1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-30 08:24:11 +01:00
LibrePilot/flight/PiOS/STM32F10x/pios_pwm.c
peabody124 da96ce15b9 OP-256 PIOS/PWM: Converting PWM input to use standard driver structure.
Beginning of unifying the input types into PIOS_RECEIVER.

git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2568 ebee16cc-31ac-478f-84a7-5cbb03baadba
2011-01-24 07:51:45 +00:00

341 lines
10 KiB
C

/**
******************************************************************************
* @addtogroup PIOS PIOS Core hardware abstraction layer
* @{
* @addtogroup PIOS_PWM PWM Input Functions
* @brief Code to measure with PWM input
* @{
*
* @file pios_pwm.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief PWM Input functions (STM32 dependent)
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Project Includes */
#include "pios.h"
#include "pios_pwm_priv.h"
#if defined(PIOS_INCLUDE_PWM)
/* Local Variables */
static uint8_t CaptureState[PIOS_PWM_MAX_INPUTS];
static uint16_t RiseValue[PIOS_PWM_MAX_INPUTS];
static uint16_t FallValue[PIOS_PWM_MAX_INPUTS];
static uint32_t CaptureValue[PIOS_PWM_MAX_INPUTS];
//static uint8_t SupervisorState = 0;
static uint32_t CapCounter[PIOS_PWM_MAX_INPUTS];
//static uint32_t CapCounterPrev[MAX_CHANNELS];
/**
* Initialises all the pins
*/
void PIOS_PWM_Init(void)
{
for (uint8_t i = 0; i < pios_pwm_cfg.num_channels; i++) {
/* Flush counter variables */
CaptureState[i] = 0;
RiseValue[i] = 0;
FallValue[i] = 0;
CaptureValue[i] = 0;
NVIC_InitTypeDef NVIC_InitStructure = pios_pwm_cfg.irq.init;
GPIO_InitTypeDef GPIO_InitStructure = pios_pwm_cfg.gpio_init;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure = pios_pwm_cfg.tim_base_init;
TIM_ICInitTypeDef TIM_ICInitStructure = pios_pwm_cfg.tim_ic_init;
struct pios_pwm_channel channel = pios_pwm_cfg.channels[i];
/* Enable appropriate clock to timer module */
switch((int32_t) channel.timer) {
case (int32_t)TIM1:
NVIC_InitStructure.NVIC_IRQChannel = TIM1_CC_IRQn;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
break;
case (int32_t)TIM2:
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
break;
case (int32_t)TIM3:
NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
break;
case (int32_t)TIM4:
NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);
break;
#ifdef STM32F10X_HD
case (int32_t)TIM5:
NVIC_InitStructure.NVIC_IRQChannel = TIM5_IRQn;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5, ENABLE);
break;
case (int32_t)TIM6:
NVIC_InitStructure.NVIC_IRQChannel = TIM6_IRQn;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE);
break;
case (int32_t)TIM7:
NVIC_InitStructure.NVIC_IRQChannel = TIM7_IRQn;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM7, ENABLE);
break;
case (int32_t)TIM8:
NVIC_InitStructure.NVIC_IRQChannel = TIM8_CC_IRQn;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM8, ENABLE);
break;
#endif
}
NVIC_Init(&NVIC_InitStructure);
/* Enable GPIO */
GPIO_InitStructure.GPIO_Pin = channel.pin;
GPIO_Init(channel.port, &GPIO_InitStructure);
/* Configure timer for input capture */
TIM_ICInitStructure.TIM_Channel = channel.channel;
TIM_ICInit(channel.timer, &TIM_ICInitStructure);
/* Configure timer clocks */
TIM_InternalClockConfig(channel.timer);
if(channel.timer->PSC != ((PIOS_MASTER_CLOCK / 1000000) - 1))
TIM_TimeBaseInit(channel.timer, &TIM_TimeBaseStructure);
/* Enable the Capture Compare Interrupt Request */
TIM_ITConfig(channel.timer, channel.ccr, ENABLE);
/* Enable timers */
TIM_Cmd(channel.timer, ENABLE);
}
if(pios_pwm_cfg.remap) {
/* Warning, I don't think this will work for multiple remaps at once */
GPIO_PinRemapConfig(pios_pwm_cfg.remap, ENABLE);
}
#if 0
/* Supervisor Setup */
#if (PIOS_PWM_SUPV_ENABLED)
/* Flush counter variables */
for (i = 0; i < PIOS_PWM_NUM_INPUTS; i++) {
CapCounter[i] = 0;
}
for (i = 0; i < PIOS_PWM_NUM_INPUTS; i++) {
CapCounterPrev[i] = 0;
}
/* Enable timer clock */
PIOS_PWM_SUPV_TIMER_RCC_FUNC;
/* Configure interrupts */
NVIC_InitStructure.NVIC_IRQChannel = PIOS_PWM_SUPV_IRQ_CHANNEL;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = PIOS_IRQ_PRIO_MID;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Time base configuration */
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Period = ((1000000 / PIOS_PWM_SUPV_HZ) - 1);
TIM_TimeBaseStructure.TIM_Prescaler = (PIOS_MASTER_CLOCK / 1000000) - 1; /* For 1 uS accuracy */
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(PIOS_PWM_SUPV_TIMER, &TIM_TimeBaseStructure);
/* Enable the CC2 Interrupt Request */
TIM_ITConfig(PIOS_PWM_SUPV_TIMER, TIM_IT_Update, ENABLE);
/* Clear update pending flag */
TIM_ClearFlag(TIM2, TIM_FLAG_Update);
/* Enable counter */
TIM_Cmd(PIOS_PWM_SUPV_TIMER, ENABLE);
#endif
/* Setup local variable which stays in this scope */
/* Doing this here and using a local variable saves doing it in the ISR */
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0;
#endif
}
/**
* Get the value of an input channel
* \param[in] Channel Number of the channel desired
* \output -1 Channel not available
* \output >0 Channel value
*/
int32_t PIOS_PWM_Get(int8_t Channel)
{
/* Return error if channel not available */
if (Channel >= pios_pwm_cfg.num_channels) {
return -1;
}
return CaptureValue[Channel];
}
void PIOS_PWM_irq_handler(TIM_TypeDef * timer)
{
uint16_t val = 0;
for(uint8_t i = 0; i < pios_pwm_cfg.num_channels; i++) {
struct pios_pwm_channel channel = pios_pwm_cfg.channels[i];
if ((channel.timer == timer) && (TIM_GetITStatus(channel.timer, channel.ccr) == SET)) {
TIM_ClearITPendingBit(channel.timer, channel.ccr);
switch(channel.channel) {
case TIM_Channel_1:
val = TIM_GetCapture1(channel.timer);
break;
case TIM_Channel_2:
val = TIM_GetCapture2(channel.timer);
break;
case TIM_Channel_3:
val = TIM_GetCapture3(channel.timer);
break;
case TIM_Channel_4:
val = TIM_GetCapture4(channel.timer);
break;
}
if (CaptureState[i] == 0) {
RiseValue[i] = val;
} else {
FallValue[i] = val;
}
// flip state machine and capture value here
/* Simple rise or fall state machine */
TIM_ICInitTypeDef TIM_ICInitStructure = pios_pwm_cfg.tim_ic_init;
if (CaptureState[i] == 0) {
/* Switch states */
CaptureState[i] = 1;
/* Switch polarity of input capture */
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Falling;
TIM_ICInitStructure.TIM_Channel = channel.channel;
TIM_ICInit(channel.timer, &TIM_ICInitStructure);
} else {
/* Capture computation */
if (FallValue[i] > RiseValue[i]) {
CaptureValue[i] = (FallValue[i] - RiseValue[i]);
} else {
CaptureValue[i] = ((channel.timer->ARR - RiseValue[i]) + FallValue[i]);
}
/* Switch states */
CaptureState[i] = 0;
/* Increase supervisor counter */
CapCounter[i]++;
/* Switch polarity of input capture */
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_Channel = channel.channel;
TIM_ICInit(channel.timer, &TIM_ICInitStructure);
}
}
}
}
#if 0
/**
* Handle TIM5 global interrupt request
*/
void TIM5_IRQHandler(void)
{
/* Do this as it's more efficient */
if (TIM_GetITStatus(PIOS_PWM_TIM_PORT[2], PIOS_PWM_TIM_CCR[2]) == SET) {
if (CaptureState[2] == 0) {
RiseValue[2] = TIM_GetCapture1(PIOS_PWM_TIM_PORT[2]);
} else {
FallValue[2] = TIM_GetCapture1(PIOS_PWM_TIM_PORT[2]);
}
/* Clear TIM3 Capture compare interrupt pending bit */
TIM_ClearITPendingBit(PIOS_PWM_TIM_PORT[2], PIOS_PWM_TIM_CCR[2]);
/* Simple rise or fall state machine */
if (CaptureState[2] == 0) {
/* Switch states */
CaptureState[2] = 1;
/* Switch polarity of input capture */
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Falling;
TIM_ICInitStructure.TIM_Channel = PIOS_PWM_TIM_CHANNEL[2];
TIM_ICInit(PIOS_PWM_TIM_PORT[2], &TIM_ICInitStructure);
} else {
/* Capture computation */
if (FallValue[2] > RiseValue[2]) {
CaptureValue[2] = (FallValue[2] - RiseValue[2]);
} else {
CaptureValue[2] = ((0xFFFF - RiseValue[2]) + FallValue[2]);
}
/* Switch states */
CaptureState[2] = 0;
/* Increase supervisor counter */
CapCounter[2]++;
/* Switch polarity of input capture */
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_Channel = PIOS_PWM_TIM_CHANNEL[2];
TIM_ICInit(PIOS_PWM_TIM_PORT[2], &TIM_ICInitStructure);
}
}
}
/**
* This function handles TIM3 global interrupt request.
*/
PIOS_PWM_SUPV_IRQ_FUNC {
/* Clear timer interrupt pending bit */
TIM_ClearITPendingBit(PIOS_PWM_SUPV_TIMER, TIM_IT_Update);
/* Simple state machine */
if (SupervisorState == 0) {
/* Save this states values */
for (int32_t i = 0; i < PIOS_PWM_NUM_INPUTS; i++) {
CapCounterPrev[i] = CapCounter[i];
}
/* Move to next state */
SupervisorState = 1;
} else {
/* See what channels have been updated */
for (int32_t i = 0; i < PIOS_PWM_NUM_INPUTS; i++) {
if (CapCounter[i] == CapCounterPrev[i]) {
CaptureValue[i] = 0;
}
}
/* Move to next state */
SupervisorState = 0;
}
}
#endif
#endif
/**
* @}
* @}
*/