1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-03 11:24:10 +01:00
LibrePilot/flight/Modules/FixedWingPathFollower/fixedwingpathfollower.c
2012-05-24 11:13:21 +02:00

831 lines
32 KiB
C

/**
******************************************************************************
*
* @file fixedwingpathfollower.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
* and sets @ref AttitudeDesired. It only does this when the FlightMode field
* of @ref ManualControlCommand is Auto.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input object: ActiveWaypoint
* Input object: PositionActual
* Input object: ManualControlCommand
* Output object: AttitudeDesired
*
* This module will periodically update the value of the AttitudeDesired object.
*
* The module executes in its own thread in this example.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include "openpilot.h"
#include "paths.h"
#include "fixedwingpathfollower.h"
#include "accels.h"
#include "attitudeactual.h"
#include "pathdesired.h" // object that will be updated by the module
#include "positiondesired.h" // object that will be updated by the module
#include "positionactual.h"
#include "manualcontrol.h"
#include "flightstatus.h"
#include "baroairspeed.h"
#include "gpsvelocity.h"
#include "gpsposition.h"
#include "fixedwingpathfollowersettings.h"
#include "fixedwingpathfollowerstatus.h"
#include "homelocation.h"
#include "nedaccel.h"
#include "nedposition.h"
#include "stabilizationdesired.h"
#include "stabilizationsettings.h"
#include "systemsettings.h"
#include "velocitydesired.h"
#include "velocityactual.h"
#include "CoordinateConversions.h"
// Private constants
#define MAX_QUEUE_SIZE 4
#define STACK_SIZE_BYTES 1548
#define TASK_PRIORITY (tskIDLE_PRIORITY+2)
#define F_PI 3.14159265358979323846f
#define RAD2DEG (180.0f/F_PI)
#define GEE 9.81f
// Private types
// Private variables
static xTaskHandle fixedwingpathfollowerTaskHandle;
static xQueueHandle queue;
// Private functions
static void fixedwingpathfollowerTask(void *parameters);
static float bound(float val, float min, float max);
static void updateNedAccel();
static void updatePathVelocity();
static void updateVtolDesiredVelocity();
static void manualSetDesiredVelocity();
static void updateFixedDesiredAttitude();
static void updateVtolDesiredAttitude();
static void baroAirspeedUpdatedCb(UAVObjEvent * ev);
static FixedWingPathFollowerSettingsData fixedwingpathfollowerSettings;
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t FixedWingPathFollowerStart()
{
// Start main task
xTaskCreate(fixedwingpathfollowerTask, (signed char *)"FixedWingPathFollower", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &fixedwingpathfollowerTaskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_GUIDANCE, fixedwingpathfollowerTaskHandle);
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t FixedWingPathFollowerInitialize()
{
FixedWingPathFollowerSettingsInitialize();
FixedWingPathFollowerStatusInitialize();
AttitudeActualInitialize();
NedAccelInitialize();
PathDesiredInitialize();
PositionDesiredInitialize();
VelocityDesiredInitialize();
BaroAirspeedInitialize();
// Create object queue
queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent));
// Listen for updates.
AccelsConnectQueue(queue);
BaroAirspeedConnectCallback(baroAirspeedUpdatedCb);
return 0;
}
MODULE_INITCALL(FixedWingPathFollowerInitialize, FixedWingPathFollowerStart)
static float northVelIntegral = 0;
static float eastVelIntegral = 0;
static float downVelIntegral = 0;
static float northPosIntegral = 0;
static float eastPosIntegral = 0;
static float downPosIntegral = 0;
static float courseIntegral = 0;
static float speedIntegral = 0;
static float accelIntegral = 0;
static float powerIntegral = 0;
static uint8_t positionHoldLast = 0;
// correct speed by measured airspeed
static float baroAirspeedBias = 0;
/**
* Module thread, should not return.
*/
static void fixedwingpathfollowerTask(void *parameters)
{
SystemSettingsData systemSettings;
FlightStatusData flightStatus;
portTickType thisTime;
portTickType lastUpdateTime;
UAVObjEvent ev;
// Main task loop
lastUpdateTime = xTaskGetTickCount();
while (1) {
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
// Wait until the Accels object is updated, if a timeout then go to failsafe
if ( xQueueReceive(queue, &ev, fixedwingpathfollowerSettings.UpdatePeriod / portTICK_RATE_MS) != pdTRUE )
{
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_WARNING);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_GUIDANCE);
}
// Continue collecting data if not enough time
thisTime = xTaskGetTickCount();
if( (thisTime - lastUpdateTime) < (fixedwingpathfollowerSettings.UpdatePeriod / portTICK_RATE_MS) )
continue;
// Convert the accels into the NED frame
updateNedAccel();
FlightStatusGet(&flightStatus);
SystemSettingsGet(&systemSettings);
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
if ((PARSE_FLIGHT_MODE(flightStatus.FlightMode) == FLIGHTMODE_GUIDANCE) &&
((systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWING) ||
(systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGELEVON) ||
(systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGVTAIL) ||
(systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_VTOL) ||
(systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_QUADP) ||
(systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_QUADX) ||
(systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_HEXA) ))
{
if(flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD) {
if (positionHoldLast == 0) {
/* When enter position hold mode save current position */
PositionDesiredData positionDesired;
PositionActualData positionActual;
PositionDesiredGet(&positionDesired);
PositionActualGet(&positionActual);
positionDesired.North = positionActual.North;
positionDesired.East = positionActual.East;
positionDesired.Down = positionActual.Down;
PositionDesiredSet(&positionDesired);
positionHoldLast = 1;
}
} else {
positionHoldLast = 0;
}
if (flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_RETURNTOBASE) {
/* Fly to home position - NED coordinates [0,0, -altitude offset] */
PositionDesiredData positionDesired;
PositionDesiredGet(&positionDesired);
positionDesired.North = 0;
positionDesired.East = 0;
positionDesired.Down = -fixedwingpathfollowerSettings.ReturnTobaseAltitudeOffset;
PositionDesiredSet(&positionDesired);
}
if( flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD || flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_RETURNTOBASE || flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_PATHPLANNER ) {
if (flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_PATHPLANNER && fixedwingpathfollowerSettings.PathMode != GUIDANCESETTINGS_PATHMODE_ENDPOINT) {
updatePathVelocity();
} else {
updateVtolDesiredVelocity();
}
} else {
manualSetDesiredVelocity();
}
if ((systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWING) ||
(systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGELEVON) ||
(systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGVTAIL))
{
updateFixedDesiredAttitude();
} else {
updateVtolDesiredAttitude();
}
} else {
// Be cleaner and get rid of global variables
northVelIntegral = 0;
eastVelIntegral = 0;
downVelIntegral = 0;
northPosIntegral = 0;
eastPosIntegral = 0;
downPosIntegral = 0;
positionHoldLast = 0;
courseIntegral = 0;
speedIntegral = 0;
accelIntegral = 0;
powerIntegral = 0;
}
}
}
/**
* Compute desired velocity from the current position and path
*
* Takes in @ref PositionActual and compares it to @ref PathDesired
* and computes @ref VelocityDesired
*/
static void updatePathVelocity()
{
static portTickType lastSysTime;
portTickType thisSysTime = xTaskGetTickCount();;
float dT = 0;
float downCommand;
// Check how long since last update
if(thisSysTime > lastSysTime) // reuse dt in case of wraparound
dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f;
lastSysTime = thisSysTime;
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
PositionActualData positionActual;
PositionActualGet(&positionActual);
float cur[3] = {positionActual.North, positionActual.East, positionActual.Down};
struct path_status progress;
path_progress(pathDesired.Start, pathDesired.End, cur, &progress);
float groundspeed = pathDesired.StartingVelocity +
(pathDesired.EndingVelocity - pathDesired.StartingVelocity) * progress.fractional_progress;
if(progress.fractional_progress > 1)
groundspeed = 0;
VelocityDesiredData velocityDesired;
velocityDesired.North = progress.path_direction[0] * groundspeed;
velocityDesired.East = progress.path_direction[1] * groundspeed;
float error_speed = progress.error * fixedwingpathfollowerSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_KP];
float correction_velocity[2] = {progress.correction_direction[0] * error_speed,
progress.correction_direction[1] * error_speed};
float total_vel = sqrtf(powf(correction_velocity[0],2) + powf(correction_velocity[1],2));
float scale = 1;
if(total_vel > fixedwingpathfollowerSettings.HorizontalVelMax)
scale = fixedwingpathfollowerSettings.HorizontalVelMax / total_vel;
velocityDesired.North += progress.correction_direction[0] * error_speed * scale;
velocityDesired.East += progress.correction_direction[1] * error_speed * scale;
float altitudeSetpoint = pathDesired.Start[2] + (pathDesired.End[2] - pathDesired.Start[2]) *
bound(progress.fractional_progress,0,1);
float downError = altitudeSetpoint - positionActual.Down;
downPosIntegral = bound(downPosIntegral + downError * dT * fixedwingpathfollowerSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_KI],
-fixedwingpathfollowerSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_ILIMIT],
fixedwingpathfollowerSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_ILIMIT]);
downCommand = (downError * fixedwingpathfollowerSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_KP] + downPosIntegral);
velocityDesired.Down = bound(downCommand,
-fixedwingpathfollowerSettings.VerticalVelMax,
fixedwingpathfollowerSettings.VerticalVelMax);
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired velocity from the current position
*
* Takes in @ref PositionActual and compares it to @ref PositionDesired
* and computes @ref VelocityDesired
*/
void updateVtolDesiredVelocity()
{
static portTickType lastSysTime;
portTickType thisSysTime = xTaskGetTickCount();;
float dT = 0;
FixedWingPathFollowerSettingsData fixedwingpathfollowerSettings;
PositionActualData positionActual;
PositionDesiredData positionDesired;
VelocityDesiredData velocityDesired;
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
PositionActualGet(&positionActual);
PositionDesiredGet(&positionDesired);
VelocityDesiredGet(&velocityDesired);
float northError;
float eastError;
float downError;
float northCommand;
float eastCommand;
float downCommand;
// Check how long since last update
if(thisSysTime > lastSysTime) // reuse dt in case of wraparound
dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f;
lastSysTime = thisSysTime;
float northPos = 0, eastPos = 0, downPos = 0;
switch (fixedwingpathfollowerSettings.PositionSource) {
case GUIDANCESETTINGS_POSITIONSOURCE_EKF:
northPos = positionActual.North;
eastPos = positionActual.East;
downPos = positionActual.Down;
break;
case GUIDANCESETTINGS_POSITIONSOURCE_GPSPOS:
{
NEDPositionData nedPosition;
NEDPositionGet(&nedPosition);
northPos = nedPosition.North;
eastPos = nedPosition.East;
downPos = nedPosition.Down;
}
break;
default:
PIOS_Assert(0);
break;
}
// Note all distances in cm
// Compute desired north command
northError = positionDesired.North - northPos;
northPosIntegral = bound(northPosIntegral + northError * dT * fixedwingpathfollowerSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_KI],
-fixedwingpathfollowerSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_ILIMIT],
fixedwingpathfollowerSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_ILIMIT]);
northCommand = (northError * fixedwingpathfollowerSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_KP] +
northPosIntegral);
eastError = positionDesired.East - eastPos;
eastPosIntegral = bound(eastPosIntegral + eastError * dT * fixedwingpathfollowerSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_KI],
-fixedwingpathfollowerSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_ILIMIT],
fixedwingpathfollowerSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_ILIMIT]);
eastCommand = (eastError * fixedwingpathfollowerSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_KP] +
eastPosIntegral);
float total_vel = sqrtf(northCommand * northCommand + eastCommand * eastCommand);
float scale = 1.0f;
if(total_vel > fixedwingpathfollowerSettings.HorizontalVelMax)
scale = fixedwingpathfollowerSettings.HorizontalVelMax / total_vel;
velocityDesired.North = northCommand * scale;
velocityDesired.East = eastCommand * scale;
downError = positionDesired.Down - downPos;
downPosIntegral = bound(downPosIntegral + downError * dT * fixedwingpathfollowerSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_KI],
-fixedwingpathfollowerSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_ILIMIT],
fixedwingpathfollowerSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_ILIMIT]);
downCommand = (downError * fixedwingpathfollowerSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_KP] + downPosIntegral);
velocityDesired.Down = bound(downCommand,
-fixedwingpathfollowerSettings.VerticalVelMax,
fixedwingpathfollowerSettings.VerticalVelMax);
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude from the desired velocity
*
* Takes in @ref NedActual which has the acceleration in the
* NED frame as the feedback term and then compares the
* @ref VelocityActual against the @ref VelocityDesired
*/
static void updateFixedDesiredAttitude()
{
static portTickType lastSysTime;
portTickType thisSysTime = xTaskGetTickCount();;
float dT = 0;
VelocityDesiredData velocityDesired;
VelocityActualData velocityActual;
StabilizationDesiredData stabDesired;
AttitudeActualData attitudeActual;
NedAccelData nedAccel;
AccelsData accels;
FixedWingPathFollowerSettingsData fixedwingpathfollowerSettings;
StabilizationSettingsData stabSettings;
SystemSettingsData systemSettings;
FixedWingPathFollowerStatusData fixedwingpathfollowerStatus;
float courseError;
float courseCommand;
float speedError;
float accelCommand;
float speedActual;
float speedDesired;
float accelDesired;
float accelError;
float powerError;
float powerCommand;
// Check how long since last update
if(thisSysTime > lastSysTime) // reuse dt in case of wraparound
dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f;
lastSysTime = thisSysTime;
SystemSettingsGet(&systemSettings);
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
FixedWingPathFollowerStatusGet(&fixedwingpathfollowerStatus);
VelocityActualGet(&velocityActual);
VelocityDesiredGet(&velocityDesired);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeActualGet(&attitudeActual);
AccelsGet(&accels);
StabilizationSettingsGet(&stabSettings);
NedAccelGet(&nedAccel);
// current speed - lacking forward airspeed we use groundspeed :(
speedActual = sqrtf(velocityActual.East*velocityActual.East + velocityActual.North*velocityActual.North + velocityActual.Down*velocityActual.Down ) + baroAirspeedBias;
// Compute desired roll command
courseError = RAD2DEG * (atan2f(velocityDesired.East,velocityDesired.North) - atan2f(velocityActual.East,velocityActual.North));
if (courseError<-180.0f) courseError+=360.0f;
if (courseError>180.0f) courseError-=360.0f;
courseIntegral = bound(courseIntegral + courseError * dT * fixedwingpathfollowerSettings.CoursePI[GUIDANCESETTINGS_COURSEPI_KI],
-fixedwingpathfollowerSettings.CoursePI[GUIDANCESETTINGS_COURSEPI_ILIMIT],
fixedwingpathfollowerSettings.CoursePI[GUIDANCESETTINGS_COURSEPI_ILIMIT]);
courseCommand = (courseError * fixedwingpathfollowerSettings.CoursePI[GUIDANCESETTINGS_COURSEPI_KP] +
courseIntegral);
fixedwingpathfollowerStatus.E[GUIDANCESTATUS_E_COURSE] = courseError;
fixedwingpathfollowerStatus.A[GUIDANCESTATUS_A_COURSE] = courseIntegral;
fixedwingpathfollowerStatus.C[GUIDANCESTATUS_C_COURSE] = courseCommand;
stabDesired.Roll = bound( fixedwingpathfollowerSettings.RollLimit[GUIDANCESETTINGS_ROLLLIMIT_NEUTRAL] +
courseCommand,
fixedwingpathfollowerSettings.RollLimit[GUIDANCESETTINGS_ROLLLIMIT_MIN],
fixedwingpathfollowerSettings.RollLimit[GUIDANCESETTINGS_ROLLLIMIT_MAX] );
// Compute desired yaw command
if (speedActual>0) {
// rate is speed dependent and roll dependent. The faster the plane, the slower it turns at a given roll angle.
// (A "fixed roll angle level turn" is a turn at fixed G rate)
//stabDesired.Yaw = RAD2DEG * tanf(stabDesired.Roll / RAD2DEG) * GEE / speedActual;
// this is a global rate - translate to local since rates are always local
//stabDesired.Yaw = stabDesired.Yaw * cosf(stabDesired.Roll / RAD2DEG);
// tan = sin/cos - so tan*cos = sin
stabDesired.Yaw = RAD2DEG * sinf((stabDesired.Roll-fixedwingpathfollowerSettings.RollLimit[GUIDANCESETTINGS_ROLLLIMIT_NEUTRAL]) / RAD2DEG) * GEE / speedActual;
} else {
stabDesired.Yaw = 0;
}
// Compute desired speed command TODO: make cruise speed a variable
speedDesired = fixedwingpathfollowerSettings.CruiseSpeed;
speedError = speedDesired - speedActual;
accelDesired = bound( speedError * fixedwingpathfollowerSettings.SpeedP[GUIDANCESETTINGS_SPEEDP_KP],
-fixedwingpathfollowerSettings.SpeedP[GUIDANCESETTINGS_SPEEDP_MAX],
fixedwingpathfollowerSettings.SpeedP[GUIDANCESETTINGS_SPEEDP_MAX]);
fixedwingpathfollowerStatus.E[GUIDANCESTATUS_E_SPEED] = speedError;
fixedwingpathfollowerStatus.A[GUIDANCESTATUS_A_SPEED] = 0.0f;
fixedwingpathfollowerStatus.C[GUIDANCESTATUS_C_SPEED] = accelDesired;
accelError = accelDesired - accels.x;
accelIntegral = bound(accelIntegral + accelError * dT * fixedwingpathfollowerSettings.AccelPI[GUIDANCESETTINGS_ACCELPI_KI],
-fixedwingpathfollowerSettings.AccelPI[GUIDANCESETTINGS_ACCELPI_ILIMIT],
fixedwingpathfollowerSettings.AccelPI[GUIDANCESETTINGS_ACCELPI_ILIMIT]);
accelCommand = (accelError * fixedwingpathfollowerSettings.AccelPI[GUIDANCESETTINGS_ACCELPI_KP] +
accelIntegral);
fixedwingpathfollowerStatus.E[GUIDANCESTATUS_E_ACCEL] = accelError;
fixedwingpathfollowerStatus.A[GUIDANCESTATUS_A_ACCEL] = accelIntegral;
fixedwingpathfollowerStatus.C[GUIDANCESTATUS_C_ACCEL] = accelCommand;
stabDesired.Pitch = bound(fixedwingpathfollowerSettings.PitchLimit[GUIDANCESETTINGS_PITCHLIMIT_NEUTRAL] +
-accelCommand,
fixedwingpathfollowerSettings.PitchLimit[GUIDANCESETTINGS_PITCHLIMIT_MIN],
fixedwingpathfollowerSettings.PitchLimit[GUIDANCESETTINGS_PITCHLIMIT_MAX]);
// Compute desired power command
powerError = -( velocityDesired.Down - velocityActual.Down ) * fixedwingpathfollowerSettings.ClimbRateBoostFactor + speedError;
powerIntegral = bound(powerIntegral + powerError * dT * fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_KI],
-fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_ILIMIT],
fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_ILIMIT]);
powerCommand = (powerError * fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_KP] +
powerIntegral) + fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_NEUTRAL];
// prevent integral running out of bounds
if ( powerCommand > fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_MAX]) {
powerIntegral = bound(
powerIntegral -
( powerCommand
- fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_MAX]),
-fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_ILIMIT],
fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_ILIMIT]);
powerCommand = fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_MAX];
}
if ( powerCommand < fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_MIN]) {
powerIntegral = bound(
powerIntegral -
( powerCommand
- fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_MIN]),
-fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_ILIMIT],
fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_ILIMIT]);
powerCommand = fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_MIN];
}
fixedwingpathfollowerStatus.E[GUIDANCESTATUS_E_POWER] = powerError;
fixedwingpathfollowerStatus.A[GUIDANCESTATUS_A_POWER] = powerIntegral;
fixedwingpathfollowerStatus.C[GUIDANCESTATUS_C_POWER] = powerCommand;
// set throttle
stabDesired.Throttle = powerCommand;
if(fixedwingpathfollowerSettings.ThrottleControl == GUIDANCESETTINGS_THROTTLECONTROL_FALSE) {
// For now override throttle with manual control. Disable at your risk, quad goes to China.
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.Throttle = manualControl.Throttle;
}
//printf("Cycle: speed Error: %f\n powerError: %f\n accelCommand: %f\n powerCommand: %f\n\n",speedError,powerError,accelCommand,powerCommand);
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
StabilizationDesiredSet(&stabDesired);
FixedWingPathFollowerStatusSet(&fixedwingpathfollowerStatus);
}
/**
* Compute desired attitude from the desired velocity
*
* Takes in @ref NedActual which has the acceleration in the
* NED frame as the feedback term and then compares the
* @ref VelocityActual against the @ref VelocityDesired
*/
static void updateVtolDesiredAttitude()
{
static portTickType lastSysTime;
portTickType thisSysTime = xTaskGetTickCount();;
float dT = 0;
VelocityDesiredData velocityDesired;
VelocityActualData velocityActual;
StabilizationDesiredData stabDesired;
AttitudeActualData attitudeActual;
NedAccelData nedAccel;
FixedWingPathFollowerSettingsData fixedwingpathfollowerSettings;
StabilizationSettingsData stabSettings;
SystemSettingsData systemSettings;
float northError;
float northCommand;
float eastError;
float eastCommand;
float downError;
float downCommand;
// Check how long since last update
if(thisSysTime > lastSysTime) // reuse dt in case of wraparound
dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f;
lastSysTime = thisSysTime;
SystemSettingsGet(&systemSettings);
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
VelocityActualGet(&velocityActual);
VelocityDesiredGet(&velocityDesired);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeActualGet(&attitudeActual);
StabilizationSettingsGet(&stabSettings);
NedAccelGet(&nedAccel);
float northVel = 0, eastVel = 0, downVel = 0;
switch (fixedwingpathfollowerSettings.VelocitySource) {
case GUIDANCESETTINGS_VELOCITYSOURCE_EKF:
northVel = velocityActual.North;
eastVel = velocityActual.East;
downVel = velocityActual.Down;
break;
case GUIDANCESETTINGS_VELOCITYSOURCE_NEDVEL:
{
GPSVelocityData gpsVelocity;
GPSVelocityGet(&gpsVelocity);
northVel = gpsVelocity.North;
eastVel = gpsVelocity.East;
downVel = gpsVelocity.Down;
}
break;
case GUIDANCESETTINGS_VELOCITYSOURCE_GPSPOS:
{
GPSPositionData gpsPosition;
GPSPositionGet(&gpsPosition);
northVel = gpsPosition.Groundspeed * cosf(gpsPosition.Heading * F_PI / 180.0f);
eastVel = gpsPosition.Groundspeed * sinf(gpsPosition.Heading * F_PI / 180.0f);
downVel = velocityActual.Down;
}
break;
default:
PIOS_Assert(0);
break;
}
// Testing code - refactor into manual control command
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
stabDesired.Yaw = stabSettings.MaximumRate[STABILIZATIONSETTINGS_MAXIMUMRATE_YAW] * manualControlData.Yaw;
// Compute desired north command
northError = velocityDesired.North - northVel;
northVelIntegral = bound(northVelIntegral + northError * dT * fixedwingpathfollowerSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_KI],
-fixedwingpathfollowerSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_ILIMIT],
fixedwingpathfollowerSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_ILIMIT]);
northCommand = (northError * fixedwingpathfollowerSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_KP] +
northVelIntegral -
nedAccel.North * fixedwingpathfollowerSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_KD] +
velocityDesired.North * fixedwingpathfollowerSettings.VelocityFeedforward);
// Compute desired east command
eastError = velocityDesired.East - eastVel;
eastVelIntegral = bound(eastVelIntegral + eastError * dT * fixedwingpathfollowerSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_KI],
-fixedwingpathfollowerSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_ILIMIT],
fixedwingpathfollowerSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_ILIMIT]);
eastCommand = (eastError * fixedwingpathfollowerSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_KP] +
eastVelIntegral -
nedAccel.East * fixedwingpathfollowerSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_KD] +
velocityDesired.East * fixedwingpathfollowerSettings.VelocityFeedforward);
// Compute desired down command
downError = velocityDesired.Down - downVel;
// Must flip this sign
downError = -downError;
downVelIntegral = bound(downVelIntegral + downError * dT * fixedwingpathfollowerSettings.VerticalVelPID[GUIDANCESETTINGS_VERTICALVELPID_KI],
-fixedwingpathfollowerSettings.VerticalVelPID[GUIDANCESETTINGS_VERTICALVELPID_ILIMIT],
fixedwingpathfollowerSettings.VerticalVelPID[GUIDANCESETTINGS_VERTICALVELPID_ILIMIT]);
downCommand = (downError * fixedwingpathfollowerSettings.VerticalVelPID[GUIDANCESETTINGS_VERTICALVELPID_KP] +
downVelIntegral -
nedAccel.Down * fixedwingpathfollowerSettings.VerticalVelPID[GUIDANCESETTINGS_VERTICALVELPID_KD]);
stabDesired.Throttle = bound(fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_NEUTRAL] +
downCommand,
fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_MIN],
fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_MAX]);
// Project the north and east command signals into the pitch and roll based on yaw. For this to behave well the
// craft should move similarly for 5 deg roll versus 5 deg pitch
stabDesired.Pitch = bound(fixedwingpathfollowerSettings.PitchLimit[GUIDANCESETTINGS_PITCHLIMIT_NEUTRAL] +
(-northCommand * cosf(attitudeActual.Yaw * F_PI / 180.0f)) +
(-eastCommand * sinf(attitudeActual.Yaw * F_PI / 180.0f)),
fixedwingpathfollowerSettings.PitchLimit[GUIDANCESETTINGS_PITCHLIMIT_MIN],
fixedwingpathfollowerSettings.PitchLimit[GUIDANCESETTINGS_PITCHLIMIT_MAX]);
stabDesired.Roll = bound(fixedwingpathfollowerSettings.RollLimit[GUIDANCESETTINGS_ROLLLIMIT_NEUTRAL] +
(-northCommand * sinf(attitudeActual.Yaw * F_PI / 180.0f)) +
(eastCommand * cosf(attitudeActual.Yaw * F_PI / 180.0f)),
fixedwingpathfollowerSettings.RollLimit[GUIDANCESETTINGS_ROLLLIMIT_MIN],
fixedwingpathfollowerSettings.RollLimit[GUIDANCESETTINGS_ROLLLIMIT_MAX] );
if(fixedwingpathfollowerSettings.ThrottleControl == GUIDANCESETTINGS_THROTTLECONTROL_FALSE) {
// For now override throttle with manual control. Disable at your risk, quad goes to China.
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.Throttle = manualControl.Throttle;
}
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
StabilizationDesiredSet(&stabDesired);
}
/**
* Keep a running filtered version of the acceleration in the NED frame
*/
static void updateNedAccel()
{
float accel[3];
float q[4];
float Rbe[3][3];
float accel_ned[3];
// Collect downsampled attitude data
AccelsData accels;
AccelsGet(&accels);
accel[0] = accels.x;
accel[1] = accels.y;
accel[2] = accels.z;
//rotate avg accels into earth frame and store it
AttitudeActualData attitudeActual;
AttitudeActualGet(&attitudeActual);
q[0]=attitudeActual.q1;
q[1]=attitudeActual.q2;
q[2]=attitudeActual.q3;
q[3]=attitudeActual.q4;
Quaternion2R(q, Rbe);
for (uint8_t i=0; i<3; i++){
accel_ned[i]=0;
for (uint8_t j=0; j<3; j++)
accel_ned[i] += Rbe[j][i]*accel[j];
}
accel_ned[2] += 9.81f;
NedAccelData accelData;
NedAccelGet(&accelData);
accelData.North = accel_ned[0];
accelData.East = accel_ned[1];
accelData.Down = accel_ned[2];
NedAccelSet(&accelData);
}
/**
* Set the desired velocity from the input sticks
*/
static void manualSetDesiredVelocity()
{
ManualControlCommandData cmd;
VelocityDesiredData velocityDesired;
ManualControlCommandGet(&cmd);
VelocityDesiredGet(&velocityDesired);
FixedWingPathFollowerSettingsData fixedwingpathfollowerSettings;
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
velocityDesired.North = -fixedwingpathfollowerSettings.HorizontalVelMax * cmd.Pitch;
velocityDesired.East = fixedwingpathfollowerSettings.HorizontalVelMax * cmd.Roll;
velocityDesired.Down = 0;
VelocityDesiredSet(&velocityDesired);
}
/**
* Bound input value between limits
*/
static float bound(float val, float min, float max)
{
if (val < min) {
val = min;
} else if (val > max) {
val = max;
}
return val;
}
static void baroAirspeedUpdatedCb(UAVObjEvent * ev)
{
BaroAirspeedData baroAirspeed;
VelocityActualData velocityActual;
BaroAirspeedGet(&baroAirspeed);
if (baroAirspeed.Connected != BAROAIRSPEED_CONNECTED_TRUE) {
baroAirspeedBias = 0;
} else {
VelocityActualGet(&velocityActual);
float speed = sqrtf(velocityActual.East*velocityActual.East + velocityActual.North*velocityActual.North + velocityActual.Down*velocityActual.Down );
baroAirspeedBias = baroAirspeed.Airspeed - speed;
}
}