1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-29 07:24:13 +01:00
LibrePilot/flight/libraries/inc/CoordinateConversions.h

102 lines
4.1 KiB
C

/**
******************************************************************************
*
* @file CoordinateConverions.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Header for Coordinate conversions library in CoordinateConversions.c
* - all angles in deg
* - distances in meters
* - altitude above WGS-84 elipsoid
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef COORDINATECONVERSIONS_H_
#define COORDINATECONVERSIONS_H_
// ****** convert Lat,Lon,Alt to ECEF ************
void LLA2ECEF(int32_t LLAi[3], double ECEF[3]);
// ****** convert ECEF to Lat,Lon,Alt (ITERATIVE!) *********
uint16_t ECEF2LLA(double ECEF[3], float LLA[3]);
void RneFromLLA(int32_t LLAi[3], float Rne[3][3]);
// ****** find rotation matrix from rotation vector
void Rv2Rot(float Rv[3], float R[3][3]);
// ****** find roll, pitch, yaw from quaternion ********
void Quaternion2RPY(const float q[4], float rpy[3]);
// ****** find quaternion from roll, pitch, yaw ********
void RPY2Quaternion(const float rpy[3], float q[4]);
// ** Find Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
void Quaternion2R(float q[4], float Rbe[3][3]);
// ****** Express LLA in a local NED Base Frame ********
void LLA2Base(int32_t LLAi[3], double BaseECEF[3], float Rne[3][3], float NED[3]);
// ****** Express ECEF in a local NED Base Frame ********
void ECEF2Base(double ECEF[3], double BaseECEF[3], float Rne[3][3], float NED[3]);
// ****** convert Rotation Matrix to Quaternion ********
// ****** if R converts from e to b, q is rotation from e to b ****
void R2Quaternion(float R[3][3], float q[4]);
// ****** Rotation Matrix from Two Vector Directions ********
// ****** given two vector directions (v1 and v2) known in two frames (b and e) find Rbe ***
// ****** solution is approximate if can't be exact ***
uint8_t RotFrom2Vectors(const float v1b[3], const float v1e[3], const float v2b[3], const float v2e[3], float Rbe[3][3]);
// ****** Vector Cross Product ********
void CrossProduct(const float v1[3], const float v2[3], float result[3]);
// ****** Vector Magnitude ********
float VectorMagnitude(const float v[3]);
void quat_inverse(float q[4]);
void quat_copy(const float q[4], float qnew[4]);
void quat_mult(const float q1[4], const float q2[4], float qout[4]);
void rot_mult(float R[3][3], const float vec[3], float vec_out[3]);
/**
* matrix_mult_3x3f - perform a multiplication between two 3x3 float matrices
* result = a*b
* @param a
* @param b
* @param result
*/
inline void matrix_mult_3x3f(float a[3][3], float b[3][3], float result[3][3])
{
result[0][0] = a[0][0] * b[0][0] + a[1][0] * b[0][1] + a[2][0] * b[0][2];
result[0][1] = a[0][1] * b[0][0] + a[1][1] * b[0][1] + a[2][1] * b[0][2];
result[0][2] = a[0][2] * b[0][0] + a[1][2] * b[0][1] + a[2][2] * b[0][2];
result[1][0] = a[0][0] * b[1][0] + a[1][0] * b[1][1] + a[2][0] * b[1][2];
result[1][1] = a[0][1] * b[1][0] + a[1][1] * b[1][1] + a[2][1] * b[1][2];
result[1][2] = a[0][2] * b[1][0] + a[1][2] * b[1][1] + a[2][2] * b[1][2];
result[2][0] = a[0][0] * b[2][0] + a[1][0] * b[2][1] + a[2][0] * b[2][2];
result[2][1] = a[0][1] * b[2][0] + a[1][1] * b[2][1] + a[2][1] * b[2][2];
result[2][2] = a[0][2] * b[2][0] + a[1][2] * b[2][1] + a[2][2] * b[2][2];
}
#endif // COORDINATECONVERSIONS_H_