1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-29 07:24:13 +01:00
LibrePilot/flight/libraries/frsky_packing.c
2019-07-06 20:14:45 +02:00

674 lines
20 KiB
C

/**
******************************************************************************
*
* @file frsky_packing.c
* @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2017-2019
* Tau Labs, http://taulabs.org, Copyright (C) 2015
* @brief Packs UAVObjects into FrSKY Smart Port frames
*
* Since there is no public documentation of SmartPort protocol available,
* this was put together by studying OpenTx source code, reading
* tidbits of informations on the Internet and experimenting.
* @see https://github.com/opentx/opentx/tree/next/radio/src/telemetry
* @see https://code.google.com/p/telemetry-convert/wiki/FrSkySPortProtocol
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "frsky_packing.h"
#include "frskysporttelemetrysettings.h"
#include "attitudestate.h"
#include "barosensor.h"
#include "positionstate.h"
#include "velocitystate.h"
#include "flightbatterystate.h"
#include "flightbatterysettings.h"
#include "gpstime.h"
#include "homelocation.h"
#include "accelstate.h"
#include "flightstatus.h"
#include "airspeedstate.h"
#include "nedaccel.h"
#define GRAVITY 9.805f // [m/s^2]
#define KNOTS2M_PER_SECOND 0.514444444f
/**
* Encode baro altitude value
* @param[out] value encoded value
* @param[in] test_presence_only true when function should only test for availability of this value
* @param[in] arg argument specified in frsky_value_items[]
* @returns true when value succesfully encoded or presence test passed
*/
bool frsky_encode_altitude(struct frsky_settings *frsky, uint32_t *value, bool test_presence_only, __attribute__((unused)) uint32_t arg)
{
if (!frsky->use_baro_sensor || (PositionStateHandle() == NULL)) {
return false;
}
if (test_presence_only) {
return true;
}
// instead of encoding baro altitude directly, we will use
// more accurate estimation in PositionState UAVO
float down = 0;
PositionStateDownGet(&down);
int32_t alt = (int32_t)(-down * 100.0f);
*value = (uint32_t)alt;
return true;
}
/**
* Encode heading value
* @param[out] value encoded value
* @param[in] test_presence_only true when function should only test for availability of this value
* @param[in] arg argument specified in frsky_value_items[]
* @returns true when value succesfully encoded or presence test passed
*/
bool frsky_encode_gps_course(__attribute__((unused)) struct frsky_settings *frsky, uint32_t *value, bool test_presence_only, __attribute__((unused)) uint32_t arg)
{
if (AttitudeStateHandle() == NULL) {
return false;
}
if (test_presence_only) {
return true;
}
AttitudeStateData attitude;
AttitudeStateGet(&attitude);
float hdg = (attitude.Yaw >= 0) ? attitude.Yaw : (attitude.Yaw + 360.0f);
*value = (uint32_t)(hdg * 100.0f);
return true;
}
/**
* Encode vertical speed value
* @param[out] value encoded value
* @param[in] test_presence_only true when function should only test for availability of this value
* @param[in] arg argument specified in frsky_value_items[]
* @returns true when value succesfully encoded or presence test passed
*/
bool frsky_encode_vario(struct frsky_settings *frsky, uint32_t *value, bool test_presence_only, __attribute__((unused)) uint32_t arg)
{
if (!frsky->use_baro_sensor || VelocityStateHandle() == NULL) {
return false;
}
if (test_presence_only) {
return true;
}
float down = 0;
VelocityStateDownGet(&down);
int32_t vspeed = (int32_t)(-down * 100.0f);
*value = (uint32_t)vspeed;
return true;
}
/**
* Encode battery current value
* @param[out] value encoded value
* @param[in] test_presence_only true when function should only test for availability of this value
* @param[in] arg argument specified in frsky_value_items[]
* @returns true when value succesfully encoded or presence test passed
*/
bool frsky_encode_current(struct frsky_settings *frsky, uint32_t *value, bool test_presence_only, __attribute__((unused)) uint32_t arg)
{
if (!frsky->use_current_sensor) {
return false;
}
if (test_presence_only) {
return true;
}
float current = 0;
FlightBatteryStateCurrentGet(&current);
int32_t current_frsky = (int32_t)(current * 10.0f);
*value = (uint32_t)current_frsky;
return true;
}
/**
* Encode battery cells voltage
* @param[out] value encoded value
* @param[in] test_presence_only true when function should only test for availability of this value
* @param[in] arg argument specified in frsky_value_items[], index of battery cell pair
* @returns true when value succesfully encoded or presence test passed
*/
bool frsky_encode_cells(struct frsky_settings *frsky, uint32_t *value, bool test_presence_only, uint32_t arg)
{
if ((frsky->batt_cell_count == 0) || (frsky->batt_cell_count - 1) < (int)(arg * 2)) {
return false;
}
if (test_presence_only) {
return true;
}
float voltage = 0;
FlightBatteryStateVoltageGet(&voltage);
uint32_t cell_voltage = (uint32_t)((voltage * 500.0f) / frsky->batt_cell_count);
*value = ((cell_voltage & 0xfff) << 8) | ((arg * 2) & 0x0f) | ((frsky->batt_cell_count << 4) & 0xf0);
if (((int16_t)frsky->batt_cell_count - 1) >= (int)(arg * 2 + 1)) {
*value |= ((cell_voltage & 0xfff) << 20);
}
return true;
}
/**
* Encode GPS status as T1 value
* Right-most two digits means visible satellite count, left-most digit has following meaning:
* 1 - no GPS connected
* 2 - no fix
* 3 - 2D fix
* 4 - 3D fix
* 5 - 3D fix and HomeLocation is SET - should be safe for navigation
* @param[out] value encoded value
* @param[in] test_presence_only true when function should only test for availability of this value
* @param[in] arg argument specified in frsky_value_items[]
* @returns true when value successfully encoded or presence test passed
*/
bool frsky_encode_t1(struct frsky_settings *frsky, uint32_t *value, bool test_presence_only, __attribute__((unused)) uint32_t arg)
{
if (GPSPositionSensorHandle() == NULL) {
return false;
}
if (test_presence_only) {
return true;
}
uint8_t hl_set = HOMELOCATION_SET_FALSE;
if (HomeLocationHandle()) {
HomeLocationSetGet(&hl_set);
}
int32_t t1 = 0;
switch (frsky->gps_position.Status) {
case GPSPOSITIONSENSOR_STATUS_NOGPS:
t1 = 100;
break;
case GPSPOSITIONSENSOR_STATUS_NOFIX:
t1 = 200;
break;
case GPSPOSITIONSENSOR_STATUS_FIX2D:
t1 = 300;
break;
case GPSPOSITIONSENSOR_STATUS_FIX3D:
case GPSPOSITIONSENSOR_STATUS_FIX3DDGNSS:
if (hl_set == HOMELOCATION_SET_TRUE) {
t1 = 500;
} else {
t1 = 400;
}
break;
}
if (frsky->gps_position.Satellites > 0) {
t1 += frsky->gps_position.Satellites;
}
*value = (uint32_t)t1;
return true;
}
/**
* Encode GPS hDop and vDop as T2
* Bits 0-7 = hDop * 100, max 255 (hDop = 2.55)
* Bits 8-15 = vDop * 100, max 255 (vDop = 2.55)
* @param[out] value encoded value
* @param[in] test_presence_only true when function should only test for availability of this value
* @param[in] arg argument specified in frsky_value_items[]
* @returns true when value successfully encoded or presence test passed
*/
bool frsky_encode_t2(struct frsky_settings *frsky, uint32_t *value, bool test_presence_only, __attribute__((unused)) uint32_t arg)
{
if (GPSPositionSensorHandle() == NULL) {
return false;
}
if (test_presence_only) {
return true;
}
uint32_t hdop = (uint32_t)(frsky->gps_position.HDOP * 100.0f);
if (hdop > 255) {
hdop = 255;
}
uint32_t vdop = (uint32_t)(frsky->gps_position.VDOP * 100.0f);
if (vdop > 255) {
vdop = 255;
}
*value = 256 * vdop + hdop;
return true;
}
/**
* Encode consumed battery energy as fuel
* @param[out] value encoded value
* @param[in] test_presence_only true when function should only test for availability of this value
* @param[in] arg argument specified in frsky_value_items[]
* @returns true when value succesfully encoded or presence test passed
*/
bool frsky_encode_fuel(__attribute__((unused)) struct frsky_settings *frsky, uint32_t *value, bool test_presence_only, __attribute__((unused)) uint32_t arg)
{
if (!frsky->use_current_sensor) {
return false;
}
if (test_presence_only) {
return true;
}
uint32_t capacity = frsky->battery_settings.Capacity;
float consumed_mahs = 0;
FlightBatteryStateConsumedEnergyGet(&consumed_mahs);
float fuel = (uint32_t)(100.0f * (1.0f - consumed_mahs / capacity));
fuel = boundf(fuel, 0.0f, 100.0f);
*value = (uint32_t)fuel;
return true;
}
/**
* Encode configured values
* @param[out] value encoded value
* @param[in] test_presence_only true when function should only test for availability of this value
* @param[in] arg argument specified in frsky_value_items[]; 0=X, 1=Y, 2=Z
* @returns true when value succesfully encoded or presence test passed
*/
bool frsky_encode_acc(__attribute__((unused)) struct frsky_settings *frsky, uint32_t *value, bool test_presence_only, uint32_t arg)
{
uint8_t accelDataSettings;
FrSKYSPortTelemetrySettingsAccelDataGet(&accelDataSettings);
float acc = 0;
switch (accelDataSettings) {
case FRSKYSPORTTELEMETRYSETTINGS_ACCELDATA_ACCELS:
{
if (AccelStateHandle() == NULL) {
return false;
} else if (test_presence_only) {
return true;
}
switch (arg) {
case 0:
AccelStatexGet(&acc);
break;
case 1:
AccelStateyGet(&acc);
break;
case 2:
AccelStatezGet(&acc);
break;
}
acc /= GRAVITY;
acc *= 100.0f;
break;
}
case FRSKYSPORTTELEMETRYSETTINGS_ACCELDATA_NEDACCELS:
{
if (NedAccelHandle() == NULL) {
return false;
} else if (test_presence_only) {
return true;
}
switch (arg) {
case 0:
NedAccelNorthGet(&acc);
break;
case 1:
NedAccelEastGet(&acc);
break;
case 2:
NedAccelDownGet(&acc);
break;
}
acc /= GRAVITY;
acc *= 100.0f;
break;
}
case FRSKYSPORTTELEMETRYSETTINGS_ACCELDATA_NEDVELOCITY:
{
if (VelocityStateHandle() == NULL) {
return false;
} else if (test_presence_only) {
return true;
}
switch (arg) {
case 0:
VelocityStateNorthGet(&acc);
break;
case 1:
VelocityStateEastGet(&acc);
break;
case 2:
VelocityStateDownGet(&acc);
break;
}
acc *= 100.0f;
break;
}
case FRSKYSPORTTELEMETRYSETTINGS_ACCELDATA_ATTITUDEANGLES:
{
if (AttitudeStateHandle() == NULL) {
return false;
} else if (test_presence_only) {
return true;
}
switch (arg) {
case 0:
AttitudeStateRollGet(&acc);
break;
case 1:
AttitudeStatePitchGet(&acc);
break;
case 2:
AttitudeStateYawGet(&acc);
break;
}
acc *= 100.0f;
break;
}
}
int32_t frsky_acc = (int32_t)acc;
*value = (uint32_t)frsky_acc;
return true;
}
/**
* Encode gps coordinates
* @param[out] value encoded value
* @param[in] test_presence_only true when function should only test for availability of this value
* @param[in] arg argument specified in frsky_value_items[]; 0=lattitude, 1=longitude
* @returns true when value succesfully encoded or presence test passed
*/
bool frsky_encode_gps_coord(struct frsky_settings *frsky, uint32_t *value, bool test_presence_only, uint32_t arg)
{
if (GPSPositionSensorHandle() == NULL) {
return false;
}
if (frsky->gps_position.Status == GPSPOSITIONSENSOR_STATUS_NOFIX
|| frsky->gps_position.Status == GPSPOSITIONSENSOR_STATUS_NOGPS) {
return false;
}
if (test_presence_only) {
return true;
}
uint32_t frsky_coord = 0;
int32_t coord = 0;
if (arg == 0) {
// lattitude
coord = frsky->gps_position.Latitude;
if (coord >= 0) {
frsky_coord = 0;
} else {
frsky_coord = 1 << 30;
}
} else {
// longitude
coord = frsky->gps_position.Longitude;
if (coord >= 0) {
frsky_coord = 2 << 30;
} else {
frsky_coord = 3 << 30;
}
}
coord = abs(coord);
frsky_coord |= (((uint64_t)coord * 6ull) / 100);
*value = frsky_coord;
return true;
}
/**
* Encode gps altitude
* @param[out] value encoded value
* @param[in] test_presence_only true when function should only test for availability of this value
* @param[in] arg argument specified in frsky_value_items[]
* @returns true when value succesfully encoded or presence test passed
*/
bool frsky_encode_gps_alt(struct frsky_settings *frsky, uint32_t *value, bool test_presence_only, __attribute__((unused)) uint32_t arg)
{
if (GPSPositionSensorHandle() == NULL) {
return false;
}
if (frsky->gps_position.Status != GPSPOSITIONSENSOR_STATUS_FIX3D) {
return false;
}
if (test_presence_only) {
return true;
}
int32_t frsky_gps_alt = (int32_t)(frsky->gps_position.Altitude * 100.0f);
*value = (uint32_t)frsky_gps_alt;
return true;
}
/**
* Encode gps speed
* @param[out] value encoded value
* @param[in] test_presence_only true when function should only test for availability of this value
* @param[in] arg argument specified in frsky_value_items[]
* @returns true when value succesfully encoded or presence test passed
*/
bool frsky_encode_gps_speed(struct frsky_settings *frsky, uint32_t *value, bool test_presence_only, __attribute__((unused)) uint32_t arg)
{
if (GPSPositionSensorHandle() == NULL) {
return false;
}
if (frsky->gps_position.Status != GPSPOSITIONSENSOR_STATUS_FIX3D) {
return false;
}
if (test_presence_only) {
return true;
}
int32_t frsky_speed = (int32_t)((frsky->gps_position.Groundspeed / KNOTS2M_PER_SECOND) * 1000);
*value = frsky_speed;
return true;
}
/**
* Encode GPS UTC time
* @param[out] value encoded value
* @param[in] test_presence_only true when function should only test for availability of this value
* @param[in] arg argument specified in frsky_value_items[]; 0=date, 1=time
* @returns true when value succesfully encoded or presence test passed
*/
bool frsky_encode_gps_time(struct frsky_settings *frsky, uint32_t *value, bool test_presence_only, uint32_t arg)
{
if (GPSPositionSensorHandle() == NULL || GPSTimeHandle() == NULL) {
return false;
}
if (frsky->gps_position.Status != GPSPOSITIONSENSOR_STATUS_FIX3D) {
return false;
}
if (test_presence_only) {
return true;
}
GPSTimeData gps_time;
GPSTimeGet(&gps_time);
uint32_t frsky_time = 0;
if (arg == 0) {
// encode date
frsky_time = 0x000000ff;
frsky_time |= gps_time.Day << 8;
frsky_time |= gps_time.Month << 16;
frsky_time |= (gps_time.Year % 100) << 24;
} else {
frsky_time = 0;
frsky_time |= gps_time.Second << 8;
frsky_time |= gps_time.Minute << 16;
frsky_time |= gps_time.Hour << 24;
}
*value = frsky_time;
return true;
}
/**
* Encodes ARM status and flight mode number as RPM value
* Since there is no RPM information in any UAVO available,
* we will intentionaly misuse this item to encode another useful information.
* It will encode flight status as three-digit number as follow:
* most left digit encodes arm status (1=armed, 0=disarmed)
* two most right digits encodes flight mode number (see FlightStatus UAVO FlightMode enum)
* To work this propperly on Taranis, you have to set Blades to "1" in telemetry setting
* @param[out] value encoded value
* @param[in] test_presence_only true when function should only test for availability of this value
* @param[in] arg argument specified in frsky_value_items[]
* @returns true when value succesfully encoded or presence test passed
*/
bool frsky_encode_rpm(__attribute__((unused)) struct frsky_settings *frsky, uint32_t *value, bool test_presence_only, __attribute__((unused)) uint32_t arg)
{
if (FlightStatusHandle() == NULL) {
return false;
}
if (test_presence_only) {
return true;
}
FlightStatusData flight_status;
FlightStatusGet(&flight_status);
*value = (flight_status.Armed == FLIGHTSTATUS_ARMED_ARMED) ? 200 : 100;
*value += flight_status.FlightMode;
return true;
}
/**
* Encode true airspeed(TAS)
* @param[out] value encoded value
* @param[in] test_presence_only true when function should only test for availability of this value
* @param[in] arg argument specified in frsky_value_items[]
* @returns true when value succesfully encoded or presence test passed
*/
bool frsky_encode_airspeed(__attribute__((unused)) struct frsky_settings *frsky, uint32_t *value, bool test_presence_only, __attribute__((unused)) uint32_t arg)
{
if (AirspeedStateHandle() == NULL) {
return false;
}
if (test_presence_only) {
return true;
}
AirspeedStateData airspeed;
AirspeedStateGet(&airspeed);
int32_t frsky_speed = (int32_t)((airspeed.TrueAirspeed / KNOTS2M_PER_SECOND) * 10);
*value = (uint32_t)frsky_speed;
return true;
}
/**
* Performs byte stuffing and checksum calculation
* @param[out] obuff buffer where byte stuffed data will came in
* @param[in,out] chk checksum byte to update
* @param[in] byte
* @returns count of bytes inserted to obuff (1 or 2)
*/
uint8_t frsky_insert_byte(uint8_t *obuff, uint16_t *chk, uint8_t byte)
{
/* checksum calculation is based on data before byte-stuffing */
*chk += byte;
*chk += (*chk) >> 8;
*chk &= 0x00ff;
*chk += (*chk) >> 8;
*chk &= 0x00ff;
if (byte == 0x7e || byte == 0x7d) {
obuff[0] = 0x7d;
obuff[1] = byte &= ~0x20;
return 2;
}
obuff[0] = byte;
return 1;
}
/**
* Send u32 value dataframe to FrSky SmartPort bus
* @param[in] id FrSky value ID
* @param[in] value value
*/
int32_t frsky_send_frame(uintptr_t com, enum frsky_value_id id, uint32_t value,
bool send_prelude)
{
/* each call of frsky_insert_byte can add 2 bytes to the buffer at maximum
* and therefore the worst-case is 17 bytes total (the first byte 0x10 won't be
* escaped) */
uint8_t tx_data[17];
uint16_t chk = 0;
uint8_t cnt = 0;
if (send_prelude) {
tx_data[0] = 0x7e;
tx_data[1] = 0x98;
cnt = 2;
}
cnt += frsky_insert_byte(&tx_data[cnt], &chk, 0x10);
cnt += frsky_insert_byte(&tx_data[cnt], &chk, (uint16_t)id & 0xff);
cnt += frsky_insert_byte(&tx_data[cnt], &chk, ((uint16_t)id >> 8) & 0xff);
cnt += frsky_insert_byte(&tx_data[cnt], &chk, value & 0xff);
cnt += frsky_insert_byte(&tx_data[cnt], &chk, (value >> 8) & 0xff);
cnt += frsky_insert_byte(&tx_data[cnt], &chk, (value >> 16) & 0xff);
cnt += frsky_insert_byte(&tx_data[cnt], &chk, (value >> 24) & 0xff);
cnt += frsky_insert_byte(&tx_data[cnt], &chk, 0xff - chk);
PIOS_COM_SendBuffer(com, tx_data, cnt);
return cnt;
}
/**
* @}
* @}
*/