1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-18 03:52:11 +01:00

786 lines
29 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup ActuatorModule Actuator Module
* @brief Compute servo/motor settings based on @ref ActuatorDesired "desired actuator positions" and aircraft type.
* This is where all the mixing of channels is computed.
* @{
*
* @file actuator.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Actuator module. Drives the actuators (servos, motors etc).
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <openpilot.h>
#include "accessorydesired.h"
#include "actuator.h"
#include "actuatorsettings.h"
#include "systemsettings.h"
#include "actuatordesired.h"
#include "actuatorcommand.h"
#include "flightstatus.h"
#include "mixersettings.h"
#include "mixerstatus.h"
#include "cameradesired.h"
#include "manualcontrolcommand.h"
#include "taskinfo.h"
#undef PIOS_INCLUDE_INSTRUMENTATION
#ifdef PIOS_INCLUDE_INSTRUMENTATION
#include <pios_instrumentation.h>
static int8_t counter;
// Counter 0xAC700001 total Actuator body execution time(excluding queue waits etc).
#endif
// Private constants
#define MAX_QUEUE_SIZE 2
#if defined(PIOS_ACTUATOR_STACK_SIZE)
#define STACK_SIZE_BYTES PIOS_ACTUATOR_STACK_SIZE
#else
#define STACK_SIZE_BYTES 1312
#endif
#define TASK_PRIORITY (tskIDLE_PRIORITY + 4) // device driver
#define FAILSAFE_TIMEOUT_MS 100
#define MAX_MIX_ACTUATORS ACTUATORCOMMAND_CHANNEL_NUMELEM
#define CAMERA_BOOT_DELAY_MS 7000
// Private types
// Private variables
static xQueueHandle queue;
static xTaskHandle taskHandle;
static float lastResult[MAX_MIX_ACTUATORS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
static float filterAccumulator[MAX_MIX_ACTUATORS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
// used to inform the actuator thread that actuator update rate is changed
static volatile bool actuator_settings_updated;
// used to inform the actuator thread that mixer settings are changed
static volatile bool mixer_settings_updated;
// Private functions
static void actuatorTask(void *parameters);
static int16_t scaleChannel(float value, int16_t max, int16_t min, int16_t neutral);
static void setFailsafe(const ActuatorSettingsData *actuatorSettings, const MixerSettingsData *mixerSettings);
static float MixerCurve(const float throttle, const float *curve, uint8_t elements);
static bool set_channel(uint8_t mixer_channel, uint16_t value, const ActuatorSettingsData *actuatorSettings);
static void actuator_update_rate_if_changed(const ActuatorSettingsData *actuatorSettings, bool force_update);
static void MixerSettingsUpdatedCb(UAVObjEvent *ev);
static void ActuatorSettingsUpdatedCb(UAVObjEvent *ev);
float ProcessMixer(const int index, const float curve1, const float curve2,
const MixerSettingsData *mixerSettings, ActuatorDesiredData *desired,
const float period);
// this structure is equivalent to the UAVObjects for one mixer.
typedef struct {
uint8_t type;
int8_t matrix[5];
} __attribute__((packed)) Mixer_t;
/**
* @brief Module initialization
* @return 0
*/
int32_t ActuatorStart()
{
// Start main task
xTaskCreate(actuatorTask, "Actuator", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &taskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_ACTUATOR, taskHandle);
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_RegisterFlag(PIOS_WDG_ACTUATOR);
#endif
return 0;
}
/**
* @brief Module initialization
* @return 0
*/
int32_t ActuatorInitialize()
{
// Register for notification of changes to ActuatorSettings
ActuatorSettingsInitialize();
ActuatorSettingsConnectCallback(ActuatorSettingsUpdatedCb);
// Register for notification of changes to MixerSettings
MixerSettingsInitialize();
MixerSettingsConnectCallback(MixerSettingsUpdatedCb);
// Listen for ActuatorDesired updates (Primary input to this module)
ActuatorDesiredInitialize();
queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent));
ActuatorDesiredConnectQueue(queue);
// Register AccessoryDesired (Secondary input to this module)
AccessoryDesiredInitialize();
// Primary output of this module
ActuatorCommandInitialize();
#ifdef DIAG_MIXERSTATUS
// UAVO only used for inspecting the internal status of the mixer during debug
MixerStatusInitialize();
#endif
return 0;
}
MODULE_INITCALL(ActuatorInitialize, ActuatorStart);
/**
* @brief Main Actuator module task
*
* Universal matrix based mixer for VTOL, helis and fixed wing.
* Converts desired roll,pitch,yaw and throttle to servo/ESC outputs.
*
* Because of how the Throttle ranges from 0 to 1, the motors should too!
*
* Note this code depends on the UAVObjects for the mixers being all being the same
* and in sequence. If you change the object definition, make sure you check the code!
*
* @return -1 if error, 0 if success
*/
static void actuatorTask(__attribute__((unused)) void *parameters)
{
UAVObjEvent ev;
portTickType lastSysTime;
portTickType thisSysTime;
float dTSeconds;
uint32_t dTMilliseconds;
ActuatorCommandData command;
ActuatorDesiredData desired;
MixerStatusData mixerStatus;
FlightStatusData flightStatus;
SystemSettingsThrustControlOptions thrustType;
float throttleDesired;
float collectiveDesired;
#ifdef PIOS_INCLUDE_INSTRUMENTATION
counter = PIOS_Instrumentation_CreateCounter(0xAC700001);
#endif
/* Read initial values of ActuatorSettings */
ActuatorSettingsData actuatorSettings;
actuator_settings_updated = false;
ActuatorSettingsGet(&actuatorSettings);
/* Read initial values of MixerSettings */
MixerSettingsData mixerSettings;
mixer_settings_updated = false;
MixerSettingsGet(&mixerSettings);
/* Force an initial configuration of the actuator update rates */
actuator_update_rate_if_changed(&actuatorSettings, true);
// Go to the neutral (failsafe) values until an ActuatorDesired update is received
setFailsafe(&actuatorSettings, &mixerSettings);
// Main task loop
lastSysTime = xTaskGetTickCount();
while (1) {
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_UpdateFlag(PIOS_WDG_ACTUATOR);
#endif
// Wait until the ActuatorDesired object is updated
uint8_t rc = xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS);
#ifdef PIOS_INCLUDE_INSTRUMENTATION
PIOS_Instrumentation_TimeStart(counter);
#endif
/* Process settings updated events even in timeout case so we always act on the latest settings */
if (actuator_settings_updated) {
actuator_settings_updated = false;
ActuatorSettingsGet(&actuatorSettings);
actuator_update_rate_if_changed(&actuatorSettings, false);
}
if (mixer_settings_updated) {
mixer_settings_updated = false;
MixerSettingsGet(&mixerSettings);
}
if (rc != pdTRUE) {
/* Update of ActuatorDesired timed out. Go to failsafe */
setFailsafe(&actuatorSettings, &mixerSettings);
continue;
}
// Check how long since last update
thisSysTime = xTaskGetTickCount();
dTMilliseconds = (thisSysTime == lastSysTime) ? 1 : (thisSysTime - lastSysTime) * portTICK_RATE_MS;
lastSysTime = thisSysTime;
dTSeconds = dTMilliseconds * 0.001f;
FlightStatusGet(&flightStatus);
ActuatorDesiredGet(&desired);
ActuatorCommandGet(&command);
SystemSettingsThrustControlGet(&thrustType);
// read in throttle and collective -demultiplex thrust
switch (thrustType) {
case SYSTEMSETTINGS_THRUSTCONTROL_THROTTLE:
throttleDesired = desired.Thrust;
ManualControlCommandCollectiveGet(&collectiveDesired);
break;
case SYSTEMSETTINGS_THRUSTCONTROL_COLLECTIVE:
ManualControlCommandThrottleGet(&throttleDesired);
collectiveDesired = desired.Thrust;
break;
default:
ManualControlCommandThrottleGet(&throttleDesired);
ManualControlCommandCollectiveGet(&collectiveDesired);
}
bool armed = flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED;
// safety settings
if (!armed) {
throttleDesired = 0;
}
if (throttleDesired <= 0.00f || !armed) {
// force set all other controls to zero if throttle is cut (previously set in Stabilization)
if (actuatorSettings.LowThrottleZeroAxis.Roll == ACTUATORSETTINGS_LOWTHROTTLEZEROAXIS_TRUE) {
desired.Roll = 0;
}
if (actuatorSettings.LowThrottleZeroAxis.Pitch == ACTUATORSETTINGS_LOWTHROTTLEZEROAXIS_TRUE) {
desired.Pitch = 0;
}
if (actuatorSettings.LowThrottleZeroAxis.Yaw == ACTUATORSETTINGS_LOWTHROTTLEZEROAXIS_TRUE) {
desired.Yaw = 0;
}
}
#ifdef DIAG_MIXERSTATUS
MixerStatusGet(&mixerStatus);
#endif
int nMixers = 0;
Mixer_t *mixers = (Mixer_t *)&mixerSettings.Mixer1Type;
for (int ct = 0; ct < MAX_MIX_ACTUATORS; ct++) {
if (mixers[ct].type != MIXERSETTINGS_MIXER1TYPE_DISABLED) {
nMixers++;
}
}
if ((nMixers < 2) && !ActuatorCommandReadOnly()) { // Nothing can fly with less than two mixers.
setFailsafe(&actuatorSettings, &mixerSettings); // So that channels like PWM buzzer keep working
continue;
}
AlarmsClear(SYSTEMALARMS_ALARM_ACTUATOR);
bool activeThrottle = (throttleDesired < 0.00f || throttleDesired > 0.00f);
bool positiveThrottle = (throttleDesired > 0.00f);
bool spinWhileArmed = actuatorSettings.MotorsSpinWhileArmed == ACTUATORSETTINGS_MOTORSSPINWHILEARMED_TRUE;
float curve1 = MixerCurve(throttleDesired, mixerSettings.ThrottleCurve1, MIXERSETTINGS_THROTTLECURVE1_NUMELEM);
// The source for the secondary curve is selectable
float curve2 = 0;
AccessoryDesiredData accessory;
switch (mixerSettings.Curve2Source) {
case MIXERSETTINGS_CURVE2SOURCE_THROTTLE:
curve2 = MixerCurve(throttleDesired, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
break;
case MIXERSETTINGS_CURVE2SOURCE_ROLL:
curve2 = MixerCurve(desired.Roll, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
break;
case MIXERSETTINGS_CURVE2SOURCE_PITCH:
curve2 = MixerCurve(desired.Pitch, mixerSettings.ThrottleCurve2,
MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
break;
case MIXERSETTINGS_CURVE2SOURCE_YAW:
curve2 = MixerCurve(desired.Yaw, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
break;
case MIXERSETTINGS_CURVE2SOURCE_COLLECTIVE:
curve2 = MixerCurve(collectiveDesired, mixerSettings.ThrottleCurve2,
MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
break;
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY0:
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY1:
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY2:
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY3:
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY4:
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY5:
if (AccessoryDesiredInstGet(mixerSettings.Curve2Source - MIXERSETTINGS_CURVE2SOURCE_ACCESSORY0, &accessory) == 0) {
curve2 = MixerCurve(accessory.AccessoryVal, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM);
} else {
curve2 = 0;
}
break;
}
float *status = (float *)&mixerStatus; // access status objects as an array of floats
for (int ct = 0; ct < MAX_MIX_ACTUATORS; ct++) {
// During boot all camera actuators should be completely disabled (PWM pulse = 0).
// command.Channel[i] is reused below as a channel PWM activity flag:
// 0 - PWM disabled, >0 - PWM set to real mixer value using scaleChannel() later.
// Setting it to 1 by default means "Rescale this channel and enable PWM on its output".
command.Channel[ct] = 1;
if (mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_DISABLED) {
// Set to minimum if disabled. This is not the same as saying PWM pulse = 0 us
status[ct] = -1;
continue;
}
if ((mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_MOTOR) || (mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_REVERSABLEMOTOR) || (mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_SERVO)) {
status[ct] = ProcessMixer(ct, curve1, curve2, &mixerSettings, &desired, dTSeconds);
} else {
status[ct] = -1;
}
// Motors have additional protection for when to be on
if (mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_MOTOR) {
// If not armed or motors aren't meant to spin all the time
if (!armed ||
(!spinWhileArmed && !positiveThrottle)) {
filterAccumulator[ct] = 0;
lastResult[ct] = 0;
status[ct] = -1; // force min throttle
}
// If armed meant to keep spinning,
else if ((spinWhileArmed && !positiveThrottle) ||
(status[ct] < 0)) {
status[ct] = 0;
}
}
// Reversable Motors are like Motors but go to neutral instead of minimum
if (mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_REVERSABLEMOTOR) {
// If not armed or motor is inactive - no "spinwhilearmed" for this engine type
if (!armed || !activeThrottle) {
filterAccumulator[ct] = 0;
lastResult[ct] = 0;
status[ct] = 0; // force neutral throttle
}
}
// If an accessory channel is selected for direct bypass mode
// In this configuration the accessory channel is scaled and mapped
// directly to output. Note: THERE IS NO SAFETY CHECK HERE FOR ARMING
// these also will not be updated in failsafe mode. I'm not sure what
// the correct behavior is since it seems domain specific. I don't love
// this code
if ((mixers[ct].type >= MIXERSETTINGS_MIXER1TYPE_ACCESSORY0) &&
(mixers[ct].type <= MIXERSETTINGS_MIXER1TYPE_ACCESSORY5)) {
if (AccessoryDesiredInstGet(mixers[ct].type - MIXERSETTINGS_MIXER1TYPE_ACCESSORY0, &accessory) == 0) {
status[ct] = accessory.AccessoryVal;
} else {
status[ct] = -1;
}
}
if ((mixers[ct].type >= MIXERSETTINGS_MIXER1TYPE_CAMERAROLLORSERVO1) &&
(mixers[ct].type <= MIXERSETTINGS_MIXER1TYPE_CAMERAYAW)) {
CameraDesiredData cameraDesired;
if (CameraDesiredGet(&cameraDesired) == 0) {
switch (mixers[ct].type) {
case MIXERSETTINGS_MIXER1TYPE_CAMERAROLLORSERVO1:
status[ct] = cameraDesired.RollOrServo1;
break;
case MIXERSETTINGS_MIXER1TYPE_CAMERAPITCHORSERVO2:
status[ct] = cameraDesired.PitchOrServo2;
break;
case MIXERSETTINGS_MIXER1TYPE_CAMERAYAW:
status[ct] = cameraDesired.Yaw;
break;
default:
break;
}
} else {
status[ct] = -1;
}
// Disable camera actuators for CAMERA_BOOT_DELAY_MS after boot
if (thisSysTime < (CAMERA_BOOT_DELAY_MS / portTICK_RATE_MS)) {
command.Channel[ct] = 0;
}
}
}
// Set real actuator output values scaling them from mixers. All channels
// will be set except explicitly disabled (which will have PWM pulse = 0).
for (int i = 0; i < MAX_MIX_ACTUATORS; i++) {
if (command.Channel[i]) {
command.Channel[i] = scaleChannel(status[i],
actuatorSettings.ChannelMax[i],
actuatorSettings.ChannelMin[i],
actuatorSettings.ChannelNeutral[i]);
}
}
// Store update time
command.UpdateTime = dTMilliseconds;
if (command.UpdateTime > command.MaxUpdateTime) {
command.MaxUpdateTime = command.UpdateTime;
}
// Update output object
ActuatorCommandSet(&command);
// Update in case read only (eg. during servo configuration)
ActuatorCommandGet(&command);
#ifdef DIAG_MIXERSTATUS
MixerStatusSet(&mixerStatus);
#endif
// Update servo outputs
bool success = true;
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n) {
success &= set_channel(n, command.Channel[n], &actuatorSettings);
}
if (!success) {
command.NumFailedUpdates++;
ActuatorCommandSet(&command);
AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR, SYSTEMALARMS_ALARM_CRITICAL);
}
#ifdef PIOS_INCLUDE_INSTRUMENTATION
PIOS_Instrumentation_TimeEnd(counter);
#endif
}
}
/**
* Process mixing for one actuator
*/
float ProcessMixer(const int index, const float curve1, const float curve2,
const MixerSettingsData *mixerSettings, ActuatorDesiredData *desired, const float period)
{
static float lastFilteredResult[MAX_MIX_ACTUATORS];
const Mixer_t *mixers = (Mixer_t *)&mixerSettings->Mixer1Type; // pointer to array of mixers in UAVObjects
const Mixer_t *mixer = &mixers[index];
float result = (((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_THROTTLECURVE1] / 128.0f) * curve1) +
(((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_THROTTLECURVE2] / 128.0f) * curve2) +
(((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_ROLL] / 128.0f) * desired->Roll) +
(((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_PITCH] / 128.0f) * desired->Pitch) +
(((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_YAW] / 128.0f) * desired->Yaw);
// note: no feedforward for reversable motors yet for safety reasons
if (mixer->type == MIXERSETTINGS_MIXER1TYPE_MOTOR) {
if (result < 0.0f) { // idle throttle
result = 0.0f;
}
// feed forward
float accumulator = filterAccumulator[index];
accumulator += (result - lastResult[index]) * mixerSettings->FeedForward;
lastResult[index] = result;
result += accumulator;
if (period > 0.0f) {
if (accumulator > 0.0f) {
float invFilter = period / mixerSettings->AccelTime;
if (invFilter > 1) {
invFilter = 1;
}
accumulator -= accumulator * invFilter;
} else {
float invFilter = period / mixerSettings->DecelTime;
if (invFilter > 1) {
invFilter = 1;
}
accumulator -= accumulator * invFilter;
}
}
filterAccumulator[index] = accumulator;
result += accumulator;
// acceleration limit
float dt = result - lastFilteredResult[index];
float maxDt = mixerSettings->MaxAccel * period;
if (dt > maxDt) { // we are accelerating too hard
result = lastFilteredResult[index] + maxDt;
}
lastFilteredResult[index] = result;
}
return result;
}
/**
* Interpolate a throttle curve. Throttle input should be in the range 0 to 1.
* Output is in the range 0 to 1.
*/
static float MixerCurve(const float throttle, const float *curve, uint8_t elements)
{
float scale = throttle * (float)(elements - 1);
int idx1 = scale;
scale -= (float)idx1; // remainder
if (curve[0] < -1) {
return throttle;
}
if (idx1 < 0) {
idx1 = 0; // clamp to lowest entry in table
scale = 0;
}
int idx2 = idx1 + 1;
if (idx2 >= elements) {
idx2 = elements - 1; // clamp to highest entry in table
if (idx1 >= elements) {
idx1 = elements - 1;
}
}
return curve[idx1] * (1.0f - scale) + curve[idx2] * scale;
}
/**
* Convert channel from -1/+1 to servo pulse duration in microseconds
*/
static int16_t scaleChannel(float value, int16_t max, int16_t min, int16_t neutral)
{
int16_t valueScaled;
// Scale
if (value >= 0.0f) {
valueScaled = (int16_t)(value * ((float)(max - neutral))) + neutral;
} else {
valueScaled = (int16_t)(value * ((float)(neutral - min))) + neutral;
}
if (max > min) {
if (valueScaled > max) {
valueScaled = max;
}
if (valueScaled < min) {
valueScaled = min;
}
} else {
if (valueScaled < max) {
valueScaled = max;
}
if (valueScaled > min) {
valueScaled = min;
}
}
return valueScaled;
}
/**
* Set actuator output to the neutral values (failsafe)
*/
static void setFailsafe(const ActuatorSettingsData *actuatorSettings, const MixerSettingsData *mixerSettings)
{
/* grab only the parts that we are going to use */
int16_t Channel[ACTUATORCOMMAND_CHANNEL_NUMELEM];
ActuatorCommandChannelGet(Channel);
const Mixer_t *mixers = (Mixer_t *)&mixerSettings->Mixer1Type; // pointer to array of mixers in UAVObjects
// Reset ActuatorCommand to safe values
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n) {
if (mixers[n].type == MIXERSETTINGS_MIXER1TYPE_MOTOR) {
Channel[n] = actuatorSettings->ChannelMin[n];
} else if (mixers[n].type == MIXERSETTINGS_MIXER1TYPE_SERVO || mixers[n].type == MIXERSETTINGS_MIXER1TYPE_REVERSABLEMOTOR) {
Channel[n] = actuatorSettings->ChannelNeutral[n];
} else {
Channel[n] = 0;
}
}
// Set alarm
AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR, SYSTEMALARMS_ALARM_CRITICAL);
// Update servo outputs
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n) {
set_channel(n, Channel[n], actuatorSettings);
}
// Update output object's parts that we changed
ActuatorCommandChannelSet(Channel);
}
/**
* determine buzzer or blink sequence
**/
typedef enum { BUZZ_BUZZER = 0, BUZZ_ARMING = 1, BUZZ_INFO = 2, BUZZ_MAX = 3 } buzzertype;
static inline bool buzzerState(buzzertype type)
{
// This is for buzzers that take a PWM input
static uint32_t tune[BUZZ_MAX] = { 0 };
static uint32_t tunestate[BUZZ_MAX] = { 0 };
uint32_t newTune = 0;
if (type == BUZZ_BUZZER) {
// Decide what tune to play
if (AlarmsGet(SYSTEMALARMS_ALARM_BATTERY) > SYSTEMALARMS_ALARM_WARNING) {
newTune = 0b11110110110000; // pause, short, short, short, long
} else if (AlarmsGet(SYSTEMALARMS_ALARM_GPS) >= SYSTEMALARMS_ALARM_WARNING) {
newTune = 0x80000000; // pause, short
} else {
newTune = 0;
}
} else { // BUZZ_ARMING || BUZZ_INFO
uint8_t arming;
FlightStatusArmedGet(&arming);
// base idle tune
newTune = 0x80000000; // 0b1000...
// Merge the error pattern for InfoLed
if (type == BUZZ_INFO) {
if (AlarmsGet(SYSTEMALARMS_ALARM_BATTERY) > SYSTEMALARMS_ALARM_WARNING) {
newTune |= 0b00000000001111111011111110000000;
} else if (AlarmsGet(SYSTEMALARMS_ALARM_GPS) >= SYSTEMALARMS_ALARM_WARNING) {
newTune |= 0b00000000000000110110110000000000;
}
}
// fast double blink pattern if armed
if (arming == FLIGHTSTATUS_ARMED_ARMED) {
newTune |= 0xA0000000; // 0b101000...
}
}
// Do we need to change tune?
if (newTune != tune[type]) {
tune[type] = newTune;
// resynchronize all tunes on change, so they stay in sync
for (int i = 0; i < BUZZ_MAX; i++) {
tunestate[i] = tune[i];
}
}
// Play tune
bool buzzOn = false;
static portTickType lastSysTime = 0;
portTickType thisSysTime = xTaskGetTickCount();
portTickType dT = 0;
// For now, only look at the battery alarm, because functions like AlarmsHasCritical() can block for some time; to be discussed
if (tune[type]) {
if (thisSysTime > lastSysTime) {
dT = thisSysTime - lastSysTime;
} else {
lastSysTime = 0; // avoid the case where SysTimeMax-lastSysTime <80
}
buzzOn = (tunestate[type] & 1);
if (dT > 80) {
// Go to next bit in alarm_seq_state
for (int i = 0; i < BUZZ_MAX; i++) {
tunestate[i] >>= 1;
if (tunestate[i] == 0) { // All done, re-start the tune
tunestate[i] = tune[i];
}
}
lastSysTime = thisSysTime;
}
}
return buzzOn;
}
#if defined(ARCH_POSIX) || defined(ARCH_WIN32)
static bool set_channel(uint8_t mixer_channel, uint16_t value, const ActuatorSettingsData *actuatorSettings)
{
return true;
}
#else
static bool set_channel(uint8_t mixer_channel, uint16_t value, const ActuatorSettingsData *actuatorSettings)
{
switch (actuatorSettings->ChannelType[mixer_channel]) {
case ACTUATORSETTINGS_CHANNELTYPE_PWMALARMBUZZER:
PIOS_Servo_Set(actuatorSettings->ChannelAddr[mixer_channel],
buzzerState(BUZZ_BUZZER) ? actuatorSettings->ChannelMax[mixer_channel] : actuatorSettings->ChannelMin[mixer_channel]);
return true;
case ACTUATORSETTINGS_CHANNELTYPE_ARMINGLED:
PIOS_Servo_Set(actuatorSettings->ChannelAddr[mixer_channel],
buzzerState(BUZZ_ARMING) ? actuatorSettings->ChannelMax[mixer_channel] : actuatorSettings->ChannelMin[mixer_channel]);
return true;
case ACTUATORSETTINGS_CHANNELTYPE_INFOLED:
PIOS_Servo_Set(actuatorSettings->ChannelAddr[mixer_channel],
buzzerState(BUZZ_INFO) ? actuatorSettings->ChannelMax[mixer_channel] : actuatorSettings->ChannelMin[mixer_channel]);
return true;
case ACTUATORSETTINGS_CHANNELTYPE_PWM:
PIOS_Servo_Set(actuatorSettings->ChannelAddr[mixer_channel], value);
return true;
#if defined(PIOS_INCLUDE_I2C_ESC)
case ACTUATORSETTINGS_CHANNELTYPE_MK:
return PIOS_SetMKSpeed(actuatorSettings->ChannelAddr[mixer_channel], value);
case ACTUATORSETTINGS_CHANNELTYPE_ASTEC4:
return PIOS_SetAstec4Speed(actuatorSettings->ChannelAddr[mixer_channel], value);
#endif
default:
return false;
}
return false;
}
#endif /* if defined(ARCH_POSIX) || defined(ARCH_WIN32) */
/**
* @brief Update the servo update rate
*/
static void actuator_update_rate_if_changed(const ActuatorSettingsData *actuatorSettings, bool force_update)
{
static uint16_t prevChannelUpdateFreq[ACTUATORSETTINGS_CHANNELUPDATEFREQ_NUMELEM];
// check if the any rate setting is changed
if (force_update ||
memcmp(prevChannelUpdateFreq,
actuatorSettings->ChannelUpdateFreq,
sizeof(prevChannelUpdateFreq)) != 0) {
/* Something has changed, apply the settings to HW */
memcpy(prevChannelUpdateFreq,
actuatorSettings->ChannelUpdateFreq,
sizeof(prevChannelUpdateFreq));
PIOS_Servo_SetHz(actuatorSettings->ChannelUpdateFreq, ACTUATORSETTINGS_CHANNELUPDATEFREQ_NUMELEM);
}
}
static void ActuatorSettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
actuator_settings_updated = true;
}
static void MixerSettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
mixer_settings_updated = true;
}
/**
* @}
* @}
*/