1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-02-14 04:54:15 +01:00

358 lines
13 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup UAVOFrSKYSPortBridge UAVO to FrSKY S.PORT Bridge Module
* @{
*
* @file uavofrskysportbridge.c
* @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2017-2019
* Tau Labs, http://taulabs.org, Copyright (C) 2014
* @brief Bridges selected UAVObjects to FrSKY Smart Port bus
*
* Since there is no public documentation of SmartPort protocol available,
* this was put together by studying OpenTx source code, reading
* tidbits of informations on the Internet and experimenting.
* @see https://github.com/opentx/opentx/tree/next/radio/src/telemetry
* @see https://code.google.com/p/telemetry-convert/wiki/FrSkySPortProtocol
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "frsky_packing.h"
#include "pios_board_io.h"
#include "barosensor.h"
#include "flightbatterysettings.h"
#include "flightbatterystate.h"
#include "gpspositionsensor.h"
#include "frskysporttelemetrysettings.h"
#include "hwsettings.h"
#include "taskinfo.h"
#define FRSKY_POLL_REQUEST 0x7e
#define FRSKY_MINIMUM_POLL_INTERVAL 10000
enum frsky_state {
FRSKY_STATE_WAIT_POLL_REQUEST,
FRSKY_STATE_WAIT_SENSOR_ID,
FRSKY_STATE_WAIT_TX_DONE,
};
// Set of objects sent by this module
static const struct frsky_value_item frsky_value_items[] = {
{ FRSKY_GPS_COURSE_ID, 100, frsky_encode_gps_course, 0 }, // attitude yaw estimate
{ FRSKY_ALT_ID, 100, frsky_encode_altitude, 0 }, // altitude estimate
{ FRSKY_VARIO_ID, 100, frsky_encode_vario, 0 }, // vertical speed
{ FRSKY_CURR_ID, 300, frsky_encode_current, 0 }, // battery current
{ FRSKY_CELLS_ID, 850, frsky_encode_cells, 0 }, // battery cells 1-2
{ FRSKY_CELLS_ID, 850, frsky_encode_cells, 1 }, // battery cells 3-4
{ FRSKY_CELLS_ID, 850, frsky_encode_cells, 2 }, // battery cells 5-6
{ FRSKY_CELLS_ID, 850, frsky_encode_cells, 3 }, // battery cells 7-8
{ FRSKY_CELLS_ID, 850, frsky_encode_cells, 4 }, // battery cells 9-10
{ FRSKY_CELLS_ID, 850, frsky_encode_cells, 5 }, // battery cells 11-12
{ FRSKY_T1_ID, 2000, frsky_encode_t1, 0 }, // baro temperature
{ FRSKY_T2_ID, 1500, frsky_encode_t2, 0 }, // encodes GPS status!
{ FRSKY_FUEL_ID, 600, frsky_encode_fuel, 0 }, // consumed battery energy
{ FRSKY_ACCX_ID, 100, frsky_encode_acc, 0 }, // accX
{ FRSKY_ACCY_ID, 100, frsky_encode_acc, 1 }, // accY
{ FRSKY_ACCZ_ID, 100, frsky_encode_acc, 2 }, // accZ
{ FRSKY_GPS_LON_LAT_ID, 100, frsky_encode_gps_coord, 0 }, // lattitude
{ FRSKY_GPS_LON_LAT_ID, 100, frsky_encode_gps_coord, 1 }, // longitude
{ FRSKY_GPS_ALT_ID, 750, frsky_encode_gps_alt, 0 }, // gps altitude
{ FRSKY_GPS_SPEED_ID, 200, frsky_encode_gps_speed, 0 }, // gps speed
{ FRSKY_GPS_TIME_ID, 8000, frsky_encode_gps_time, 0 }, // gps date
{ FRSKY_GPS_TIME_ID, 2000, frsky_encode_gps_time, 1 }, // gps time
{ FRSKY_RPM_ID, 1500, frsky_encode_rpm, 0 }, // encodes flight status!
{ FRSKY_AIR_SPEED_ID, 100, frsky_encode_airspeed, 0 }, // airspeed
};
struct frsky_sport_telemetry {
enum frsky_state state;
int32_t scheduled_item;
uint32_t last_poll_time;
uintptr_t com;
bool ignore_echo;
uint8_t ignore_rx_chars;
struct frsky_settings frsky_settings;
uint16_t schedule_nr;
uint32_t item_last_triggered[NELEMENTS(frsky_value_items)];
uint16_t item_schedule_nr[NELEMENTS(frsky_value_items)];
};
static const uint8_t frsky_sensor_ids[] = { 0x1b };
#define FRSKY_SPORT_BAUDRATE 57600
#if defined(PIOS_FRSKY_SPORT_TELEMETRY_STACK_SIZE)
#define STACK_SIZE_BYTES PIOS_FRSKY_SPORT_TELEMETRY_STACK_SIZE
#else
#define STACK_SIZE_BYTES 672
#endif
#define TASK_PRIORITY (tskIDLE_PRIORITY)
static struct frsky_sport_telemetry *frsky = 0;
static int32_t uavoFrSKYSPortBridgeInitialize(void);
static void uavoFrSKYSPortBridgeTask(void *parameters);
/**
* Scan for value item with the longest expired time and schedule it to send in next poll turn
*
*/
static void frsky_schedule_next_item(void)
{
frsky->scheduled_item = -1;
for (uint32_t i = 0; i < NELEMENTS(frsky_value_items); i++) {
if (frsky_value_items[i].encode_value(&frsky->frsky_settings, 0, true, frsky_value_items[i].fn_arg)) {
if (frsky->item_schedule_nr[i] == frsky->schedule_nr) {
continue;
}
if (PIOS_DELAY_GetuSSince(frsky->item_last_triggered[i]) > (frsky_value_items[i].period_ms * 1000)) {
frsky->scheduled_item = i;
frsky->item_schedule_nr[i] = frsky->schedule_nr;
break;
}
}
}
if (frsky->scheduled_item < 0) {
frsky->schedule_nr++;
}
}
/**
* Send value item previously scheduled by frsky_schedule_next_itme()
* @returns true when item value was sended
*/
static bool frsky_send_scheduled_item(void)
{
int32_t item = frsky->scheduled_item;
if ((item >= 0) && (item < (int32_t)NELEMENTS(frsky_value_items))) {
frsky->item_last_triggered[item] = PIOS_DELAY_GetuS();
uint32_t value = 0;
if (frsky_value_items[item].encode_value(&frsky->frsky_settings, &value, false,
frsky_value_items[item].fn_arg)) {
frsky->ignore_rx_chars += frsky_send_frame(frsky->com, (uint16_t)(frsky_value_items[item].id), value, false);
return true;
}
}
return false;
}
/**
* Process incoming bytes from FrSky S.PORT bus
* @param[in] b received byte
*/
static void frsky_receive_byte(uint8_t b)
{
uint32_t i = 0;
switch (frsky->state) {
case FRSKY_STATE_WAIT_TX_DONE:
// because RX and TX are connected, we need to ignore bytes
// transmited by us
if (--frsky->ignore_rx_chars == 0) {
frsky->state = FRSKY_STATE_WAIT_POLL_REQUEST;
}
break;
case FRSKY_STATE_WAIT_POLL_REQUEST:
if (b == FRSKY_POLL_REQUEST) {
// X8R is polling us every 13ms
if (PIOS_DELAY_GetuSSince(frsky->last_poll_time) > FRSKY_MINIMUM_POLL_INTERVAL) {
frsky->last_poll_time = PIOS_DELAY_GetuS();
frsky->state = FRSKY_STATE_WAIT_SENSOR_ID;
}
}
break;
case FRSKY_STATE_WAIT_SENSOR_ID:
frsky->state = FRSKY_STATE_WAIT_POLL_REQUEST;
for (i = 0; i < sizeof(frsky_sensor_ids); i++) {
if (frsky_sensor_ids[i] == b) {
// get GPSPositionData once here to be more efficient, since
// GPS position data are very often used by encode() handlers
if (GPSPositionSensorHandle() != NULL) {
GPSPositionSensorGet(&frsky->frsky_settings.gps_position);
}
// send item previously scheduled
frsky_send_scheduled_item();
if (frsky->ignore_echo && frsky->ignore_rx_chars) {
frsky->state = FRSKY_STATE_WAIT_TX_DONE;
}
// schedule item for next poll turn
frsky_schedule_next_item();
break;
}
}
break;
}
}
/**
* Module start routine automatically called after initialization routine
* @return 0 when was successful
*/
static int32_t uavoFrSKYSPortBridgeStart(void)
{
if (!frsky) {
return -1;
}
if (FlightBatterySettingsHandle() != NULL
&& FlightBatteryStateHandle() != NULL) {
// TODO: maybe get this setting from somewhere else?
// uint8_t currentPin;
// FlightBatterySettingsCurrentPinGet(&currentPin);
// if (currentPin != FLIGHTBATTERYSETTINGS_CURRENTPIN_NONE)
frsky->frsky_settings.use_current_sensor = true;
FlightBatterySettingsGet(&frsky->frsky_settings.battery_settings);
frsky->frsky_settings.batt_cell_count = frsky->frsky_settings.battery_settings.NbCells;
}
// This is just to check if barometer is enabled.
// if (BaroSensorHandle() != NULL
// && PIOS_SENSORS_GetQueue(PIOS_SENSOR_BARO) != NULL)
frsky->frsky_settings.use_baro_sensor = true;
xTaskHandle task;
xTaskCreate(uavoFrSKYSPortBridgeTask, "FrSky SPort Telemetry", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &task);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_FRSKYSPORTTELEMETRY, task);
return 0;
}
static void FrSKYSPortTelemetrySettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
FrSKYSPortTelemetrySettingsData settings;
FrSKYSPortTelemetrySettingsGet(&settings);
}
/**
* Module initialization routine
* @return 0 when initialization was successful
*/
static int32_t uavoFrSKYSPortBridgeInitialize(void)
{
FrSKYSPortTelemetrySettingsInitialize();
if (PIOS_COM_FRSKY_SPORT) {
frsky = pios_malloc(sizeof(struct frsky_sport_telemetry));
if (frsky != NULL) {
memset(frsky, 0x00, sizeof(struct frsky_sport_telemetry));
frsky->frsky_settings.use_current_sensor = false;
frsky->frsky_settings.batt_cell_count = 0;
frsky->frsky_settings.use_baro_sensor = false;
frsky->state = FRSKY_STATE_WAIT_POLL_REQUEST;
frsky->last_poll_time = PIOS_DELAY_GetuS();
frsky->scheduled_item = -1;
frsky->com = PIOS_COM_FRSKY_SPORT;
frsky->ignore_echo = true; // This has to be true when RX & TX hw serial lines are connected. Otherwise false. (enforced below by setting half duplex. this makes internal connection between rx and tx
// connect TX pin of flight controller to UNINVERTED SPort
// (F4 based controllers do not have TX inversion capability.
// Use external inverter or solder to uninverted receiver pin)
// TODO: Add code/PIOS driver to enable inversion for F3 based convertes
// TODO: implement FPORT driver
frsky->schedule_nr = 1;
uint8_t i;
for (i = 0; i < NELEMENTS(frsky_value_items); i++) {
frsky->item_last_triggered[i] = PIOS_DELAY_GetuS();
}
// Set Port options:
// BAUD rate
PIOS_COM_ChangeBaud(frsky->com, FRSKY_SPORT_BAUDRATE);
HwSettingsSPortModeOptions options;
HwSettingsSPortModeGet(&options);
bool halfduplex;
enum PIOS_USART_Inverted inverted;
switch (options) {
case HWSETTINGS_SPORTMODE_HALFDUPLEXNONINVERTED:
halfduplex = true;
inverted = PIOS_USART_Inverted_None;
break;
case HWSETTINGS_SPORTMODE_HALFDUPLEXINVERTED:
halfduplex = true;
inverted = PIOS_USART_Inverted_RxTx;
break;
case HWSETTINGS_SPORTMODE_FULLDUPLEXNONINVERTED:
halfduplex = false;
inverted = PIOS_USART_Inverted_None;
break;
case HWSETTINGS_SPORTMODE_FULLDUPLEXINVERTED:
halfduplex = false;
inverted = PIOS_USART_Inverted_RxTx;
break;
}
// Port Inversion (Not available on STM32F4, will have no effect)
PIOS_COM_Ioctl(frsky->com, PIOS_IOCTL_USART_SET_INVERTED, &inverted);
// HalfDplex mode (Not available on STM32F0, will have no effect)
PIOS_COM_Ioctl(frsky->com, PIOS_IOCTL_USART_SET_HALFDUPLEX, &halfduplex);
FrSKYSPortTelemetrySettingsConnectCallback(FrSKYSPortTelemetrySettingsUpdatedCb);
FrSKYSPortTelemetrySettingsUpdatedCb(0);
return 0;
}
}
return -1;
}
MODULE_INITCALL(uavoFrSKYSPortBridgeInitialize, uavoFrSKYSPortBridgeStart);
/**
* Main task routine
* @param[in] parameters parameter given by PIOS_Thread_Create()
*/
static void uavoFrSKYSPortBridgeTask(__attribute__((unused)) void *parameters)
{
while (1) {
uint8_t b = 0;
uint16_t count = PIOS_COM_ReceiveBuffer(frsky->com, &b, 1, 0xffffffff);
if (count) {
frsky_receive_byte(b);
}
}
}
/**
* @}
* @}
*/