1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-06 17:46:07 +01:00
LibrePilot/flight/modules/StateEstimation/stateestimation.c
Corvus Corax 27eadc200b Merge branch 'corvuscorax/lla2nedfilter' into next
Conflicts:
	flight/modules/StateEstimation/stateestimation.c
2013-07-10 14:38:12 +02:00

524 lines
18 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup State Estimation
* @brief Acquires sensor data and computes state estimate
* @{
*
* @file stateestimation.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2013.
* @brief Module to handle all comms to the AHRS on a periodic basis.
*
* @see The GNU Public License (GPL) Version 3
*
******************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "inc/stateestimation.h"
#include <gyrosensor.h>
#include <accelsensor.h>
#include <magsensor.h>
#include <barosensor.h>
#include <airspeedsensor.h>
#include <gpspositionsensor.h>
#include <gpsvelocitysensor.h>
#include <gyrostate.h>
#include <accelstate.h>
#include <magstate.h>
#include <airspeedstate.h>
#include <attitudestate.h>
#include <positionstate.h>
#include <velocitystate.h>
#include "revosettings.h"
#include "flightstatus.h"
#include "CoordinateConversions.h"
// Private constants
#define STACK_SIZE_BYTES 256
#define CALLBACK_PRIORITY CALLBACK_PRIORITY_REGULAR
#define TASK_PRIORITY CALLBACK_TASK_FLIGHTCONTROL
#define TIMEOUT_MS 10
// local macros, ONLY to be used in the middle of StateEstimationCb in section RUNSTATE_LOAD after the update of states updated!
#define FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(sensorname, shortname, a1, a2, a3) \
if (IS_SET(states.updated, SENSORUPDATES_##shortname)) { \
sensorname##Data s; \
sensorname##Get(&s); \
if (IS_REAL(s.a1) && IS_REAL(s.a2) && IS_REAL(s.a3)) { \
states.shortname[0] = s.a1; \
states.shortname[1] = s.a2; \
states.shortname[2] = s.a3; \
} \
else { \
UNSET_MASK(states.updated, SENSORUPDATES_##shortname); \
} \
}
#define FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_1_DIMENSION_WITH_CUSTOM_EXTRA_CHECK(sensorname, shortname, a1, EXTRACHECK) \
if (IS_SET(states.updated, SENSORUPDATES_##shortname)) { \
sensorname##Data s; \
sensorname##Get(&s); \
if (IS_REAL(s.a1) && EXTRACHECK) { \
states.shortname[0] = s.a1; \
} \
else { \
UNSET_MASK(states.updated, SENSORUPDATES_##shortname); \
} \
}
// local macros, ONLY to be used in the middle of StateEstimationCb in section RUNSTATE_SAVE before the check of alarms!
#define EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(statename, shortname, a1, a2, a3) \
if (IS_SET(states.updated, SENSORUPDATES_##shortname)) { \
statename##Data s; \
statename##Get(&s); \
s.a1 = states.shortname[0]; \
s.a2 = states.shortname[1]; \
s.a3 = states.shortname[2]; \
statename##Set(&s); \
}
#define EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_2_DIMENSIONS(statename, shortname, a1, a2) \
if (IS_SET(states.updated, SENSORUPDATES_##shortname)) { \
statename##Data s; \
statename##Get(&s); \
s.a1 = states.shortname[0]; \
s.a2 = states.shortname[1]; \
statename##Set(&s); \
}
// Private types
struct filterPipelineStruct;
typedef const struct filterPipelineStruct {
const stateFilter *filter;
const struct filterPipelineStruct *next;
} filterPipeline;
// Private variables
static DelayedCallbackInfo *stateEstimationCallback;
static volatile RevoSettingsData revoSettings;
static volatile sensorUpdates updatedSensors;
static int32_t fusionAlgorithm = -1;
static filterPipeline *filterChain = NULL;
// different filters available to state estimation
static stateFilter magFilter;
static stateFilter baroFilter;
static stateFilter altitudeFilter;
static stateFilter airFilter;
static stateFilter stationaryFilter;
static stateFilter llaFilter;
static stateFilter cfFilter;
static stateFilter cfmFilter;
static stateFilter ekf13iFilter;
static stateFilter ekf13Filter;
// preconfigured filter chains selectable via revoSettings.FusionAlgorithm
static filterPipeline *cfQueue = &(filterPipeline) {
.filter = &magFilter,
.next = &(filterPipeline) {
.filter = &airFilter,
.next = &(filterPipeline) {
.filter = &llaFilter,
.next = &(filterPipeline) {
.filter = &baroFilter,
.next = &(filterPipeline) {
.filter = &altitudeFilter,
.next = &(filterPipeline) {
.filter = &cfFilter,
.next = NULL,
}
}
}
}
}
};
static const filterPipeline *cfmQueue = &(filterPipeline) {
.filter = &magFilter,
.next = &(filterPipeline) {
.filter = &airFilter,
.next = &(filterPipeline) {
.filter = &llaFilter,
.next = &(filterPipeline) {
.filter = &baroFilter,
.next = &(filterPipeline) {
.filter = &altitudeFilter,
.next = &(filterPipeline) {
.filter = &cfmFilter,
.next = NULL,
}
}
}
}
}
};
static const filterPipeline *ekf13iQueue = &(filterPipeline) {
.filter = &magFilter,
.next = &(filterPipeline) {
.filter = &airFilter,
.next = &(filterPipeline) {
.filter = &llaFilter,
.next = &(filterPipeline) {
.filter = &baroFilter,
.next = &(filterPipeline) {
.filter = &stationaryFilter,
.next = &(filterPipeline) {
.filter = &ekf13iFilter,
.next = NULL,
}
}
}
}
}
};
static const filterPipeline *ekf13Queue = &(filterPipeline) {
.filter = &magFilter,
.next = &(filterPipeline) {
.filter = &airFilter,
.next = &(filterPipeline) {
.filter = &llaFilter,
.next = &(filterPipeline) {
.filter = &baroFilter,
.next = &(filterPipeline) {
.filter = &ekf13Filter,
.next = NULL,
}
}
}
}
};
// Private functions
static void settingsUpdatedCb(UAVObjEvent *objEv);
static void sensorUpdatedCb(UAVObjEvent *objEv);
static void StateEstimationCb(void);
static inline int32_t maxint32_t(int32_t a, int32_t b)
{
if (a > b) {
return a;
}
return b;
}
/**
* Initialise the module. Called before the start function
* \returns 0 on success or -1 if initialisation failed
*/
int32_t StateEstimationInitialize(void)
{
RevoSettingsInitialize();
GyroSensorInitialize();
MagSensorInitialize();
BaroSensorInitialize();
AirspeedSensorInitialize();
GPSVelocitySensorInitialize();
GPSPositionSensorInitialize();
GyroStateInitialize();
AccelStateInitialize();
MagStateInitialize();
AirspeedStateInitialize();
PositionStateInitialize();
VelocityStateInitialize();
RevoSettingsConnectCallback(&settingsUpdatedCb);
GyroSensorConnectCallback(&sensorUpdatedCb);
AccelSensorConnectCallback(&sensorUpdatedCb);
MagSensorConnectCallback(&sensorUpdatedCb);
BaroSensorConnectCallback(&sensorUpdatedCb);
AirspeedSensorConnectCallback(&sensorUpdatedCb);
GPSVelocitySensorConnectCallback(&sensorUpdatedCb);
GPSPositionSensorConnectCallback(&sensorUpdatedCb);
uint32_t stack_required = STACK_SIZE_BYTES;
// Initialize Filters
stack_required = maxint32_t(stack_required, filterMagInitialize(&magFilter));
stack_required = maxint32_t(stack_required, filterBaroInitialize(&baroFilter));
stack_required = maxint32_t(stack_required, filterAltitudeInitialize(&altitudeFilter));
stack_required = maxint32_t(stack_required, filterAirInitialize(&airFilter));
stack_required = maxint32_t(stack_required, filterStationaryInitialize(&stationaryFilter));
stack_required = maxint32_t(stack_required, filterLLAInitialize(&llaFilter));
stack_required = maxint32_t(stack_required, filterCFInitialize(&cfFilter));
stack_required = maxint32_t(stack_required, filterCFMInitialize(&cfmFilter));
stack_required = maxint32_t(stack_required, filterEKF13iInitialize(&ekf13iFilter));
stack_required = maxint32_t(stack_required, filterEKF13Initialize(&ekf13Filter));
stateEstimationCallback = DelayedCallbackCreate(&StateEstimationCb, CALLBACK_PRIORITY, TASK_PRIORITY, stack_required);
return 0;
}
/**
* Start the task. Expects all objects to be initialized by this point.
* \returns 0 on success or -1 if initialisation failed
*/
int32_t StateEstimationStart(void)
{
RevoSettingsConnectCallback(&settingsUpdatedCb);
// Force settings update to make sure rotation loaded
settingsUpdatedCb(NULL);
return 0;
}
MODULE_INITCALL(StateEstimationInitialize, StateEstimationStart);
/**
* Module callback
*/
static void StateEstimationCb(void)
{
static enum { RUNSTATE_LOAD = 0, RUNSTATE_FILTER = 1, RUNSTATE_SAVE = 2 } runState = RUNSTATE_LOAD;
static int8_t alarm = 0;
static int8_t lastAlarm = -1;
static uint16_t alarmcounter = 0;
static filterPipeline *current;
static stateEstimation states;
static uint32_t last_time;
static uint16_t bootDelay = 64;
// after system startup, first few sensor readings might be messed up, delay until everything has settled
if (bootDelay) {
bootDelay--;
DelayedCallbackSchedule(stateEstimationCallback, TIMEOUT_MS, CALLBACK_UPDATEMODE_SOONER);
return;
}
switch (runState) {
case RUNSTATE_LOAD:
alarm = 0;
// set alarm to warning if called through timeout
if (updatedSensors == 0) {
if (PIOS_DELAY_DiffuS(last_time) > 1000 * TIMEOUT_MS) {
alarm = 1;
}
} else {
last_time = PIOS_DELAY_GetRaw();
}
// check if a new filter chain should be initialized
if (fusionAlgorithm != revoSettings.FusionAlgorithm) {
FlightStatusData fs;
FlightStatusGet(&fs);
if (fs.Armed == FLIGHTSTATUS_ARMED_DISARMED || fusionAlgorithm == -1) {
const filterPipeline *newFilterChain;
switch (revoSettings.FusionAlgorithm) {
case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARY:
newFilterChain = cfQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARYMAG:
newFilterChain = cfmQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_INS13INDOOR:
newFilterChain = ekf13iQueue;
break;
case REVOSETTINGS_FUSIONALGORITHM_INS13OUTDOOR:
newFilterChain = ekf13Queue;
break;
default:
newFilterChain = NULL;
}
// initialize filters in chain
current = (filterPipeline *)newFilterChain;
bool error = 0;
while (current != NULL) {
int32_t result = current->filter->init((stateFilter *)current->filter);
if (result != 0) {
error = 1;
break;
}
current = current->next;
}
if (error) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
return;
} else {
// set new fusion algortithm
filterChain = (filterPipeline *)newFilterChain;
fusionAlgorithm = revoSettings.FusionAlgorithm;
}
}
}
// read updated sensor UAVObjects and set initial state
states.updated = updatedSensors;
updatedSensors = 0;
// fetch sensors, check values, and load into state struct
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(GyroSensor, gyro, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(AccelSensor, accel, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(MagSensor, mag, x, y, z);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(GPSVelocitySensor, vel, North, East, Down);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_1_DIMENSION_WITH_CUSTOM_EXTRA_CHECK(BaroSensor, baro, Altitude, true);
FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_1_DIMENSION_WITH_CUSTOM_EXTRA_CHECK(AirspeedSensor, airspeed, CalibratedAirspeed, s.SensorConnected == AIRSPEEDSENSOR_SENSORCONNECTED_TRUE);
states.airspeed[1] = 0.0f; // sensor does not provide true airspeed, needs to be calculated by filter, set to zero for now
// GPS position data (LLA) is not fetched here since it does not contain floats. The filter must do all checks itself
// at this point sensor state is stored in "states" with some rudimentary filtering applied
// apply all filters in the current filter chain
current = (filterPipeline *)filterChain;
// we are not done, re-dispatch self execution
runState = RUNSTATE_FILTER;
DelayedCallbackDispatch(stateEstimationCallback);
break;
case RUNSTATE_FILTER:
if (current != NULL) {
int32_t result = current->filter->filter((stateFilter *)current->filter, &states);
if (result > alarm) {
alarm = result;
}
current = current->next;
}
// we are not done, re-dispatch self execution
if (!current) {
runState = RUNSTATE_SAVE;
}
DelayedCallbackDispatch(stateEstimationCallback);
break;
case RUNSTATE_SAVE:
// the final output of filters is saved in state variables
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(GyroState, gyro, x, y, z);
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(AccelState, accel, x, y, z);
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(MagState, mag, x, y, z);
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(PositionState, pos, North, East, Down);
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(VelocityState, vel, North, East, Down);
EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_2_DIMENSIONS(AirspeedState, airspeed, CalibratedAirspeed, TrueAirspeed);
// attitude nees manual conversion from quaternion to euler
if (IS_SET(states.updated, SENSORUPDATES_attitude)) { \
AttitudeStateData s;
AttitudeStateGet(&s);
s.q1 = states.attitude[0];
s.q2 = states.attitude[1];
s.q3 = states.attitude[2];
s.q4 = states.attitude[3];
Quaternion2RPY(&s.q1, &s.Roll);
AttitudeStateSet(&s);
}
// throttle alarms, raise alarm flags immediately
// but require system to run for a while before decreasing
// to prevent alarm flapping
if (alarm >= lastAlarm) {
lastAlarm = alarm;
alarmcounter = 0;
} else {
if (alarmcounter < 100) {
alarmcounter++;
} else {
lastAlarm = alarm;
alarmcounter = 0;
}
}
// clear alarms if everything is alright, then schedule callback execution after timeout
if (lastAlarm == 1) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_WARNING);
} else if (lastAlarm == 2) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
} else if (lastAlarm >= 3) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
}
// we are done, re-schedule next self execution
runState = RUNSTATE_LOAD;
if (updatedSensors) {
DelayedCallbackDispatch(stateEstimationCallback);
} else {
DelayedCallbackSchedule(stateEstimationCallback, TIMEOUT_MS, CALLBACK_UPDATEMODE_SOONER);
}
break;
}
}
/**
* Callback for eventdispatcher when RevoSettings has been updated
*/
static void settingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
RevoSettingsGet((RevoSettingsData *)&revoSettings);
}
/**
* Callback for eventdispatcher when any sensor UAVObject has been updated
* updates the list of "recently updated UAVObjects" and dispatches the state estimator callback
*/
static void sensorUpdatedCb(UAVObjEvent *ev)
{
if (!ev) {
return;
}
if (ev->obj == GyroSensorHandle()) {
updatedSensors |= SENSORUPDATES_gyro;
}
if (ev->obj == AccelSensorHandle()) {
updatedSensors |= SENSORUPDATES_accel;
}
if (ev->obj == MagSensorHandle()) {
updatedSensors |= SENSORUPDATES_mag;
}
if (ev->obj == GPSPositionSensorHandle()) {
updatedSensors |= SENSORUPDATES_lla;
}
if (ev->obj == GPSVelocitySensorHandle()) {
updatedSensors |= SENSORUPDATES_vel;
}
if (ev->obj == BaroSensorHandle()) {
updatedSensors |= SENSORUPDATES_baro;
}
if (ev->obj == AirspeedSensorHandle()) {
updatedSensors |= SENSORUPDATES_airspeed;
}
DelayedCallbackDispatch(stateEstimationCallback);
}
/**
* @}
* @}
*/