mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-12-04 12:24:11 +01:00
404 lines
11 KiB
C
404 lines
11 KiB
C
/**
|
|
******************************************************************************
|
|
* @addtogroup OpenPilotModules OpenPilot Modules
|
|
* @{
|
|
* @addtogroup Sensors
|
|
* @brief Acquires sensor data
|
|
* Specifically updates the the @ref Gyros, @ref Accels, and @ref Magnetometer objects
|
|
* @{
|
|
*
|
|
* @file sensors.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
|
* @brief Module to handle all comms to the AHRS on a periodic basis.
|
|
*
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
******************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/**
|
|
* Input objects: None, takes sensor data via pios
|
|
* Output objects: @ref Gyros @ref Accels @ref Magnetometer
|
|
*
|
|
* The module executes in its own thread.
|
|
*
|
|
* UAVObjects are automatically generated by the UAVObjectGenerator from
|
|
* the object definition XML file.
|
|
*
|
|
* Modules have no API, all communication to other modules is done through UAVObjects.
|
|
* However modules may use the API exposed by shared libraries.
|
|
* See the OpenPilot wiki for more details.
|
|
* http://www.openpilot.org/OpenPilot_Application_Architecture
|
|
*
|
|
*/
|
|
|
|
#include "pios.h"
|
|
#include "attitude.h"
|
|
|
|
#include "accels.h"
|
|
#include "actuatordesired.h"
|
|
#include "attitudeactual.h"
|
|
#include "attitudesettings.h"
|
|
#include "baroaltitude.h"
|
|
#include "gyros.h"
|
|
#include "gyrosbias.h"
|
|
#include "flightstatus.h"
|
|
#include "gpsposition.h"
|
|
#include "homelocation.h"
|
|
#include "magnetometer.h"
|
|
#include "ratedesired.h"
|
|
#include "revocalibration.h"
|
|
|
|
#include "CoordinateConversions.h"
|
|
|
|
// Private constants
|
|
#define STACK_SIZE_BYTES 1540
|
|
#define TASK_PRIORITY (tskIDLE_PRIORITY+3)
|
|
#define SENSOR_PERIOD 2
|
|
|
|
#define F_PI 3.14159265358979323846f
|
|
#define PI_MOD(x) (fmod(x + F_PI, F_PI * 2) - F_PI)
|
|
// Private types
|
|
|
|
// Private variables
|
|
static xTaskHandle sensorsTaskHandle;
|
|
|
|
// Private functions
|
|
static void SensorsTask(void *parameters);
|
|
static void simulateConstant();
|
|
static void simulateModelAgnostic();
|
|
static void simulateModelQuadcopter();
|
|
|
|
static float rand_gauss();
|
|
|
|
enum sensor_sim_type {CONSTANT, MODEL_AGNOSTIC, MODEL_QUADCOPTER} sensor_sim_type;
|
|
|
|
/**
|
|
* Initialise the module. Called before the start function
|
|
* \returns 0 on success or -1 if initialisation failed
|
|
*/
|
|
int32_t SensorsInitialize(void)
|
|
{
|
|
AccelsInitialize();
|
|
BaroAltitudeInitialize();
|
|
GyrosInitialize();
|
|
GyrosBiasInitialize();
|
|
MagnetometerInitialize();
|
|
RevoCalibrationInitialize();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Start the task. Expects all objects to be initialized by this point.
|
|
* \returns 0 on success or -1 if initialisation failed
|
|
*/
|
|
int32_t SensorsStart(void)
|
|
{
|
|
// Start main task
|
|
xTaskCreate(SensorsTask, (signed char *)"Sensors", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &sensorsTaskHandle);
|
|
TaskMonitorAdd(TASKINFO_RUNNING_SENSORS, sensorsTaskHandle);
|
|
PIOS_WDG_RegisterFlag(PIOS_WDG_SENSORS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
MODULE_INITCALL(SensorsInitialize, SensorsStart)
|
|
|
|
/**
|
|
* Simulated sensor task. Run a model of the airframe and produce sensor values
|
|
*/
|
|
static void SensorsTask(void *parameters)
|
|
{
|
|
portTickType lastSysTime;
|
|
|
|
AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);
|
|
|
|
HomeLocationData homeLocation;
|
|
HomeLocationGet(&homeLocation);
|
|
homeLocation.Latitude = 0;
|
|
homeLocation.Longitude = 0;
|
|
homeLocation.Altitude = 0;
|
|
homeLocation.Be[0] = 26000;
|
|
homeLocation.Be[1] = 400;
|
|
homeLocation.Be[2] = 40000;
|
|
homeLocation.Set = HOMELOCATION_SET_TRUE;
|
|
HomeLocationSet(&homeLocation);
|
|
|
|
sensor_sim_type = MODEL_QUADCOPTER;
|
|
|
|
// Main task loop
|
|
lastSysTime = xTaskGetTickCount();
|
|
uint32_t last_time = PIOS_DELAY_GetRaw();
|
|
while (1) {
|
|
PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
|
|
|
|
float dT = PIOS_DELAY_DiffuS(last_time) / 1.0e6;
|
|
if(dT > 0.010) {
|
|
fprintf(stderr,"Long sensor update\n");
|
|
}
|
|
last_time = PIOS_DELAY_GetRaw();
|
|
|
|
switch(sensor_sim_type) {
|
|
case CONSTANT:
|
|
simulateConstant();
|
|
break;
|
|
case MODEL_AGNOSTIC:
|
|
simulateModelAgnostic();
|
|
break;
|
|
case MODEL_QUADCOPTER:
|
|
simulateModelQuadcopter();
|
|
break;
|
|
}
|
|
|
|
vTaskDelay(2 / portTICK_RATE_MS);
|
|
|
|
}
|
|
}
|
|
|
|
static void simulateConstant()
|
|
{
|
|
AccelsData accelsData; // Skip get as we set all the fields
|
|
accelsData.x = 0;
|
|
accelsData.y = 0;
|
|
accelsData.z = -9.81;
|
|
accelsData.temperature = 0;
|
|
AccelsSet(&accelsData);
|
|
|
|
GyrosData gyrosData; // Skip get as we set all the fields
|
|
gyrosData.x = 0;
|
|
gyrosData.y = 0;
|
|
gyrosData.z = 0;
|
|
|
|
// Apply bias correction to the gyros
|
|
GyrosBiasData gyrosBias;
|
|
GyrosBiasGet(&gyrosBias);
|
|
gyrosData.x += gyrosBias.x;
|
|
gyrosData.y += gyrosBias.y;
|
|
gyrosData.z += gyrosBias.z;
|
|
|
|
GyrosSet(&gyrosData);
|
|
|
|
BaroAltitudeData baroAltitude;
|
|
BaroAltitudeGet(&baroAltitude);
|
|
baroAltitude.Altitude = 1;
|
|
BaroAltitudeSet(&baroAltitude);
|
|
|
|
GPSPositionData gpsPosition;
|
|
GPSPositionGet(&gpsPosition);
|
|
gpsPosition.Latitude = 0;
|
|
gpsPosition.Longitude = 0;
|
|
gpsPosition.Altitude = 0;
|
|
GPSPositionSet(&gpsPosition);
|
|
|
|
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
|
|
// and make it average zero (weakly)
|
|
MagnetometerData mag;
|
|
mag.x = 400;
|
|
mag.y = 0;
|
|
mag.z = 800;
|
|
MagnetometerSet(&mag);
|
|
}
|
|
|
|
static void simulateModelAgnostic()
|
|
{
|
|
float Rbe[3][3];
|
|
float q[4];
|
|
|
|
// Simulate accels based on current attitude
|
|
AttitudeActualData attitudeActual;
|
|
AttitudeActualGet(&attitudeActual);
|
|
q[0] = attitudeActual.q1;
|
|
q[1] = attitudeActual.q2;
|
|
q[2] = attitudeActual.q3;
|
|
q[3] = attitudeActual.q4;
|
|
Quaternion2R(q,Rbe);
|
|
|
|
AccelsData accelsData; // Skip get as we set all the fields
|
|
accelsData.x = -9.81 * Rbe[0][2];
|
|
accelsData.y = -9.81 * Rbe[1][2];
|
|
accelsData.z = -9.81 * Rbe[2][2];
|
|
accelsData.temperature = 30;
|
|
AccelsSet(&accelsData);
|
|
|
|
RateDesiredData rateDesired;
|
|
RateDesiredGet(&rateDesired);
|
|
|
|
GyrosData gyrosData; // Skip get as we set all the fields
|
|
gyrosData.x = rateDesired.Roll + rand_gauss();
|
|
gyrosData.y = rateDesired.Pitch + rand_gauss();
|
|
gyrosData.z = rateDesired.Yaw + rand_gauss();
|
|
|
|
// Apply bias correction to the gyros
|
|
GyrosBiasData gyrosBias;
|
|
GyrosBiasGet(&gyrosBias);
|
|
gyrosData.x += gyrosBias.x;
|
|
gyrosData.y += gyrosBias.y;
|
|
gyrosData.z += gyrosBias.z;
|
|
|
|
GyrosSet(&gyrosData);
|
|
|
|
BaroAltitudeData baroAltitude;
|
|
BaroAltitudeGet(&baroAltitude);
|
|
baroAltitude.Altitude = 1;
|
|
BaroAltitudeSet(&baroAltitude);
|
|
|
|
GPSPositionData gpsPosition;
|
|
GPSPositionGet(&gpsPosition);
|
|
gpsPosition.Latitude = 0;
|
|
gpsPosition.Longitude = 0;
|
|
gpsPosition.Altitude = 0;
|
|
GPSPositionSet(&gpsPosition);
|
|
|
|
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
|
|
// and make it average zero (weakly)
|
|
MagnetometerData mag;
|
|
mag.x = 400;
|
|
mag.y = 0;
|
|
mag.z = 800;
|
|
MagnetometerSet(&mag);
|
|
}
|
|
|
|
static void simulateModelQuadcopter()
|
|
{
|
|
static float pos[3] = {0,0,0};
|
|
static float vel[3] = {0,0,0};
|
|
static float ned_accel[3] = {0,0,0};
|
|
static float q[4] = {1,0,0,0};
|
|
static float rpy[3] = {0,0,0}; // Low pass filtered actuator
|
|
float T[3];
|
|
float Rbe[3][3];
|
|
|
|
const float ACTUATOR_ALPHA = 0.99;
|
|
const float MAX_THRUST = 9.81 * 2;
|
|
|
|
static uint32_t last_time;
|
|
|
|
float dT = (PIOS_DELAY_DiffuS(last_time) / 1e6);
|
|
if(dT < 1e-3)
|
|
dT = 2e-3;
|
|
last_time = PIOS_DELAY_GetRaw();
|
|
|
|
ActuatorDesiredData actuatorDesired;
|
|
ActuatorDesiredGet(&actuatorDesired);
|
|
rpy[0] = actuatorDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
|
|
rpy[1] = actuatorDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
|
|
rpy[2] = actuatorDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
|
|
|
|
GyrosData gyrosData; // Skip get as we set all the fields
|
|
gyrosData.x = rpy[0] + rand_gauss();
|
|
gyrosData.y = rpy[1] + rand_gauss();
|
|
gyrosData.z = rpy[2] + rand_gauss();
|
|
|
|
// Apply bias correction to the gyros
|
|
GyrosBiasData gyrosBias;
|
|
GyrosBiasGet(&gyrosBias);
|
|
gyrosData.x += gyrosBias.x;
|
|
gyrosData.y += gyrosBias.y;
|
|
gyrosData.z += gyrosBias.z;
|
|
GyrosSet(&gyrosData);
|
|
|
|
// Predict the attitude forward in time
|
|
float qdot[4];
|
|
qdot[0] = (-q[1] * rpy[0] - q[2] * rpy[1] - q[3] * rpy[2]) * dT * M_PI / 180 / 2;
|
|
qdot[1] = (q[0] * rpy[0] - q[3] * rpy[1] + q[2] * rpy[2]) * dT * M_PI / 180 / 2;
|
|
qdot[2] = (q[3] * rpy[0] + q[0] * rpy[1] - q[1] * rpy[2]) * dT * M_PI / 180 / 2;
|
|
qdot[3] = (-q[2] * rpy[0] + q[1] * rpy[1] + q[0] * rpy[2]) * dT * M_PI / 180 / 2;
|
|
|
|
// Take a time step
|
|
q[0] = q[0] + qdot[0];
|
|
q[1] = q[1] + qdot[1];
|
|
q[2] = q[2] + qdot[2];
|
|
q[3] = q[3] + qdot[3];
|
|
|
|
float thrust = actuatorDesired.Throttle * MAX_THRUST;
|
|
if (thrust != thrust)
|
|
thrust = 0;
|
|
|
|
Quaternion2R(q,Rbe);
|
|
ned_accel[0] = thrust * Rbe[0][2];
|
|
ned_accel[1] = thrust * Rbe[1][2];
|
|
ned_accel[2] = thrust * Rbe[2][2];
|
|
ned_accel[2] -= 9.81;
|
|
|
|
// Predict the velocity forward in time
|
|
vel[0] = vel[0] + ned_accel[0] * dT;
|
|
vel[1] = vel[1] + ned_accel[1] * dT;
|
|
vel[2] = vel[2] + ned_accel[2] * dT;
|
|
|
|
// Predict the position forward in time
|
|
pos[0] = pos[0] + vel[0] * dT;
|
|
pos[1] = pos[1] + vel[1] * dT;
|
|
pos[2] = pos[2] + vel[2] * dT;
|
|
|
|
// Transform the accels back in to body frame
|
|
AccelsData accelsData; // Skip get as we set all the fields
|
|
accelsData.x = ned_accel[0] * Rbe[0][0] + ned_accel[1] * Rbe[0][1] + ned_accel[2] * Rbe[0][2];
|
|
accelsData.y = ned_accel[0] * Rbe[1][0] + ned_accel[1] * Rbe[1][1] + ned_accel[2] * Rbe[1][2];
|
|
accelsData.z = ned_accel[0] * Rbe[2][0] + ned_accel[1] * Rbe[2][1] + ned_accel[2] * Rbe[2][2];
|
|
accelsData.temperature = 30;
|
|
AccelsSet(&accelsData);
|
|
|
|
BaroAltitudeData baroAltitude;
|
|
BaroAltitudeGet(&baroAltitude);
|
|
baroAltitude.Altitude = pos[2];
|
|
BaroAltitudeSet(&baroAltitude);
|
|
|
|
HomeLocationData homeLocation;
|
|
HomeLocationGet(&homeLocation);
|
|
T[0] = homeLocation.Altitude+6.378137E6f;
|
|
T[1] = cosf(homeLocation.Latitude / 10e6)*(homeLocation.Altitude+6.378137E6f);
|
|
T[2] = -1.0f;
|
|
|
|
GPSPositionData gpsPosition;
|
|
GPSPositionGet(&gpsPosition);
|
|
gpsPosition.Latitude = homeLocation.Latitude + pos[0] / T[0];
|
|
gpsPosition.Longitude = homeLocation.Longitude + pos[1] / T[1];
|
|
gpsPosition.Altitude = homeLocation.Altitude + pos[2] / T[2];
|
|
GPSPositionSet(&gpsPosition);
|
|
|
|
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
|
|
// and make it average zero (weakly)
|
|
MagnetometerData mag;
|
|
mag.x = 400;
|
|
mag.y = 0;
|
|
mag.z = 800;
|
|
MagnetometerSet(&mag);
|
|
}
|
|
|
|
|
|
static float rand_gauss (void) {
|
|
float v1,v2,s;
|
|
|
|
do {
|
|
v1 = 2.0 * ((float) rand()/RAND_MAX) - 1;
|
|
v2 = 2.0 * ((float) rand()/RAND_MAX) - 1;
|
|
|
|
s = v1*v1 + v2*v2;
|
|
} while ( s >= 1.0 );
|
|
|
|
if (s == 0.0)
|
|
return 0.0;
|
|
else
|
|
return (v1*sqrt(-2.0 * log(s) / s));
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
* @}
|
|
*/
|