Rne[0][0] * diff[0] + Rne[0][1] * diff[1] + Rne[0][2] * diff[2];
|
|
NED[1] = Rne[1][0] * diff[0] + Rne[1][1] * diff[1] + Rne[1][2] * diff[2];
|
|
NED[2] = Rne[2][0] * diff[0] + Rne[2][1] * diff[1] + Rne[2][2] * diff[2];
|
|
}
|
|
|
|
// ****** Express ECEF in a local NED Base Frame ********
|
|
void ECEF2Base(double ECEF[3], double BaseECEF[3], float Rne[3][3], float NED[3])
|
|
{
|
|
float diff[3];
|
|
|
|
diff[0] = (float)(ECEF[0] - BaseECEF[0]);
|
|
diff[1] = (float)(ECEF[1] - BaseECEF[1]);
|
|
diff[2] = (float)(ECEF[2] - BaseECEF[2]);
|
|
|
|
NED[0] = Rne[0][0] * diff[0] + Rne[0][1] * diff[1] + Rne[0][2] * diff[2];
|
|
NED[1] = Rne[1][0] * diff[0] + Rne[1][1] * diff[1] + Rne[1][2] * diff[2];
|
|
NED[2] = Rne[2][0] * diff[0] + Rne[2][1] * diff[1] + Rne[2][2] * diff[2];
|
|
}
|