mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-12-11 19:24:10 +01:00
1263 lines
40 KiB
C
1263 lines
40 KiB
C
/**
|
|
******************************************************************************
|
|
* @addtogroup AHRS AHRS
|
|
* @brief The AHRS Modules perform
|
|
*
|
|
* @{
|
|
* @addtogroup AHRS_Main
|
|
* @brief Main function which does the hardware dependent stuff
|
|
* @{
|
|
*
|
|
*
|
|
* @file ahrs.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
|
* @brief INSGPS Test Program
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
*****************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/* OpenPilot Includes */
|
|
#include "ahrs.h"
|
|
#include "pios.h"
|
|
#include "ahrs_timer.h"
|
|
#include "ahrs_spi_comm.h"
|
|
#include "insgps.h"
|
|
#include "CoordinateConversions.h"
|
|
#include <stdbool.h>
|
|
#include "fifo_buffer.h"
|
|
|
|
#define DEG_TO_RAD (M_PI / 180.0)
|
|
#define RAD_TO_DEG (180.0 / M_PI)
|
|
|
|
#define INSGPS_GPS_TIMEOUT 2 /* 2 seconds triggers reinit of position */
|
|
#define INSGPS_GPS_MINSAT 6 /* 2 seconds triggers reinit of position */
|
|
#define INSGPS_GPS_MINPDOP 3.5 /* minimum PDOP for postition updates */
|
|
#define INSGPS_MAGLEN 1000
|
|
#define INSGPS_MAGTOL 0.5 /* error in magnetic vector length to use */
|
|
|
|
#define GYRO_OOB(x) ((x > (1000 * DEG_TO_RAD)) || (x < (-1000 * DEG_TO_RAD)))
|
|
#define ACCEL_OOB(x) (((x > 12*9.81) || (x < -12*9.81)))
|
|
#define ISNAN(x) (x != x)
|
|
// down-sampled data index
|
|
#define ACCEL_RAW_X_IDX 2
|
|
#define ACCEL_RAW_Y_IDX 0
|
|
#define ACCEL_RAW_Z_IDX 4
|
|
#define GYRO_RAW_X_IDX 1
|
|
#define GYRO_RAW_Y_IDX 3
|
|
#define GYRO_RAW_Z_IDX 5
|
|
#define GYRO_TEMP_RAW_XY_IDX 6
|
|
#define GYRO_TEMP_RAW_Z_IDX 7
|
|
#define MAG_RAW_X_IDX 1
|
|
#define MAG_RAW_Y_IDX 0
|
|
#define MAG_RAW_Z_IDX 2
|
|
|
|
// For debugging the raw sensors
|
|
//#define DUMP_RAW
|
|
//#define DUMP_EKF
|
|
//#define PIP_DUMP_RAW
|
|
|
|
volatile int8_t ahrs_algorithm;
|
|
|
|
/* INS functions */
|
|
void ins_outdoor_update();
|
|
void ins_indoor_update();
|
|
void simple_update();
|
|
|
|
/* Data accessors */
|
|
void adc_callback(float *);
|
|
bool get_accel_gyro_data();
|
|
void process_mag_data();
|
|
void reset_values();
|
|
void calibrate_sensors(void);
|
|
|
|
/* Communication functions */
|
|
void send_calibration(void);
|
|
void send_attitude(void);
|
|
void send_velocity(void);
|
|
void send_position(void);
|
|
void homelocation_callback(AhrsObjHandle obj);
|
|
void altitude_callback(AhrsObjHandle obj);
|
|
void calibration_callback(AhrsObjHandle obj);
|
|
void gps_callback(AhrsObjHandle obj);
|
|
void settings_callback(AhrsObjHandle obj);
|
|
void affine_rotate(float scale[3][4], float rotation[3]);
|
|
void calibration(float result[3], float scale[3][4], float arg[3]);
|
|
|
|
/* Bootloader related functions and var*/
|
|
void firmwareiapobj_callback(AhrsObjHandle obj);
|
|
volatile uint8_t reset_count=0;
|
|
|
|
/**
|
|
* @addtogroup AHRS_Global_Data AHRS Global Data
|
|
* @{
|
|
* Public data. Used by both EKF and the sender
|
|
*/
|
|
|
|
//! Contains the data from the mag sensor chip
|
|
struct mag_sensor mag_data;
|
|
|
|
//! Contains the data from the accelerometer
|
|
struct accel_sensor accel_data;
|
|
|
|
//! Contains the data from the gyro
|
|
struct gyro_sensor gyro_data;
|
|
|
|
//! Conains the current estimate of the attitude
|
|
struct attitude_solution attitude_data;
|
|
|
|
//! Contains data from the altitude sensor
|
|
struct altitude_sensor altitude_data;
|
|
|
|
//! Contains data from the GPS (via the SPI link)
|
|
struct gps_sensor gps_data;
|
|
|
|
//! The oversampling rate, ekf is 2k / this
|
|
uint8_t adc_oversampling = 15;
|
|
|
|
//! Offset correction of barometric alt, to match gps data
|
|
static float baro_offset = 0;
|
|
|
|
static float mag_len = 0;
|
|
|
|
typedef enum { AHRS_IDLE, AHRS_DATA_READY, AHRS_PROCESSING } states;
|
|
volatile int32_t ekf_too_slow;
|
|
volatile int32_t total_conversion_blocks;
|
|
|
|
//! Buffer to allow ADC to run a bit faster than EKF
|
|
t_fifo_buffer adc_fifo_buffer;
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* INS functions */
|
|
|
|
/**
|
|
* @brief Update the EKF when in outdoor mode. The primary difference is using the GPS values.
|
|
*/
|
|
void ins_outdoor_update()
|
|
{
|
|
float gyro[3], accel[3], vel[3];
|
|
static uint32_t last_gps_time = 0;
|
|
uint16_t sensors;
|
|
|
|
// format data for INS algo
|
|
gyro[0] = gyro_data.filtered.x;
|
|
gyro[1] = gyro_data.filtered.y;
|
|
gyro[2] = gyro_data.filtered.z;
|
|
accel[0] = accel_data.filtered.x,
|
|
accel[1] = accel_data.filtered.y,
|
|
accel[2] = accel_data.filtered.z,
|
|
|
|
INSStatePrediction(gyro, accel, 1 / (float)EKF_RATE);
|
|
attitude_data.quaternion.q1 = Nav.q[0];
|
|
attitude_data.quaternion.q2 = Nav.q[1];
|
|
attitude_data.quaternion.q3 = Nav.q[2];
|
|
attitude_data.quaternion.q4 = Nav.q[3];
|
|
send_attitude(); // get message out quickly
|
|
send_velocity();
|
|
send_position();
|
|
INSCovariancePrediction(1 / (float)EKF_RATE);
|
|
|
|
sensors = 0;
|
|
|
|
/*
|
|
* Detect if greater than certain time since last gps update and if so
|
|
* reset EKF to that position since probably drifted too far for safe
|
|
* update
|
|
*/
|
|
uint32_t this_gps_time = timer_count();
|
|
float gps_delay;
|
|
|
|
if (this_gps_time < last_gps_time)
|
|
gps_delay = ((0xFFFF - last_gps_time) - this_gps_time) / timer_rate();
|
|
else
|
|
gps_delay = (this_gps_time - last_gps_time) / timer_rate();
|
|
last_gps_time = this_gps_time;
|
|
|
|
if (gps_data.updated)
|
|
{
|
|
vel[0] = gps_data.groundspeed * cos(gps_data.heading * DEG_TO_RAD);
|
|
vel[1] = gps_data.groundspeed * sin(gps_data.heading * DEG_TO_RAD);
|
|
vel[2] = 0;
|
|
|
|
if(gps_delay > INSGPS_GPS_TIMEOUT)
|
|
INSPosVelReset(gps_data.NED,vel); // position stale, reset
|
|
else {
|
|
sensors |= HORIZ_SENSORS | POS_SENSORS;
|
|
}
|
|
|
|
/*
|
|
* When using gps need to make sure that barometer is brought into NED frame
|
|
* we should try and see if the altitude from the home location is good enough
|
|
* to use for the offset but for now starting with this conservative filter
|
|
*/
|
|
if(fabs(gps_data.NED[2] + (altitude_data.altitude - baro_offset)) > 10) {
|
|
baro_offset = gps_data.NED[2] + altitude_data.altitude;
|
|
} else {
|
|
/* IIR filter with 100 second or so tau to keep them crudely in the same frame */
|
|
baro_offset = baro_offset * 0.999 + (gps_data.NED[2] + altitude_data.altitude) * 0.001;
|
|
}
|
|
gps_data.updated = false;
|
|
} else if (gps_delay > INSGPS_GPS_TIMEOUT) {
|
|
vel[0] = 0;
|
|
vel[1] = 0;
|
|
vel[2] = 0;
|
|
sensors |= VERT_SENSORS | HORIZ_SENSORS;
|
|
}
|
|
|
|
if(mag_data.updated) {
|
|
sensors |= MAG_SENSORS;
|
|
mag_data.updated = false;
|
|
}
|
|
|
|
if(altitude_data.updated) {
|
|
sensors |= BARO_SENSOR;
|
|
altitude_data.updated = false;
|
|
}
|
|
|
|
/*
|
|
* TODO: Need to add a general sanity check for all the inputs to make sure their kosher
|
|
* although probably should occur within INS itself
|
|
*/
|
|
INSCorrection(mag_data.scaled.axis, gps_data.NED, vel, altitude_data.altitude - baro_offset, sensors);
|
|
}
|
|
|
|
/**
|
|
* @brief Update the EKF when in indoor mode
|
|
*/
|
|
void ins_indoor_update()
|
|
{
|
|
float gyro[3], accel[3], vel[3];
|
|
static uint32_t last_indoor_time = 0;
|
|
uint16_t sensors = 0;
|
|
|
|
// format data for INS algo
|
|
gyro[0] = gyro_data.filtered.x;
|
|
gyro[1] = gyro_data.filtered.y;
|
|
gyro[2] = gyro_data.filtered.z;
|
|
accel[0] = accel_data.filtered.x,
|
|
accel[1] = accel_data.filtered.y,
|
|
accel[2] = accel_data.filtered.z,
|
|
|
|
INSStatePrediction(gyro, accel, 1 / (float)EKF_RATE);
|
|
attitude_data.quaternion.q1 = Nav.q[0];
|
|
attitude_data.quaternion.q2 = Nav.q[1];
|
|
attitude_data.quaternion.q3 = Nav.q[2];
|
|
attitude_data.quaternion.q4 = Nav.q[3];
|
|
send_attitude(); // get message out quickly
|
|
send_velocity();
|
|
send_position();
|
|
INSCovariancePrediction(1 / (float)EKF_RATE);
|
|
|
|
/* Indoors, update with zero position and velocity and high covariance */
|
|
vel[0] = 0;
|
|
vel[1] = 0;
|
|
vel[2] = 0;
|
|
|
|
uint32_t this_indoor_time = timer_count();
|
|
float indoor_delay;
|
|
|
|
/*
|
|
* Detect if greater than certain time since last gps update and if so
|
|
* reset EKF to that position since probably drifted too far for safe
|
|
* update
|
|
*/
|
|
if (this_indoor_time < last_indoor_time)
|
|
indoor_delay = ((0xFFFF - last_indoor_time) - this_indoor_time) / timer_rate();
|
|
else
|
|
indoor_delay = (this_indoor_time - last_indoor_time) / timer_rate();
|
|
last_indoor_time = this_indoor_time;
|
|
|
|
if(indoor_delay > INSGPS_GPS_TIMEOUT)
|
|
INSPosVelReset(vel,vel);
|
|
else
|
|
sensors = HORIZ_SENSORS | VERT_SENSORS;
|
|
|
|
if(mag_data.updated && (ahrs_algorithm == AHRSSETTINGS_ALGORITHM_INSGPS_INDOOR)) {
|
|
sensors |= MAG_SENSORS;
|
|
mag_data.updated = false;
|
|
}
|
|
|
|
if(altitude_data.updated) {
|
|
sensors |= BARO_SENSOR;
|
|
altitude_data.updated = false;
|
|
}
|
|
|
|
/*
|
|
* TODO: Need to add a general sanity check for all the inputs to make sure their kosher
|
|
* although probably should occur within INS itself
|
|
*/
|
|
INSCorrection(mag_data.scaled.axis, gps_data.NED, vel, altitude_data.altitude, sensors | HORIZ_SENSORS | VERT_SENSORS);
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the EKF assuming stationary
|
|
*/
|
|
void ins_init_algorithm()
|
|
{
|
|
float Rbe[3][3], q[4], accels[3], rpy[3], mag;
|
|
float ge[3]={0,0,-9.81}, zeros[3]={0,0,0}, Pdiag[16]={25,25,25,5,5,5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-4,1e-4,1e-4};
|
|
bool using_mags, using_gps;
|
|
|
|
INSGPSInit();
|
|
|
|
HomeLocationData home;
|
|
HomeLocationGet(&home);
|
|
|
|
accels[0]=accel_data.filtered.x;
|
|
accels[1]=accel_data.filtered.y;
|
|
accels[2]=accel_data.filtered.z;
|
|
|
|
using_mags = (ahrs_algorithm == AHRSSETTINGS_ALGORITHM_INSGPS_OUTDOOR) || (ahrs_algorithm == AHRSSETTINGS_ALGORITHM_INSGPS_INDOOR);
|
|
using_mags &= (home.Be[0] != 0) || (home.Be[1] != 0) || (home.Be[2] != 0); /* only use mags when valid home location */
|
|
|
|
using_gps = (ahrs_algorithm == AHRSSETTINGS_ALGORITHM_INSGPS_OUTDOOR) && (gps_data.quality != 0);
|
|
|
|
/* Block till a data update */
|
|
get_accel_gyro_data();
|
|
|
|
/* Ensure we get mag data in a timely manner */
|
|
uint16_t fail_count = 50; // 50 at 200 Hz is up to 0.25 sec
|
|
while(using_mags && !mag_data.updated && fail_count--) {
|
|
get_accel_gyro_data();
|
|
AhrsPoll();
|
|
}
|
|
using_mags &= mag_data.updated;
|
|
|
|
if (using_mags) {
|
|
/* Spin waiting for mag data */
|
|
while(!mag_data.updated) {
|
|
get_accel_gyro_data();
|
|
AhrsPoll();
|
|
}
|
|
mag_data.updated = false;
|
|
|
|
RotFrom2Vectors(accels, ge, mag_data.scaled.axis, home.Be, Rbe);
|
|
R2Quaternion(Rbe,q);
|
|
if (using_gps)
|
|
INSSetState(gps_data.NED, zeros, q, zeros, zeros);
|
|
else
|
|
INSSetState(zeros, zeros, q, zeros, zeros);
|
|
} else {
|
|
// assume yaw = 0
|
|
mag = VectorMagnitude(accels);
|
|
rpy[1] = asinf(-accels[0]/mag);
|
|
rpy[0] = atan2(accels[1]/mag,accels[2]/mag);
|
|
rpy[2] = 0;
|
|
RPY2Quaternion(rpy,q);
|
|
if (using_gps)
|
|
INSSetState(gps_data.NED, zeros, q, zeros, zeros);
|
|
else
|
|
INSSetState(zeros, zeros, q, zeros, zeros);
|
|
}
|
|
|
|
INSResetP(Pdiag);
|
|
|
|
// TODO: include initial estimate of gyro bias?
|
|
}
|
|
|
|
/**
|
|
* @brief Simple update using just mag and accel. Yaw biased and big attitude changes.
|
|
*/
|
|
void simple_update() {
|
|
float q[4];
|
|
float rpy[3];
|
|
/***************** SIMPLE ATTITUDE FROM NORTH AND ACCEL ************/
|
|
/* Very simple computation of the heading and attitude from accel. */
|
|
rpy[2] = atan2((mag_data.raw.axis[MAG_RAW_Y_IDX]), (-1 * mag_data.raw.axis[MAG_RAW_X_IDX])) * RAD_TO_DEG;
|
|
rpy[1] = atan2(accel_data.filtered.x, accel_data.filtered.z) * RAD_TO_DEG;
|
|
rpy[0] = atan2(accel_data.filtered.y, accel_data.filtered.z) * RAD_TO_DEG;
|
|
|
|
RPY2Quaternion(rpy, q);
|
|
attitude_data.quaternion.q1 = q[0];
|
|
attitude_data.quaternion.q2 = q[1];
|
|
attitude_data.quaternion.q3 = q[2];
|
|
attitude_data.quaternion.q4 = q[3];
|
|
send_attitude();
|
|
}
|
|
|
|
/**
|
|
* @brief Output all the important inputs and states of the ekf through serial port
|
|
*/
|
|
#ifdef DUMP_EKF
|
|
|
|
extern float **P, *X; // covariance matrix and state vector
|
|
|
|
void print_ekf_binary()
|
|
{
|
|
uint16_t states = ins_get_num_states();
|
|
uint8_t framing[16] = { 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };
|
|
// Dump raw buffer
|
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, &framing[0], 16); // framing header (1:16)
|
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number (17:20)
|
|
|
|
PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *) & accel_data.filtered.x, 4*3); // accel data (21:32)
|
|
PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *) & gyro_data.filtered.x, 4*3); // gyro data (33:44)
|
|
|
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & mag_data.updated, 1); // mag update (45)
|
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & mag_data.scaled.axis, 3*4); // mag data (46:57)
|
|
|
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & gps_data, sizeof(gps_data)); // gps data (58:85)
|
|
|
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & X, 4 * states); // X (86:149)
|
|
for(uint8_t i = 0; i < states; i++)
|
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) &((*P)[i + i * states]), 4); // diag(P) (150:213)
|
|
|
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & altitude_data.altitude, 4); // BaroAlt (214:217)
|
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & baro_offset, 4); // baro_offset (218:221)
|
|
}
|
|
#else
|
|
void print_ekf_binary() {}
|
|
#endif
|
|
|
|
/**
|
|
* @brief Debugging function to output all the ADC samples
|
|
*/
|
|
#if defined(DUMP_RAW)
|
|
void print_ahrs_raw()
|
|
{
|
|
int result;
|
|
static int previous_conversion = 0;
|
|
int16_t * valid_data_buffer;
|
|
|
|
uint8_t framing[16] =
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
15 };
|
|
|
|
get_accel_gyro_data();
|
|
|
|
valid_data_buffer = PIOS_ADC_GetRawBuffer();
|
|
|
|
if (total_conversion_blocks != previous_conversion + 1)
|
|
PIOS_LED_On(LED1); // not keeping up
|
|
else
|
|
PIOS_LED_Off(LED1);
|
|
previous_conversion = total_conversion_blocks;
|
|
|
|
|
|
// Dump raw buffer
|
|
result = PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, &framing[0], 16); // framing header
|
|
result += PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *) & total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number
|
|
result +=
|
|
PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX,
|
|
(uint8_t *) & valid_data_buffer[0],
|
|
adc_oversampling *
|
|
PIOS_ADC_NUM_PINS *
|
|
sizeof(valid_data_buffer[0]));
|
|
if (result == 0)
|
|
PIOS_LED_Off(LED1);
|
|
else {
|
|
PIOS_LED_On(LED1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(PIP_DUMP_RAW)
|
|
|
|
#define MAX_OVERSAMPLING PIOS_ADC_MAX_OVERSAMPLING
|
|
|
|
void print_ahrs_raw()
|
|
{
|
|
int16_t accel_x[MAX_OVERSAMPLING], accel_y[MAX_OVERSAMPLING], accel_z[MAX_OVERSAMPLING];
|
|
int16_t gyro_x[MAX_OVERSAMPLING], gyro_y[MAX_OVERSAMPLING], gyro_z[MAX_OVERSAMPLING];
|
|
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
|
|
int16_t mag[3];
|
|
int16_t mag_x, mag_y, mag_z;
|
|
#endif
|
|
|
|
static int previous_conversion = 0;
|
|
|
|
uint8_t framing[3] = {0xD2, 0x73, 0x00};
|
|
|
|
// wait for new raw samples
|
|
while (previous_conversion == total_conversion_blocks);
|
|
if ((previous_conversion + 1) != total_conversion_blocks)
|
|
PIOS_LED_On(LED1); // we are not keeping up
|
|
previous_conversion = total_conversion_blocks;
|
|
|
|
// fetch the buffer address for the new samples
|
|
int16_t *valid_data_buffer = PIOS_ADC_GetRawBuffer();
|
|
|
|
// fetch number of raw samples in the buffer (per channel)
|
|
int over_sampling = PIOS_ADC_GetOverSampling();
|
|
|
|
framing[2] = over_sampling;
|
|
|
|
// copy the raw samples into their own buffers
|
|
for (uint16_t i = 0, j = 0; i < over_sampling; i++, j += PIOS_ADC_NUM_CHANNELS)
|
|
{
|
|
accel_x[i] = valid_data_buffer[ACCEL_RAW_X_IDX + j];
|
|
accel_y[i] = valid_data_buffer[ACCEL_RAW_Y_IDX + j];
|
|
accel_z[i] = valid_data_buffer[ACCEL_RAW_Z_IDX + j];
|
|
|
|
gyro_x[i] = valid_data_buffer[GYRO_RAW_X_IDX + j];
|
|
gyro_y[i] = valid_data_buffer[GYRO_RAW_Y_IDX + j];
|
|
gyro_z[i] = valid_data_buffer[GYRO_RAW_Z_IDX + j];
|
|
}
|
|
|
|
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
|
|
if (PIOS_HMC5843_NewDataAvailable())
|
|
{
|
|
PIOS_HMC5843_ReadMag(mag);
|
|
|
|
mag_x = mag[MAG_RAW_X_IDX];
|
|
mag_y = mag[MAG_RAW_Y_IDX];
|
|
mag_z = mag[MAG_RAW_Z_IDX];
|
|
}
|
|
#endif
|
|
|
|
// send the raw samples
|
|
int result = PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, framing, sizeof(framing));
|
|
result += PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *)accel_x, over_sampling * sizeof(accel_x[0]));
|
|
result += PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *)accel_y, over_sampling * sizeof(accel_y[0]));
|
|
result += PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *)accel_z, over_sampling * sizeof(accel_z[0]));
|
|
result += PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *)gyro_x, over_sampling * sizeof(gyro_x[0]));
|
|
result += PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *)gyro_y, over_sampling * sizeof(gyro_y[0]));
|
|
result += PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *)gyro_z, over_sampling * sizeof(gyro_z[0]));
|
|
|
|
if (result != 0)
|
|
PIOS_LED_On(LED1); // all data not sent
|
|
else
|
|
PIOS_LED_Off(LED1);
|
|
}
|
|
#endif
|
|
|
|
extern void PIOS_Board_Init(void);
|
|
|
|
/**
|
|
* @brief AHRS Main function
|
|
*/
|
|
int main()
|
|
{
|
|
gps_data.quality = -1;
|
|
uint32_t up_time_real = 0;
|
|
uint32_t up_time = 0;
|
|
uint32_t last_up_time = 0;
|
|
static int8_t last_ahrs_algorithm;
|
|
uint32_t last_counter_idle_start = 0;
|
|
uint32_t last_counter_idle_end = 0;
|
|
uint32_t idle_counts = 0;
|
|
uint32_t running_counts = 0;
|
|
uint32_t counter_val = 0;
|
|
ahrs_algorithm = AHRSSETTINGS_ALGORITHM_SIMPLE;
|
|
|
|
reset_values();
|
|
|
|
PIOS_Board_Init();
|
|
|
|
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
|
|
// Get 3 ID bytes
|
|
strcpy((char *)mag_data.id, "ZZZ");
|
|
PIOS_HMC5843_ReadID(mag_data.id);
|
|
#endif
|
|
|
|
while(!AhrsLinkReady()) {
|
|
AhrsPoll();
|
|
}
|
|
/* we didn't connect the callbacks before because we have to wait
|
|
for all data to be up to date before doing anything*/
|
|
|
|
AHRSCalibrationConnectCallback(calibration_callback);
|
|
GPSPositionConnectCallback(gps_callback);
|
|
BaroAltitudeConnectCallback(altitude_callback);
|
|
AHRSSettingsConnectCallback(settings_callback);
|
|
HomeLocationConnectCallback(homelocation_callback);
|
|
FirmwareIAPObjConnectCallback(firmwareiapobj_callback);
|
|
|
|
calibration_callback(AHRSCalibrationHandle()); //force an update
|
|
|
|
#if defined(DUMP_RAW) || defined(PIP_DUMP_RAW)
|
|
while (1) {
|
|
AhrsPoll();
|
|
print_ahrs_raw();
|
|
}
|
|
#endif
|
|
|
|
timer_start();
|
|
|
|
/******************* Main EKF loop ****************************/
|
|
while(1) {
|
|
|
|
|
|
AhrsPoll();
|
|
AhrsStatusData status;
|
|
AhrsStatusGet(&status);
|
|
status.CPULoad = ((float)running_counts /
|
|
(float)(idle_counts + running_counts)) * 100;
|
|
status.IdleTimePerCyle = idle_counts / (timer_rate() / 10000);
|
|
status.RunningTimePerCyle = running_counts / (timer_rate() / 10000);
|
|
status.DroppedUpdates = ekf_too_slow;
|
|
up_time = timer_count();
|
|
if(up_time >= last_up_time) // normal condition
|
|
up_time_real += ((up_time - last_up_time) * 1000) / timer_rate();
|
|
else
|
|
up_time_real += ((0xFFFF - last_up_time + up_time) * 1000) / timer_rate();
|
|
last_up_time = up_time;
|
|
status.RunningTime = up_time_real;
|
|
AhrsStatusSet(&status);
|
|
|
|
// Alive signal
|
|
if (((total_conversion_blocks % 100) & 0xFFFE) == 0)
|
|
PIOS_LED_Toggle(LED1);
|
|
|
|
// Delay for valid data
|
|
|
|
counter_val = timer_count();
|
|
running_counts = counter_val - last_counter_idle_end;
|
|
last_counter_idle_start = counter_val;
|
|
|
|
// This function blocks till data avilable
|
|
get_accel_gyro_data();
|
|
|
|
// Get any mag data available
|
|
process_mag_data();
|
|
|
|
counter_val = timer_count();
|
|
idle_counts = counter_val - last_counter_idle_start;
|
|
last_counter_idle_end = counter_val;
|
|
|
|
|
|
if(ISNAN(accel_data.filtered.x + accel_data.filtered.y + accel_data.filtered.z) ||
|
|
ISNAN(gyro_data.filtered.x + gyro_data.filtered.y + gyro_data.filtered.z) ||
|
|
ACCEL_OOB(accel_data.filtered.x + accel_data.filtered.y + accel_data.filtered.z) ||
|
|
GYRO_OOB(gyro_data.filtered.x + gyro_data.filtered.y + gyro_data.filtered.z)) {
|
|
// If any values are NaN or huge don't update
|
|
//TODO: add field to ahrs status to track number of these events
|
|
continue;
|
|
}
|
|
|
|
print_ekf_binary();
|
|
|
|
/* If algorithm changed reinit. This could go in callback but wouldn't be synchronous */
|
|
if (ahrs_algorithm != last_ahrs_algorithm)
|
|
ins_init_algorithm();
|
|
last_ahrs_algorithm = ahrs_algorithm;
|
|
|
|
switch(ahrs_algorithm) {
|
|
case AHRSSETTINGS_ALGORITHM_SIMPLE:
|
|
simple_update();
|
|
break;
|
|
case AHRSSETTINGS_ALGORITHM_INSGPS_OUTDOOR:
|
|
ins_outdoor_update();
|
|
break;
|
|
case AHRSSETTINGS_ALGORITHM_INSGPS_INDOOR:
|
|
case AHRSSETTINGS_ALGORITHM_INSGPS_INDOOR_NOMAG:
|
|
ins_indoor_update();
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Get the accel and gyro data from whichever source when available
|
|
*
|
|
* This function will act as the HAL for the new INS sensors
|
|
*/
|
|
bool get_accel_gyro_data()
|
|
{
|
|
float accel[6];
|
|
float gyro[6];
|
|
uint16_t spin_count = 1;
|
|
while(fifoBuf_getUsed(&adc_fifo_buffer) < (sizeof(accel) + sizeof(gyro))) {
|
|
if(spin_count++ == 0)
|
|
AhrsPoll();
|
|
}
|
|
|
|
fifoBuf_getData(&adc_fifo_buffer, &accel[0], sizeof(float) * 3);
|
|
fifoBuf_getData(&adc_fifo_buffer, &gyro[0], sizeof(float) * 3);
|
|
fifoBuf_getData(&adc_fifo_buffer, &accel[3], sizeof(float) * 3);
|
|
fifoBuf_getData(&adc_fifo_buffer, &gyro[3], sizeof(float) * 3);
|
|
|
|
accel_data.filtered.x = (accel[0] + accel[3]) / 2;
|
|
accel_data.filtered.y = (accel[1] + accel[4]) / 2;
|
|
accel_data.filtered.z = (accel[2] + accel[5]) / 2;
|
|
gyro_data.filtered.x = (gyro[0] + gyro[3]) / 2;
|
|
gyro_data.filtered.y = (gyro[1] + gyro[4]) / 2;
|
|
gyro_data.filtered.z = (gyro[2] + gyro[5]) / 2;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* @brief Perform calibration of a 3-axis field sensor using an affine transformation
|
|
* matrix.
|
|
*
|
|
* Computes result = scale * arg.
|
|
*
|
|
* @param result[out] The three-axis resultant field.
|
|
* @param scale[in] The 4x4 affine transformation matrix. The fourth row is implicitly
|
|
* [0 0 0 1]
|
|
* @param arg[in] The 3-axis input field. The 'w' component is implicitly 1.
|
|
*/
|
|
void calibration(float result[3], float scale[3][4], float arg[3])
|
|
{
|
|
for (int row = 0; row < 3; ++row) {
|
|
result[row] = 0.0f;
|
|
int col;
|
|
for (col = 0; col < 3; ++col) {
|
|
result[row] += scale[row][col] * arg[col];
|
|
}
|
|
// fourth column: arg has an implicit w value of 1.0f.
|
|
result[row] += scale[row][col];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Scale an affine transformation matrix by a rotation, defined by a
|
|
* rotation vector. scale <- rotation * scale
|
|
*
|
|
* @param scale[in,out] The affine transformation matrix to be rotated
|
|
* @param rotation[in] The rotation vector defining the rotation
|
|
*/
|
|
void affine_rotate(float scale[3][4], float rotation[3])
|
|
{
|
|
// Rotate the scale factor matrix in-place
|
|
float rmatrix[3][3];
|
|
Rv2Rot(rotation, rmatrix);
|
|
|
|
float ret[3][4];
|
|
for (int row = 0; row < 3; ++row) {
|
|
for (int col = 0; col < 4; ++col) {
|
|
ret[row][col] = 0.0f;
|
|
for (int i = 0; i < 3; ++i) {
|
|
ret[row][col] += rmatrix[row][i] * scale[i][col];
|
|
}
|
|
}
|
|
}
|
|
// copy output to argument
|
|
for (int row = 0; row < 3; ++row) {
|
|
for (int col = 0; col < 4; ++col) {
|
|
scale[row][col] = ret[row][col];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Downsample the analog data
|
|
* @return none
|
|
*
|
|
* Tried to make as much of the filtering fixed point when possible. Need to account
|
|
* for offset for each sample before the multiplication if filter not a boxcar. Could
|
|
* precompute fixed offset as sum[fir_coeffs[i]] * ACCEL_OFFSET. Puts data into global
|
|
* data structures @ref accel_data and @ref gyro_data.
|
|
*
|
|
* The accel_data values are converted into a coordinate system where X is forwards along
|
|
* the fuselage, Y is along right the wing, and Z is down.
|
|
*/
|
|
void adc_callback(float * downsampled_data)
|
|
{
|
|
AHRSSettingsData settings;
|
|
AHRSSettingsGet(&settings);
|
|
|
|
#if 0
|
|
// Get the Y data. Third byte in. Convert to m/s
|
|
float accel_filtered[3];
|
|
accel_filtered[1] = 0;
|
|
for (i = 0; i < adc_oversampling; i++)
|
|
accel_filtered[1] += valid_data_buffer[0 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
|
|
accel_filtered[1] /= (float) fir_coeffs[adc_oversampling];
|
|
// Get the X data which projects forward/backwards. Fifth byte in. Convert to m/s
|
|
accel_filtered[0] = 0;
|
|
for (i = 0; i < adc_oversampling; i++)
|
|
accel_filtered[0] += valid_data_buffer[2 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
|
|
accel_filtered[0] /= (float) fir_coeffs[adc_oversampling];
|
|
|
|
// Get the Z data. Third byte in. Convert to m/s
|
|
accel_filtered[2] = 0;
|
|
for (i = 0; i < adc_oversampling; i++)
|
|
accel_filtered[2] += valid_data_buffer[4 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
|
|
accel_filtered[2] /= (float) fir_coeffs[adc_oversampling];
|
|
|
|
float accel_scaled[3];
|
|
calibration(accel_scaled, accel_data.calibration.scale, accel_filtered);
|
|
accel_data.filtered.x = accel_scaled[0];
|
|
accel_data.filtered.y = accel_scaled[1];
|
|
accel_data.filtered.z = accel_scaled[2];
|
|
#else
|
|
float accel[3], gyro[3];
|
|
|
|
float raw_accel[3] = {
|
|
downsampled_data[ACCEL_RAW_X_IDX],
|
|
downsampled_data[ACCEL_RAW_Y_IDX],
|
|
-downsampled_data[ACCEL_RAW_Z_IDX]
|
|
};
|
|
|
|
// Accel data is (y,x,z) in first third and fifth byte. Convert to m/s^2
|
|
calibration(accel, accel_data.calibration.scale, raw_accel);
|
|
|
|
// Gyro data is (x,y,z) in second, fifth and seventh byte. Convert to rad/s
|
|
gyro[0] = ( ( downsampled_data[GYRO_RAW_X_IDX] + gyro_data.calibration.tempcompfactor[0] * downsampled_data[GYRO_TEMP_RAW_XY_IDX] ) * gyro_data.calibration.scale[0]) + gyro_data.calibration.bias[0];
|
|
gyro[1] = ( ( downsampled_data[GYRO_RAW_Y_IDX] + gyro_data.calibration.tempcompfactor[1] * downsampled_data[GYRO_TEMP_RAW_XY_IDX] ) * gyro_data.calibration.scale[1]) + gyro_data.calibration.bias[1];
|
|
gyro[2] = ( ( downsampled_data[GYRO_RAW_Z_IDX] + gyro_data.calibration.tempcompfactor[2] * downsampled_data[GYRO_TEMP_RAW_Z_IDX] ) * gyro_data.calibration.scale[2]) + gyro_data.calibration.bias[2];
|
|
|
|
#endif
|
|
#if 0
|
|
static float gravity_tracking[3] = {0,0,0};
|
|
const float tau = 0.9999;
|
|
gravity_tracking[0] = tau * gravity_tracking[0] + (1-tau) * accel[0];
|
|
gravity_tracking[1] = tau * gravity_tracking[1] + (1-tau) * accel[1];
|
|
gravity_tracking[2] = tau * gravity_tracking[2] + (1-tau) * (accel[2] + 9.81);
|
|
if(settings.BiasCorrectedRaw == AHRSSETTINGS_BIASCORRECTEDRAW_TRUE) {
|
|
accel[0] -= gravity_tracking[0];
|
|
accel[1] -= gravity_tracking[1];
|
|
accel[2] -= gravity_tracking[2];
|
|
}
|
|
#endif
|
|
if(fifoBuf_getFree(&adc_fifo_buffer) >= (sizeof(accel) + sizeof(gyro))) {
|
|
fifoBuf_putData(&adc_fifo_buffer, (uint8_t *) &accel[0], sizeof(accel));
|
|
fifoBuf_putData(&adc_fifo_buffer, (uint8_t *) &gyro[0], sizeof(gyro));
|
|
} else {
|
|
ekf_too_slow++;
|
|
}
|
|
|
|
AttitudeRawData raw;
|
|
|
|
raw.gyrotemp[0] = downsampled_data[GYRO_TEMP_RAW_XY_IDX];
|
|
raw.gyrotemp[1] = downsampled_data[GYRO_TEMP_RAW_Z_IDX];
|
|
|
|
raw.gyros[0] = gyro[0] * RAD_TO_DEG;
|
|
raw.gyros[1] = gyro[1] * RAD_TO_DEG;
|
|
raw.gyros[2] = gyro[2] * RAD_TO_DEG;
|
|
|
|
raw.accels[0] = accel[0];
|
|
raw.accels[1] = accel[1];
|
|
raw.accels[2] = accel[2];
|
|
|
|
raw.magnetometers[0] = mag_data.scaled.axis[0];
|
|
raw.magnetometers[1] = mag_data.scaled.axis[1];
|
|
raw.magnetometers[2] = mag_data.scaled.axis[2];
|
|
|
|
if (settings.BiasCorrectedRaw == AHRSSETTINGS_BIASCORRECTEDRAW_TRUE)
|
|
{
|
|
raw.gyros[0] -= Nav.gyro_bias[0] * RAD_TO_DEG;
|
|
raw.gyros[1] -= Nav.gyro_bias[1] * RAD_TO_DEG;
|
|
raw.gyros[2] -= Nav.gyro_bias[2] * RAD_TO_DEG;
|
|
|
|
raw.accels[0] -= Nav.accel_bias[0];
|
|
raw.accels[1] -= Nav.accel_bias[1];
|
|
raw.accels[2] -= Nav.accel_bias[2];
|
|
}
|
|
|
|
AttitudeRawSet(&raw);
|
|
|
|
total_conversion_blocks++;
|
|
}
|
|
|
|
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
|
|
/**
|
|
* @brief Get the mag data from the I2C sensor and load into structure
|
|
* @return none
|
|
*
|
|
* This function also considers if the home location is set and has a valid
|
|
* magnetic field before updating the mag data to prevent data being used that
|
|
* cannot be interpreted. In addition the mag data is not used for the first
|
|
* five seconds to allow the filter to start to converge
|
|
*/
|
|
void process_mag_data()
|
|
{
|
|
// Get magnetic readings
|
|
// For now don't use mags until the magnetic field is set AND until 5 seconds
|
|
// after initialization otherwise it seems to have problems
|
|
// TODO: Follow up this initialization issue
|
|
HomeLocationData home;
|
|
HomeLocationGet(&home);
|
|
if (PIOS_HMC5843_NewDataAvailable()) {
|
|
PIOS_HMC5843_ReadMag(mag_data.raw.axis);
|
|
|
|
// Swap the axis here to acount for orientation of mag chip (notice 0 and 1 swapped in raw)
|
|
mag_data.scaled.axis[0] = (mag_data.raw.axis[MAG_RAW_X_IDX] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0];
|
|
mag_data.scaled.axis[1] = (mag_data.raw.axis[MAG_RAW_Y_IDX] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1];
|
|
mag_data.scaled.axis[2] = (mag_data.raw.axis[MAG_RAW_Z_IDX] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
|
|
|
|
// Only use if magnetic length reasonable
|
|
float Blen = sqrt(pow(mag_data.scaled.axis[0],2) + pow(mag_data.scaled.axis[1],2) + pow(mag_data.scaled.axis[2],2));
|
|
|
|
mag_data.updated = (home.Set == HOMELOCATION_SET_TRUE) &&
|
|
((home.Be[0] != 0) || (home.Be[1] != 0) || (home.Be[2] != 0)) &&
|
|
((mag_data.raw.axis[MAG_RAW_X_IDX] != 0) || (mag_data.raw.axis[MAG_RAW_Y_IDX] != 0) || (mag_data.raw.axis[MAG_RAW_Z_IDX] != 0)) &&
|
|
((Blen < mag_len * (1 + INSGPS_MAGTOL)) && (Blen > mag_len * (1 - INSGPS_MAGTOL)));
|
|
}
|
|
}
|
|
#else
|
|
void process_mag_data() { }
|
|
#endif
|
|
|
|
/**
|
|
* @brief Assumes board is not moving computes biases and variances of sensors
|
|
* @returns None
|
|
*
|
|
* All data is stored in global structures. This function should be called from OP when
|
|
* aircraft is in stable state and then the data stored to SD card.
|
|
*
|
|
* After this function the bias for each sensor will be the mean value. This doesn't make
|
|
* sense for the z accel so make sure 6 point calibration is also run and those values set
|
|
* after these read.
|
|
*/
|
|
#define NBIAS 100
|
|
#define NVAR 500
|
|
void calibrate_sensors()
|
|
{
|
|
int i,j;
|
|
float accel_bias[3] = {0, 0, 0};
|
|
float gyro_bias[3] = {0, 0, 0};
|
|
float mag_bias[3] = {0, 0, 0};
|
|
|
|
|
|
for (i = 0, j = 0; i < NBIAS; i++) {
|
|
|
|
get_accel_gyro_data();
|
|
|
|
gyro_bias[0] += gyro_data.filtered.x / NBIAS;
|
|
gyro_bias[1] += gyro_data.filtered.y / NBIAS;
|
|
gyro_bias[2] += gyro_data.filtered.z / NBIAS;
|
|
accel_bias[0] += accel_data.filtered.x / NBIAS;
|
|
accel_bias[1] += accel_data.filtered.y / NBIAS;
|
|
accel_bias[2] += accel_data.filtered.z / NBIAS;
|
|
|
|
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
|
|
if(PIOS_HMC5843_NewDataAvailable()) {
|
|
j ++;
|
|
PIOS_HMC5843_ReadMag(mag_data.raw.axis);
|
|
mag_data.scaled.axis[0] = (mag_data.raw.axis[MAG_RAW_X_IDX] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0];
|
|
mag_data.scaled.axis[1] = (mag_data.raw.axis[MAG_RAW_Y_IDX] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1];
|
|
mag_data.scaled.axis[2] = (mag_data.raw.axis[MAG_RAW_Z_IDX] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
|
|
mag_bias[0] += mag_data.scaled.axis[0];
|
|
mag_bias[1] += mag_data.scaled.axis[1];
|
|
mag_bias[2] += mag_data.scaled.axis[2];
|
|
}
|
|
#endif
|
|
|
|
}
|
|
mag_bias[0] /= j;
|
|
mag_bias[1] /= j;
|
|
mag_bias[2] /= j;
|
|
|
|
gyro_data.calibration.variance[0] = 0;
|
|
gyro_data.calibration.variance[1] = 0;
|
|
gyro_data.calibration.variance[2] = 0;
|
|
mag_data.calibration.variance[0] = 0;
|
|
mag_data.calibration.variance[1] = 0;
|
|
mag_data.calibration.variance[2] = 0;
|
|
accel_data.calibration.variance[0] = 0;
|
|
accel_data.calibration.variance[1] = 0;
|
|
accel_data.calibration.variance[2] = 0;
|
|
|
|
for (i = 0, j = 0; j < NVAR; j++) {
|
|
get_accel_gyro_data();
|
|
|
|
gyro_data.calibration.variance[0] += pow(gyro_data.filtered.x-gyro_bias[0],2) / NVAR;
|
|
gyro_data.calibration.variance[1] += pow(gyro_data.filtered.y-gyro_bias[1],2) / NVAR;
|
|
gyro_data.calibration.variance[2] += pow(gyro_data.filtered.z-gyro_bias[2],2) / NVAR;
|
|
accel_data.calibration.variance[0] += pow(accel_data.filtered.x-accel_bias[0],2) / NVAR;
|
|
accel_data.calibration.variance[1] += pow(accel_data.filtered.y-accel_bias[1],2) / NVAR;
|
|
accel_data.calibration.variance[2] += pow(accel_data.filtered.z-accel_bias[2],2) / NVAR;
|
|
|
|
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
|
|
if(PIOS_HMC5843_NewDataAvailable()) {
|
|
j ++;
|
|
PIOS_HMC5843_ReadMag(mag_data.raw.axis);
|
|
mag_data.scaled.axis[0] = (mag_data.raw.axis[MAG_RAW_X_IDX] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0];
|
|
mag_data.scaled.axis[1] = (mag_data.raw.axis[MAG_RAW_Y_IDX] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1];
|
|
mag_data.scaled.axis[2] = (mag_data.raw.axis[MAG_RAW_Z_IDX] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
|
|
mag_data.calibration.variance[0] += pow(mag_data.scaled.axis[0]-mag_bias[0],2);
|
|
mag_data.calibration.variance[1] += pow(mag_data.scaled.axis[1]-mag_bias[1],2);
|
|
mag_data.calibration.variance[2] += pow(mag_data.scaled.axis[2]-mag_bias[2],2);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
mag_data.calibration.variance[0] /= j;
|
|
mag_data.calibration.variance[1] /= j;
|
|
mag_data.calibration.variance[2] /= j;
|
|
|
|
gyro_data.calibration.bias[0] -= gyro_bias[0];
|
|
gyro_data.calibration.bias[1] -= gyro_bias[1];
|
|
gyro_data.calibration.bias[2] -= gyro_bias[2];
|
|
}
|
|
|
|
/**
|
|
* @brief Populate fields with initial values
|
|
*/
|
|
void reset_values()
|
|
{
|
|
accel_data.calibration.scale[0][1] = 0;
|
|
accel_data.calibration.scale[1][0] = 0;
|
|
accel_data.calibration.scale[0][2] = 0;
|
|
accel_data.calibration.scale[2][0] = 0;
|
|
accel_data.calibration.scale[1][2] = 0;
|
|
accel_data.calibration.scale[2][1] = 0;
|
|
|
|
accel_data.calibration.scale[0][0] = 0.0359;
|
|
accel_data.calibration.scale[1][1] = 0.0359;
|
|
accel_data.calibration.scale[2][2] = 0.0359;
|
|
accel_data.calibration.scale[0][3] = -73.5;
|
|
accel_data.calibration.scale[1][3] = -73.5;
|
|
accel_data.calibration.scale[2][3] = -73.5;
|
|
|
|
accel_data.calibration.variance[0] = 1e-4;
|
|
accel_data.calibration.variance[1] = 1e-4;
|
|
accel_data.calibration.variance[2] = 1e-4;
|
|
|
|
gyro_data.calibration.scale[0] = -0.014;
|
|
gyro_data.calibration.scale[1] = 0.014;
|
|
gyro_data.calibration.scale[2] = -0.014;
|
|
gyro_data.calibration.bias[0] = -24;
|
|
gyro_data.calibration.bias[1] = -24;
|
|
gyro_data.calibration.bias[2] = -24;
|
|
gyro_data.calibration.variance[0] = 1;
|
|
gyro_data.calibration.variance[1] = 1;
|
|
gyro_data.calibration.variance[2] = 1;
|
|
mag_data.calibration.scale[0] = 1;
|
|
mag_data.calibration.scale[1] = 1;
|
|
mag_data.calibration.scale[2] = 1;
|
|
mag_data.calibration.bias[0] = 0;
|
|
mag_data.calibration.bias[1] = 0;
|
|
mag_data.calibration.bias[2] = 0;
|
|
mag_data.calibration.variance[0] = 50;
|
|
mag_data.calibration.variance[1] = 50;
|
|
mag_data.calibration.variance[2] = 50;
|
|
}
|
|
|
|
|
|
void send_attitude(void)
|
|
{
|
|
AttitudeActualData attitude;
|
|
AHRSSettingsData settings;
|
|
AHRSSettingsGet(&settings);
|
|
|
|
attitude.q1 = attitude_data.quaternion.q1;
|
|
attitude.q2 = attitude_data.quaternion.q2;
|
|
attitude.q3 = attitude_data.quaternion.q3;
|
|
attitude.q4 = attitude_data.quaternion.q4;
|
|
float rpy[3];
|
|
Quaternion2RPY(&attitude_data.quaternion.q1, rpy);
|
|
attitude.Roll = rpy[0] + settings.RollBias;
|
|
attitude.Pitch = rpy[1] + settings.PitchBias;
|
|
attitude.Yaw = rpy[2] + settings.YawBias;
|
|
if(attitude.Yaw > 360)
|
|
attitude.Yaw -= 360;
|
|
AttitudeActualSet(&attitude);
|
|
}
|
|
|
|
void send_velocity(void)
|
|
{
|
|
VelocityActualData velocityActual;
|
|
VelocityActualGet(&velocityActual);
|
|
|
|
// convert into cm
|
|
velocityActual.North = Nav.Vel[0] * 100;
|
|
velocityActual.East = Nav.Vel[1] * 100;
|
|
velocityActual.Down = Nav.Vel[2] * 100;
|
|
|
|
VelocityActualSet(&velocityActual);
|
|
}
|
|
|
|
void send_position(void)
|
|
{
|
|
PositionActualData positionActual;
|
|
PositionActualGet(&positionActual);
|
|
|
|
// convert into cm
|
|
positionActual.North = Nav.Pos[0] * 100;
|
|
positionActual.East = Nav.Pos[1] * 100;
|
|
positionActual.Down = Nav.Pos[2] * 100;
|
|
|
|
PositionActualSet(&positionActual);
|
|
}
|
|
|
|
void send_calibration(void)
|
|
{
|
|
AHRSCalibrationData cal;
|
|
AHRSCalibrationGet(&cal);
|
|
for(int ct=0; ct<3; ct++)
|
|
{
|
|
cal.accel_var[ct] = accel_data.calibration.variance[ct];
|
|
cal.gyro_bias[ct] = gyro_data.calibration.bias[ct];
|
|
cal.gyro_var[ct] = gyro_data.calibration.variance[ct];
|
|
cal.mag_var[ct] = mag_data.calibration.variance[ct];
|
|
}
|
|
cal.measure_var = AHRSCALIBRATION_MEASURE_VAR_SET;
|
|
AHRSCalibrationSet(&cal);
|
|
}
|
|
|
|
/**
|
|
* @brief AHRS calibration callback
|
|
*
|
|
* Called when the OP board sets the calibration
|
|
*/
|
|
void calibration_callback(AhrsObjHandle obj)
|
|
{
|
|
AHRSCalibrationData cal;
|
|
AHRSCalibrationGet(&cal);
|
|
if(cal.measure_var == AHRSCALIBRATION_MEASURE_VAR_SET){
|
|
|
|
accel_data.calibration.scale[0][1] = cal.accel_ortho[0];
|
|
accel_data.calibration.scale[1][0] = cal.accel_ortho[0];
|
|
|
|
accel_data.calibration.scale[0][2] = cal.accel_ortho[1];
|
|
accel_data.calibration.scale[2][0] = cal.accel_ortho[1];
|
|
|
|
accel_data.calibration.scale[1][2] = cal.accel_ortho[2];
|
|
accel_data.calibration.scale[2][1] = cal.accel_ortho[2];
|
|
|
|
#if 0
|
|
// TODO: Enable after v1.0 feature freeze.
|
|
float rotation[3] = { cal.accel_rotation[0],
|
|
cal.accel_rotation[1],
|
|
cal.accel_rotation[2],
|
|
};
|
|
|
|
affine_rotate(accel_data.calibration.scale, rotation);
|
|
#endif
|
|
|
|
for(int ct=0; ct<3; ct++)
|
|
{
|
|
accel_data.calibration.scale[ct][ct] = cal.accel_scale[ct];
|
|
accel_data.calibration.scale[ct][3] = cal.accel_bias[ct];
|
|
accel_data.calibration.variance[ct] = cal.accel_var[ct];
|
|
|
|
gyro_data.calibration.scale[ct] = cal.gyro_scale[ct];
|
|
gyro_data.calibration.bias[ct] = cal.gyro_bias[ct];
|
|
gyro_data.calibration.variance[ct] = cal.gyro_var[ct];
|
|
#if 1
|
|
gyro_data.calibration.tempcompfactor[ct] = cal.gyro_tempcompfactor[ct];
|
|
#endif
|
|
mag_data.calibration.bias[ct] = cal.mag_bias[ct];
|
|
mag_data.calibration.scale[ct] = cal.mag_scale[ct];
|
|
mag_data.calibration.variance[ct] = cal.mag_var[ct];
|
|
}
|
|
// Note: We need the divided by 1000^2 since we scale mags to have a norm of 1000 and they are scaled to
|
|
// one in code
|
|
float mag_var[3] = {mag_data.calibration.variance[0] / INSGPS_MAGLEN / INSGPS_MAGLEN,
|
|
mag_data.calibration.variance[1] / INSGPS_MAGLEN / INSGPS_MAGLEN,
|
|
mag_data.calibration.variance[2] / INSGPS_MAGLEN / INSGPS_MAGLEN};
|
|
INSSetMagVar(mag_var);
|
|
INSSetAccelVar(accel_data.calibration.variance);
|
|
INSSetGyroVar(gyro_data.calibration.variance);
|
|
}
|
|
else if(cal.measure_var == AHRSCALIBRATION_MEASURE_VAR_MEASURE) {
|
|
calibrate_sensors();
|
|
send_calibration();
|
|
}
|
|
|
|
INSSetPosVelVar(cal.pos_var, cal.vel_var);
|
|
|
|
}
|
|
|
|
void gps_callback(AhrsObjHandle obj)
|
|
{
|
|
GPSPositionData pos;
|
|
GPSPositionGet(&pos);
|
|
HomeLocationData home;
|
|
HomeLocationGet(&home);
|
|
|
|
// convert from cm back to meters
|
|
double LLA[3] = {(double) pos.Latitude / 1e7, (double) pos.Longitude / 1e7, (double) (pos.GeoidSeparation + pos.Altitude)};
|
|
// put in local NED frame
|
|
double ECEF[3] = {(double) (home.ECEF[0] / 100), (double) (home.ECEF[1] / 100), (double) (home.ECEF[2] / 100)};
|
|
LLA2Base(LLA, ECEF, (float (*)[3]) home.RNE, gps_data.NED);
|
|
|
|
gps_data.heading = pos.Heading;
|
|
gps_data.groundspeed = pos.Groundspeed;
|
|
gps_data.quality = 1; /* currently unused */
|
|
gps_data.updated = true;
|
|
|
|
// if poor don't use this update
|
|
if((ahrs_algorithm != AHRSSETTINGS_ALGORITHM_INSGPS_OUTDOOR) ||
|
|
(pos.Satellites < INSGPS_GPS_MINSAT) ||
|
|
(pos.PDOP >= INSGPS_GPS_MINPDOP) ||
|
|
(home.Set == FALSE) ||
|
|
((home.ECEF[0] == 0) && (home.ECEF[1] == 0) && (home.ECEF[2] == 0)))
|
|
{
|
|
gps_data.quality = 0;
|
|
gps_data.updated = false;
|
|
}
|
|
|
|
}
|
|
|
|
void altitude_callback(AhrsObjHandle obj)
|
|
{
|
|
BaroAltitudeData alt;
|
|
BaroAltitudeGet(&alt);
|
|
altitude_data.altitude = alt.Altitude;
|
|
altitude_data.updated = true;
|
|
}
|
|
|
|
void settings_callback(AhrsObjHandle obj)
|
|
{
|
|
AHRSSettingsData settings;
|
|
AHRSSettingsGet(&settings);
|
|
|
|
ahrs_algorithm = settings.Algorithm;
|
|
|
|
if(settings.Downsampling != adc_oversampling) {
|
|
adc_oversampling = settings.Downsampling;
|
|
PIOS_ADC_Config(adc_oversampling);
|
|
}
|
|
}
|
|
|
|
void homelocation_callback(AhrsObjHandle obj)
|
|
{
|
|
HomeLocationData data;
|
|
HomeLocationGet(&data);
|
|
|
|
mag_len = sqrt(pow(data.Be[0],2) + pow(data.Be[1],2) + pow(data.Be[2],2));
|
|
float Be[3] = {data.Be[0] / mag_len, data.Be[1] / mag_len, data.Be[2] / mag_len};
|
|
|
|
INSSetMagNorth(Be);
|
|
}
|
|
|
|
void firmwareiapobj_callback(AhrsObjHandle obj)
|
|
{
|
|
FirmwareIAPObjData firmwareIAPObj;
|
|
FirmwareIAPObjGet(&firmwareIAPObj);
|
|
if(firmwareIAPObj.ArmReset==0)
|
|
reset_count=0;
|
|
if(firmwareIAPObj.ArmReset==1)
|
|
{
|
|
|
|
if((firmwareIAPObj.BoardType==BOARD_TYPE) || (firmwareIAPObj.BoardType==0xFF))
|
|
{
|
|
|
|
++reset_count;
|
|
if(reset_count>2)
|
|
{
|
|
PIOS_IAP_SetRequest1();
|
|
PIOS_IAP_SetRequest2();
|
|
PIOS_SYS_Reset();
|
|
}
|
|
}
|
|
}
|
|
else if(firmwareIAPObj.BoardType==BOARD_TYPE && firmwareIAPObj.crc!=PIOS_BL_HELPER_CRC_Memory_Calc())
|
|
{
|
|
PIOS_BL_HELPER_FLASH_Read_Description(firmwareIAPObj.Description,SIZE_OF_DESCRIPTION);
|
|
firmwareIAPObj.crc=PIOS_BL_HELPER_CRC_Memory_Calc();
|
|
firmwareIAPObj.BoardRevision=BOARD_REVISION;
|
|
FirmwareIAPObjSet(&firmwareIAPObj);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|