mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2025-01-19 04:52:12 +01:00
1239 lines
48 KiB
C
1239 lines
48 KiB
C
/**
|
|
******************************************************************************
|
|
*
|
|
* @file pathfollower.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
|
* @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
|
|
* and sets @ref AttitudeDesired. It only does this when the FlightMode field
|
|
* of @ref ManualControlCommand is Auto.
|
|
*
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
*****************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/**
|
|
* Input object: PathDesired
|
|
* Input object: PositionState
|
|
* Input object: ManualControlCommand
|
|
* Output object: StabilizationDesired
|
|
*
|
|
* This module acts as "autopilot" - it controls the setpoints of stabilization
|
|
* based on current flight situation and desired flight path (PathDesired) as
|
|
* directed by flightmode selection or pathplanner
|
|
* This is a periodic delayed callback module
|
|
*
|
|
* Modules have no API, all communication to other modules is done through UAVObjects.
|
|
* However modules may use the API exposed by shared libraries.
|
|
* See the OpenPilot wiki for more details.
|
|
* http://www.openpilot.org/OpenPilot_Application_Architecture
|
|
*
|
|
*/
|
|
|
|
#include <openpilot.h>
|
|
|
|
#include <callbackinfo.h>
|
|
|
|
#include <math.h>
|
|
#include <pid.h>
|
|
#include <CoordinateConversions.h>
|
|
#include <sin_lookup.h>
|
|
#include <pathdesired.h>
|
|
#include <paths.h>
|
|
#include <sanitycheck.h>
|
|
|
|
|
|
#include <fixedwingpathfollowersettings.h>
|
|
#include <fixedwingpathfollowerstatus.h>
|
|
#include <vtolpathfollowersettings.h>
|
|
#include <flightstatus.h>
|
|
#include <pathstatus.h>
|
|
#include <positionstate.h>
|
|
#include <velocitystate.h>
|
|
#include <velocitydesired.h>
|
|
#include <stabilizationdesired.h>
|
|
#include <airspeedstate.h>
|
|
#include <attitudestate.h>
|
|
#include <takeofflocation.h>
|
|
#include <poilocation.h>
|
|
#include <manualcontrolcommand.h>
|
|
#include <systemsettings.h>
|
|
#include <stabilizationbank.h>
|
|
|
|
|
|
// Private constants
|
|
|
|
#define CALLBACK_PRIORITY CALLBACK_PRIORITY_LOW
|
|
#define CBTASK_PRIORITY CALLBACK_TASK_FLIGHTCONTROL
|
|
|
|
#define PF_IDLE_UPDATE_RATE_MS 100
|
|
|
|
#define STACK_SIZE_BYTES 2048
|
|
|
|
#define DEADBAND_HIGH 0.10f
|
|
#define DEADBAND_LOW -0.10f
|
|
// Private types
|
|
|
|
struct Globals {
|
|
struct pid PIDposH[2];
|
|
struct pid PIDposV;
|
|
struct pid PIDvel[3];
|
|
struct pid PIDcourse;
|
|
struct pid PIDspeed;
|
|
struct pid PIDpower;
|
|
float poiRadius;
|
|
float vtolEmergencyFallback;
|
|
bool vtolEmergencyFallbackSwitch;
|
|
};
|
|
|
|
|
|
// Private variables
|
|
static DelayedCallbackInfo *pathFollowerCBInfo;
|
|
static uint32_t updatePeriod = PF_IDLE_UPDATE_RATE_MS;
|
|
static struct Globals global;
|
|
static PathStatusData pathStatus;
|
|
static PathDesiredData pathDesired;
|
|
static FixedWingPathFollowerSettingsData fixedWingPathFollowerSettings;
|
|
static VtolPathFollowerSettingsData vtolPathFollowerSettings;
|
|
|
|
// correct speed by measured airspeed
|
|
static float indicatedAirspeedStateBias = 0.0f;
|
|
|
|
|
|
// Private functions
|
|
static void pathFollowerTask(void);
|
|
static void resetGlobals();
|
|
static void SettingsUpdatedCb(UAVObjEvent *ev);
|
|
static uint8_t updateAutoPilotByFrameType();
|
|
static uint8_t updateAutoPilotFixedWing();
|
|
static uint8_t updateAutoPilotVtol();
|
|
static float updateTailInBearing();
|
|
static float updateCourseBearing();
|
|
static float updatePathBearing();
|
|
static float updatePOIBearing();
|
|
static void processPOI();
|
|
static void updatePathVelocity(float kFF, bool limited);
|
|
static uint8_t updateFixedDesiredAttitude();
|
|
static int8_t updateVtolDesiredAttitude(bool yaw_attitude, float yaw_direction);
|
|
static void updateFixedAttitude();
|
|
static void updateVtolDesiredAttitudeEmergencyFallback();
|
|
static void airspeedStateUpdatedCb(UAVObjEvent *ev);
|
|
static bool correctCourse(float *C, float *V, float *F, float s);
|
|
|
|
/**
|
|
* Initialise the module, called on startup
|
|
* \returns 0 on success or -1 if initialisation failed
|
|
*/
|
|
int32_t PathFollowerStart()
|
|
{
|
|
// Start main task
|
|
PathStatusGet(&pathStatus);
|
|
SettingsUpdatedCb(NULL);
|
|
PIOS_CALLBACKSCHEDULER_Dispatch(pathFollowerCBInfo);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Initialise the module, called on startup
|
|
* \returns 0 on success or -1 if initialisation failed
|
|
*/
|
|
int32_t PathFollowerInitialize()
|
|
{
|
|
// initialize objects
|
|
FixedWingPathFollowerSettingsInitialize();
|
|
FixedWingPathFollowerStatusInitialize();
|
|
VtolPathFollowerSettingsInitialize();
|
|
FlightStatusInitialize();
|
|
PathStatusInitialize();
|
|
PathDesiredInitialize();
|
|
PositionStateInitialize();
|
|
VelocityStateInitialize();
|
|
VelocityDesiredInitialize();
|
|
StabilizationDesiredInitialize();
|
|
AirspeedStateInitialize();
|
|
AttitudeStateInitialize();
|
|
TakeOffLocationInitialize();
|
|
PoiLocationInitialize();
|
|
ManualControlCommandInitialize();
|
|
SystemSettingsInitialize();
|
|
StabilizationBankInitialize();
|
|
|
|
// reset integrals
|
|
resetGlobals();
|
|
|
|
// Create object queue
|
|
pathFollowerCBInfo = PIOS_CALLBACKSCHEDULER_Create(&pathFollowerTask, CALLBACK_PRIORITY, CBTASK_PRIORITY, CALLBACKINFO_RUNNING_PATHFOLLOWER, STACK_SIZE_BYTES);
|
|
FixedWingPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
|
|
VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
|
|
PathDesiredConnectCallback(SettingsUpdatedCb);
|
|
AirspeedStateConnectCallback(airspeedStateUpdatedCb);
|
|
|
|
return 0;
|
|
}
|
|
MODULE_INITCALL(PathFollowerInitialize, PathFollowerStart);
|
|
|
|
|
|
/**
|
|
* Module thread, should not return.
|
|
*/
|
|
static void pathFollowerTask(void)
|
|
{
|
|
FlightStatusData flightStatus;
|
|
|
|
FlightStatusGet(&flightStatus);
|
|
|
|
if (flightStatus.ControlChain.PathFollower != FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
|
|
resetGlobals();
|
|
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_UNINITIALISED);
|
|
PIOS_CALLBACKSCHEDULER_Schedule(pathFollowerCBInfo, PF_IDLE_UPDATE_RATE_MS, CALLBACK_UPDATEMODE_SOONER);
|
|
return;
|
|
}
|
|
|
|
if (flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_POI) { // TODO Hack from vtolpathfollower, move into manualcontrol!
|
|
processPOI();
|
|
}
|
|
|
|
pathStatus.UID = pathDesired.UID;
|
|
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
|
|
switch (pathDesired.Mode) {
|
|
case PATHDESIRED_MODE_FLYENDPOINT:
|
|
case PATHDESIRED_MODE_FLYVECTOR:
|
|
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
|
|
case PATHDESIRED_MODE_FLYCIRCLELEFT:
|
|
{
|
|
uint8_t result = updateAutoPilotByFrameType();
|
|
if (result) {
|
|
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
|
|
} else {
|
|
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
|
|
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
|
|
}
|
|
}
|
|
break;
|
|
case PATHDESIRED_MODE_FIXEDATTITUDE:
|
|
updateFixedAttitude(pathDesired.ModeParameters);
|
|
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
|
|
break;
|
|
case PATHDESIRED_MODE_DISARMALARM:
|
|
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
|
|
break;
|
|
default:
|
|
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
|
|
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
|
|
break;
|
|
}
|
|
PathStatusSet(&pathStatus);
|
|
|
|
PIOS_CALLBACKSCHEDULER_Schedule(pathFollowerCBInfo, updatePeriod, CALLBACK_UPDATEMODE_SOONER);
|
|
}
|
|
|
|
|
|
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
|
|
{
|
|
FixedWingPathFollowerSettingsGet(&fixedWingPathFollowerSettings);
|
|
|
|
pid_configure(&global.PIDcourse, fixedWingPathFollowerSettings.CoursePI.Kp, fixedWingPathFollowerSettings.CoursePI.Ki, 0.0f, fixedWingPathFollowerSettings.CoursePI.ILimit);
|
|
pid_configure(&global.PIDspeed, fixedWingPathFollowerSettings.SpeedPI.Kp, fixedWingPathFollowerSettings.SpeedPI.Ki, 0.0f, fixedWingPathFollowerSettings.SpeedPI.ILimit);
|
|
pid_configure(&global.PIDpower, fixedWingPathFollowerSettings.PowerPI.Kp, fixedWingPathFollowerSettings.PowerPI.Ki, 0.0f, fixedWingPathFollowerSettings.PowerPI.ILimit);
|
|
|
|
|
|
VtolPathFollowerSettingsGet(&vtolPathFollowerSettings);
|
|
|
|
pid_configure(&global.PIDvel[0], vtolPathFollowerSettings.HorizontalVelPID.Kp, vtolPathFollowerSettings.HorizontalVelPID.Ki, vtolPathFollowerSettings.HorizontalVelPID.Kd, vtolPathFollowerSettings.HorizontalVelPID.ILimit);
|
|
pid_configure(&global.PIDvel[1], vtolPathFollowerSettings.HorizontalVelPID.Kp, vtolPathFollowerSettings.HorizontalVelPID.Ki, vtolPathFollowerSettings.HorizontalVelPID.Kd, vtolPathFollowerSettings.HorizontalVelPID.ILimit);
|
|
pid_configure(&global.PIDvel[2], vtolPathFollowerSettings.VerticalVelPID.Kp, vtolPathFollowerSettings.VerticalVelPID.Ki, vtolPathFollowerSettings.VerticalVelPID.Kd, vtolPathFollowerSettings.VerticalVelPID.ILimit);
|
|
|
|
PathDesiredGet(&pathDesired);
|
|
}
|
|
|
|
|
|
static void airspeedStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
|
|
{
|
|
AirspeedStateData airspeedState;
|
|
VelocityStateData velocityState;
|
|
|
|
AirspeedStateGet(&airspeedState);
|
|
VelocityStateGet(&velocityState);
|
|
float airspeedVector[2];
|
|
float yaw;
|
|
AttitudeStateYawGet(&yaw);
|
|
airspeedVector[0] = cos_lookup_deg(yaw);
|
|
airspeedVector[1] = sin_lookup_deg(yaw);
|
|
// vector projection of groundspeed on airspeed vector to handle both forward and backwards movement
|
|
float groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
|
|
|
|
indicatedAirspeedStateBias = airspeedState.CalibratedAirspeed - groundspeedProjection;
|
|
// note - we do fly by Indicated Airspeed (== calibrated airspeed) however
|
|
// since airspeed is updated less often than groundspeed, we use sudden
|
|
// changes to groundspeed to offset the airspeed by the same measurement.
|
|
// This has a side effect that in the absence of any airspeed updates, the
|
|
// pathfollower will fly using groundspeed.
|
|
}
|
|
|
|
|
|
/**
|
|
* reset integrals
|
|
*/
|
|
static void resetGlobals()
|
|
{
|
|
pid_zero(&global.PIDposH[0]);
|
|
pid_zero(&global.PIDposH[1]);
|
|
pid_zero(&global.PIDposV);
|
|
pid_zero(&global.PIDvel[0]);
|
|
pid_zero(&global.PIDvel[1]);
|
|
pid_zero(&global.PIDvel[2]);
|
|
pid_zero(&global.PIDcourse);
|
|
pid_zero(&global.PIDspeed);
|
|
pid_zero(&global.PIDpower);
|
|
global.poiRadius = 0.0f;
|
|
global.vtolEmergencyFallback = 0;
|
|
global.vtolEmergencyFallbackSwitch = false;
|
|
}
|
|
|
|
static uint8_t updateAutoPilotByFrameType()
|
|
{
|
|
FrameType_t frameType = GetCurrentFrameType();
|
|
|
|
if (frameType == FRAME_TYPE_CUSTOM || frameType == FRAME_TYPE_GROUND) {
|
|
switch (vtolPathFollowerSettings.TreatCustomCraftAs) {
|
|
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING:
|
|
frameType = FRAME_TYPE_FIXED_WING;
|
|
break;
|
|
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL:
|
|
frameType = FRAME_TYPE_MULTIROTOR;
|
|
break;
|
|
}
|
|
}
|
|
switch (frameType) {
|
|
case FRAME_TYPE_MULTIROTOR:
|
|
case FRAME_TYPE_HELI:
|
|
updatePeriod = vtolPathFollowerSettings.UpdatePeriod;
|
|
return updateAutoPilotVtol();
|
|
|
|
break;
|
|
case FRAME_TYPE_FIXED_WING:
|
|
default:
|
|
updatePeriod = fixedWingPathFollowerSettings.UpdatePeriod;
|
|
return updateAutoPilotFixedWing();
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* fixed wing autopilot:
|
|
* straight forward:
|
|
* 1. update path velocity for limited motion crafts
|
|
* 2. update attitude according to default fixed wing pathfollower algorithm
|
|
*/
|
|
static uint8_t updateAutoPilotFixedWing()
|
|
{
|
|
pid_configure(&global.PIDposH[0], fixedWingPathFollowerSettings.HorizontalPosP, 0.0f, 0.0f, 0.0f);
|
|
pid_configure(&global.PIDposH[1], fixedWingPathFollowerSettings.HorizontalPosP, 0.0f, 0.0f, 0.0f);
|
|
pid_configure(&global.PIDposV, fixedWingPathFollowerSettings.VerticalPosP, 0.0f, 0.0f, 0.0f);
|
|
updatePathVelocity(fixedWingPathFollowerSettings.CourseFeedForward, true);
|
|
return updateFixedDesiredAttitude();
|
|
}
|
|
|
|
/**
|
|
* vtol autopilot
|
|
* use hover capable algorithm with unlimeted movement calculation. if that fails (flyaway situation due to compass failure)
|
|
* fall back to emergency fallback autopilot to keep minimum amount of flight control
|
|
*/
|
|
static uint8_t updateAutoPilotVtol()
|
|
{
|
|
enum { RETURN_0 = 0, RETURN_1 = 1, RETURN_RESULT } returnmode;
|
|
enum { FOLLOWER_REGULAR, FOLLOWER_FALLBACK } followermode;
|
|
uint8_t result = 0;
|
|
|
|
// decide on behaviour based on settings and system state
|
|
if (global.vtolEmergencyFallbackSwitch) {
|
|
returnmode = RETURN_0;
|
|
followermode = FOLLOWER_FALLBACK;
|
|
} else {
|
|
if (vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_ALWAYS) {
|
|
returnmode = RETURN_1;
|
|
followermode = FOLLOWER_FALLBACK;
|
|
} else {
|
|
returnmode = RETURN_RESULT;
|
|
followermode = FOLLOWER_REGULAR;
|
|
}
|
|
}
|
|
|
|
// vertical positon control PID loops works the same in both regular and fallback modes, setup according to settings
|
|
pid_configure(&global.PIDposV, vtolPathFollowerSettings.VerticalPosP, 0.0f, 0.0f, 0.0f);
|
|
|
|
switch (followermode) {
|
|
case FOLLOWER_REGULAR:
|
|
{
|
|
// horizontal position control PID loop works according to settings in regular mode, allowing integral terms
|
|
pid_configure(&global.PIDposH[0], vtolPathFollowerSettings.HorizontalPosP, 0.0f, 0.0f, 0.0f);
|
|
pid_configure(&global.PIDposH[1], vtolPathFollowerSettings.HorizontalPosP, 0.0f, 0.0f, 0.0f);
|
|
updatePathVelocity(vtolPathFollowerSettings.CourseFeedForward, false);
|
|
|
|
// yaw behaviour is configurable in vtolpathfollower, select yaw control algorithm
|
|
bool yaw_attitude = true;
|
|
float yaw = 0.0f;
|
|
switch (vtolPathFollowerSettings.YawControl) {
|
|
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_MANUAL:
|
|
yaw_attitude = false;
|
|
break;
|
|
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_TAILIN:
|
|
yaw = updateTailInBearing();
|
|
break;
|
|
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_MOVEMENTDIRECTION:
|
|
yaw = updateCourseBearing();
|
|
break;
|
|
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_PATHDIRECTION:
|
|
yaw = updatePathBearing();
|
|
break;
|
|
case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_POI:
|
|
yaw = updatePOIBearing();
|
|
break;
|
|
}
|
|
result = updateVtolDesiredAttitude(yaw_attitude, yaw);
|
|
|
|
// switch to emergency follower if follower indicates problems
|
|
if (!result && (vtolPathFollowerSettings.FlyawayEmergencyFallback != VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_DISABLED)) {
|
|
global.vtolEmergencyFallbackSwitch = true;
|
|
}
|
|
}
|
|
break;
|
|
case FOLLOWER_FALLBACK:
|
|
{
|
|
// fallback loop only cares about intended horizontal flight direction, simplify control behaviour accordingly
|
|
pid_configure(&global.PIDposH[0], 1.0f, 0.0f, 0.0f, 0.0f);
|
|
pid_configure(&global.PIDposH[1], 1.0f, 0.0f, 0.0f, 0.0f);
|
|
updatePathVelocity(vtolPathFollowerSettings.CourseFeedForward, true);
|
|
|
|
// emergency follower has no return value
|
|
updateVtolDesiredAttitudeEmergencyFallback();
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (returnmode) {
|
|
case RETURN_RESULT:
|
|
return result;
|
|
|
|
default:
|
|
// returns either 0 or 1 according to enum definition above
|
|
return returnmode;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute bearing of current takeoff location
|
|
*/
|
|
static float updateTailInBearing()
|
|
{
|
|
PositionStateData p;
|
|
|
|
PositionStateGet(&p);
|
|
TakeOffLocationData t;
|
|
TakeOffLocationGet(&t);
|
|
// atan2f always returns in between + and - 180 degrees
|
|
return RAD2DEG(atan2f(p.East - t.East, p.North - t.North));
|
|
}
|
|
|
|
/**
|
|
* Compute bearing of current movement direction
|
|
*/
|
|
static float updateCourseBearing()
|
|
{
|
|
VelocityStateData v;
|
|
|
|
VelocityStateGet(&v);
|
|
// atan2f always returns in between + and - 180 degrees
|
|
return RAD2DEG(atan2f(v.East, v.North));
|
|
}
|
|
|
|
/**
|
|
* Compute bearing of current path direction
|
|
*/
|
|
static float updatePathBearing()
|
|
{
|
|
PositionStateData positionState;
|
|
|
|
PositionStateGet(&positionState);
|
|
|
|
float cur[3] = { positionState.North,
|
|
positionState.East,
|
|
positionState.Down };
|
|
struct path_status progress;
|
|
|
|
path_progress(&pathDesired, cur, &progress);
|
|
|
|
// atan2f always returns in between + and - 180 degrees
|
|
return RAD2DEG(atan2f(progress.path_vector[1], progress.path_vector[0]));
|
|
}
|
|
|
|
/**
|
|
* Compute bearing between current position and POI
|
|
*/
|
|
static float updatePOIBearing()
|
|
{
|
|
PoiLocationData poi;
|
|
|
|
PoiLocationGet(&poi);
|
|
PositionStateData positionState;
|
|
PositionStateGet(&positionState);
|
|
|
|
const float dT = updatePeriod / 1000.0f;
|
|
float dLoc[3];
|
|
float yaw = 0;
|
|
/*float elevation = 0;*/
|
|
|
|
dLoc[0] = positionState.North - poi.North;
|
|
dLoc[1] = positionState.East - poi.East;
|
|
dLoc[2] = positionState.Down - poi.Down;
|
|
|
|
if (dLoc[1] < 0) {
|
|
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
|
|
} else {
|
|
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
|
|
}
|
|
ManualControlCommandData manualControlData;
|
|
ManualControlCommandGet(&manualControlData);
|
|
|
|
float pathAngle = 0;
|
|
if (manualControlData.Roll > DEADBAND_HIGH) {
|
|
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
|
|
} else if (manualControlData.Roll < DEADBAND_LOW) {
|
|
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
|
|
}
|
|
|
|
return yaw + (pathAngle / 2.0f);
|
|
}
|
|
|
|
/**
|
|
* process POI control logic TODO: this should most likely go into manualcontrol!!!!
|
|
* TODO: the whole process of POI handling likely needs cleanup and rethinking, might be broken since manualcontrol was refactored currently
|
|
**/
|
|
static void processPOI()
|
|
{
|
|
const float dT = updatePeriod / 1000.0f;
|
|
|
|
|
|
PositionStateData positionState;
|
|
|
|
PositionStateGet(&positionState);
|
|
// TODO put commented out camera feature code back in place either
|
|
// permanently or optionally or remove it
|
|
// CameraDesiredData cameraDesired;
|
|
// CameraDesiredGet(&cameraDesired);
|
|
StabilizationDesiredData stabDesired;
|
|
StabilizationDesiredGet(&stabDesired);
|
|
PoiLocationData poi;
|
|
PoiLocationGet(&poi);
|
|
|
|
float dLoc[3];
|
|
float yaw = 0;
|
|
// TODO camera feature
|
|
/*float elevation = 0;*/
|
|
|
|
dLoc[0] = positionState.North - poi.North;
|
|
dLoc[1] = positionState.East - poi.East;
|
|
dLoc[2] = positionState.Down - poi.Down;
|
|
|
|
if (dLoc[1] < 0) {
|
|
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
|
|
} else {
|
|
yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
|
|
}
|
|
|
|
// distance
|
|
float distance = sqrtf(powf(dLoc[0], 2.0f) + powf(dLoc[1], 2.0f));
|
|
|
|
ManualControlCommandData manualControlData;
|
|
ManualControlCommandGet(&manualControlData);
|
|
|
|
float changeRadius = 0;
|
|
// Move closer or further, radially
|
|
if (manualControlData.Pitch > DEADBAND_HIGH) {
|
|
changeRadius = (manualControlData.Pitch - DEADBAND_HIGH) * dT * 100.0f;
|
|
} else if (manualControlData.Pitch < DEADBAND_LOW) {
|
|
changeRadius = (manualControlData.Pitch - DEADBAND_LOW) * dT * 100.0f;
|
|
}
|
|
|
|
// move along circular path
|
|
float pathAngle = 0;
|
|
if (manualControlData.Roll > DEADBAND_HIGH) {
|
|
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
|
|
} else if (manualControlData.Roll < DEADBAND_LOW) {
|
|
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
|
|
} else if (manualControlData.Roll >= DEADBAND_LOW && manualControlData.Roll <= DEADBAND_HIGH) {
|
|
// change radius only when not circling
|
|
global.poiRadius = distance + changeRadius;
|
|
}
|
|
|
|
// don't try to move any closer
|
|
if (global.poiRadius >= 3.0f || changeRadius > 0) {
|
|
if (fabsf(pathAngle) > 0.0f || fabsf(changeRadius) > 0.0f) {
|
|
pathDesired.End.North = poi.North + (global.poiRadius * cosf(DEG2RAD(pathAngle + yaw - 180.0f)));
|
|
pathDesired.End.East = poi.East + (global.poiRadius * sinf(DEG2RAD(pathAngle + yaw - 180.0f)));
|
|
pathDesired.StartingVelocity = 1.0f;
|
|
pathDesired.EndingVelocity = 0.0f;
|
|
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
|
|
PathDesiredSet(&pathDesired);
|
|
}
|
|
}
|
|
// not above
|
|
if (distance >= 3.0f) {
|
|
// TODO camera feature
|
|
// You can feed this into camerastabilization
|
|
/*elevation = RAD2DEG(atan2f(dLoc[2],distance));*/
|
|
|
|
// cameraDesired.Yaw=yaw;
|
|
// cameraDesired.PitchOrServo2=elevation;
|
|
|
|
// CameraDesiredSet(&cameraDesired);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute desired velocity from the current position and path
|
|
*/
|
|
static void updatePathVelocity(float kFF, bool limited)
|
|
{
|
|
PositionStateData positionState;
|
|
|
|
PositionStateGet(&positionState);
|
|
VelocityStateData velocityState;
|
|
VelocityStateGet(&velocityState);
|
|
|
|
const float dT = updatePeriod / 1000.0f;
|
|
|
|
// look ahead kFF seconds
|
|
float cur[3] = { positionState.North + (velocityState.North * kFF),
|
|
positionState.East + (velocityState.East * kFF),
|
|
positionState.Down + (velocityState.Down * kFF) };
|
|
struct path_status progress;
|
|
|
|
path_progress(&pathDesired, cur, &progress);
|
|
|
|
// calculate velocity - can be zero if waypoints are too close
|
|
VelocityDesiredData velocityDesired;
|
|
velocityDesired.North = progress.path_vector[0];
|
|
velocityDesired.East = progress.path_vector[1];
|
|
velocityDesired.Down = progress.path_vector[2];
|
|
|
|
if (limited &&
|
|
// if a plane is crossing its desired flightpath facing the wrong way (away from flight direction)
|
|
// it would turn towards the flightpath to get on its desired course. This however would reverse the correction vector
|
|
// once it crosses the flightpath again, which would make it again turn towards the flightpath (but away from its desired heading)
|
|
// leading to an S-shape snake course the wrong way
|
|
// this only happens especially if HorizontalPosP is too high, as otherwise the angle between velocity desired and path_direction won't
|
|
// turn steep unless there is enough space complete the turn before crossing the flightpath
|
|
// in this case the plane effectively needs to be turned around
|
|
// indicators:
|
|
// difference between correction_direction and velocitystate >90 degrees and
|
|
// difference between path_direction and velocitystate >90 degrees ( 4th sector, facing away from everything )
|
|
// fix: ignore correction, steer in path direction until the situation has become better (condition doesn't apply anymore)
|
|
// calculating angles < 90 degrees through dot products
|
|
(vector_lengthf(progress.path_vector, 2) > 1e-6f) &&
|
|
((progress.path_vector[0] * velocityState.North + progress.path_vector[1] * velocityState.East) < 0.0f) &&
|
|
((progress.correction_vector[0] * velocityState.North + progress.correction_vector[1] * velocityState.East) < 0.0f)) {
|
|
;
|
|
} else {
|
|
// calculate correction
|
|
velocityDesired.North += pid_apply(&global.PIDposH[0], progress.correction_vector[0], dT);
|
|
velocityDesired.East += pid_apply(&global.PIDposH[1], progress.correction_vector[1], dT);
|
|
}
|
|
velocityDesired.Down += pid_apply(&global.PIDposV, progress.correction_vector[2], dT);
|
|
|
|
// update pathstatus
|
|
pathStatus.error = progress.error;
|
|
pathStatus.fractional_progress = progress.fractional_progress;
|
|
pathStatus.path_direction_north = progress.path_vector[0];
|
|
pathStatus.path_direction_east = progress.path_vector[1];
|
|
pathStatus.path_direction_down = progress.path_vector[2];
|
|
|
|
pathStatus.correction_direction_north = progress.correction_vector[0];
|
|
pathStatus.correction_direction_east = progress.correction_vector[1];
|
|
pathStatus.correction_direction_down = progress.correction_vector[2];
|
|
|
|
VelocityDesiredSet(&velocityDesired);
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute desired attitude from the desired velocity for fixed wing craft
|
|
*/
|
|
static uint8_t updateFixedDesiredAttitude()
|
|
{
|
|
uint8_t result = 1;
|
|
|
|
const float dT = updatePeriod / 1000.0f; // Convert from [ms] to [s]
|
|
|
|
VelocityDesiredData velocityDesired;
|
|
VelocityStateData velocityState;
|
|
StabilizationDesiredData stabDesired;
|
|
AttitudeStateData attitudeState;
|
|
FixedWingPathFollowerStatusData fixedWingPathFollowerStatus;
|
|
AirspeedStateData airspeedState;
|
|
SystemSettingsData systemSettings;
|
|
|
|
float groundspeedProjection;
|
|
float indicatedAirspeedState;
|
|
float indicatedAirspeedDesired;
|
|
float airspeedError;
|
|
|
|
float pitchCommand;
|
|
|
|
float descentspeedDesired;
|
|
float descentspeedError;
|
|
float powerCommand;
|
|
|
|
float airspeedVector[2];
|
|
float fluidMovement[2];
|
|
float courseComponent[2];
|
|
float courseError;
|
|
float courseCommand;
|
|
|
|
FixedWingPathFollowerStatusGet(&fixedWingPathFollowerStatus);
|
|
|
|
VelocityStateGet(&velocityState);
|
|
StabilizationDesiredGet(&stabDesired);
|
|
VelocityDesiredGet(&velocityDesired);
|
|
AttitudeStateGet(&attitudeState);
|
|
AirspeedStateGet(&airspeedState);
|
|
SystemSettingsGet(&systemSettings);
|
|
|
|
/**
|
|
* Compute speed error and course
|
|
*/
|
|
// missing sensors for airspeed-direction we have to assume within
|
|
// reasonable error that measured airspeed is actually the airspeed
|
|
// component in forward pointing direction
|
|
// airspeedVector is normalized
|
|
airspeedVector[0] = cos_lookup_deg(attitudeState.Yaw);
|
|
airspeedVector[1] = sin_lookup_deg(attitudeState.Yaw);
|
|
|
|
// current ground speed projected in forward direction
|
|
groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
|
|
|
|
// note that airspeedStateBias is ( calibratedAirspeed - groundspeedProjection ) at the time of measurement,
|
|
// but thanks to accelerometers, groundspeedProjection reacts faster to changes in direction
|
|
// than airspeed and gps sensors alone
|
|
indicatedAirspeedState = groundspeedProjection + indicatedAirspeedStateBias;
|
|
|
|
// fluidMovement is a vector describing the aproximate movement vector of
|
|
// the surrounding fluid in 2d space (aka wind vector)
|
|
fluidMovement[0] = velocityState.North - (indicatedAirspeedState * airspeedVector[0]);
|
|
fluidMovement[1] = velocityState.East - (indicatedAirspeedState * airspeedVector[1]);
|
|
|
|
// calculate the movement vector we need to fly to reach velocityDesired -
|
|
// taking fluidMovement into account
|
|
courseComponent[0] = velocityDesired.North - fluidMovement[0];
|
|
courseComponent[1] = velocityDesired.East - fluidMovement[1];
|
|
|
|
indicatedAirspeedDesired = boundf(sqrtf(courseComponent[0] * courseComponent[0] + courseComponent[1] * courseComponent[1]),
|
|
fixedWingPathFollowerSettings.HorizontalVelMin,
|
|
fixedWingPathFollowerSettings.HorizontalVelMax);
|
|
|
|
// if we could fly at arbitrary speeds, we'd just have to move towards the
|
|
// courseComponent vector as previously calculated and we'd be fine
|
|
// unfortunately however we are bound by min and max air speed limits, so
|
|
// we need to recalculate the correct course to meet at least the
|
|
// velocityDesired vector direction at our current speed
|
|
// this overwrites courseComponent
|
|
bool valid = correctCourse(courseComponent, (float *)&velocityDesired.North, fluidMovement, indicatedAirspeedDesired);
|
|
|
|
// Error condition: wind speed too high, we can't go where we want anymore
|
|
fixedWingPathFollowerStatus.Errors.Wind = 0;
|
|
if ((!valid) &&
|
|
fixedWingPathFollowerSettings.Safetymargins.Wind > 0.5f) { // alarm switched on
|
|
fixedWingPathFollowerStatus.Errors.Wind = 1;
|
|
result = 0;
|
|
}
|
|
|
|
// Airspeed error
|
|
airspeedError = indicatedAirspeedDesired - indicatedAirspeedState;
|
|
|
|
// Vertical speed error
|
|
descentspeedDesired = boundf(
|
|
velocityDesired.Down,
|
|
-fixedWingPathFollowerSettings.VerticalVelMax,
|
|
fixedWingPathFollowerSettings.VerticalVelMax);
|
|
descentspeedError = descentspeedDesired - velocityState.Down;
|
|
|
|
// Error condition: plane too slow or too fast
|
|
fixedWingPathFollowerStatus.Errors.Highspeed = 0;
|
|
fixedWingPathFollowerStatus.Errors.Lowspeed = 0;
|
|
if (indicatedAirspeedState > systemSettings.AirSpeedMax * fixedWingPathFollowerSettings.Safetymargins.Overspeed) {
|
|
fixedWingPathFollowerStatus.Errors.Overspeed = 1;
|
|
result = 0;
|
|
}
|
|
if (indicatedAirspeedState > fixedWingPathFollowerSettings.HorizontalVelMax * fixedWingPathFollowerSettings.Safetymargins.Highspeed) {
|
|
fixedWingPathFollowerStatus.Errors.Highspeed = 1;
|
|
result = 0;
|
|
}
|
|
if (indicatedAirspeedState < fixedWingPathFollowerSettings.HorizontalVelMin * fixedWingPathFollowerSettings.Safetymargins.Lowspeed) {
|
|
fixedWingPathFollowerStatus.Errors.Lowspeed = 1;
|
|
result = 0;
|
|
}
|
|
if (indicatedAirspeedState < systemSettings.AirSpeedMin * fixedWingPathFollowerSettings.Safetymargins.Stallspeed) {
|
|
fixedWingPathFollowerStatus.Errors.Stallspeed = 1;
|
|
result = 0;
|
|
}
|
|
|
|
/**
|
|
* Compute desired thrust command
|
|
*/
|
|
|
|
// Compute the cross feed from vertical speed to pitch, with saturation
|
|
float speedErrorToPowerCommandComponent = boundf(
|
|
(airspeedError / fixedWingPathFollowerSettings.HorizontalVelMin) * fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Kp,
|
|
-fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Max,
|
|
fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Max
|
|
);
|
|
|
|
// Compute final thrust response
|
|
powerCommand = pid_apply(&global.PIDpower, -descentspeedError, dT) +
|
|
speedErrorToPowerCommandComponent;
|
|
|
|
// Output internal state to telemetry
|
|
fixedWingPathFollowerStatus.Error.Power = descentspeedError;
|
|
fixedWingPathFollowerStatus.ErrorInt.Power = global.PIDpower.iAccumulator;
|
|
fixedWingPathFollowerStatus.Command.Power = powerCommand;
|
|
|
|
// set thrust
|
|
stabDesired.Thrust = boundf(fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand,
|
|
fixedWingPathFollowerSettings.ThrustLimit.Min,
|
|
fixedWingPathFollowerSettings.ThrustLimit.Max);
|
|
|
|
// Error condition: plane cannot hold altitude at current speed.
|
|
fixedWingPathFollowerStatus.Errors.Lowpower = 0;
|
|
if (fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand >= fixedWingPathFollowerSettings.ThrustLimit.Max && // thrust at maximum
|
|
velocityState.Down > 0.0f && // we ARE going down
|
|
descentspeedDesired < 0.0f && // we WANT to go up
|
|
airspeedError > 0.0f && // we are too slow already
|
|
fixedWingPathFollowerSettings.Safetymargins.Lowpower > 0.5f) { // alarm switched on
|
|
fixedWingPathFollowerStatus.Errors.Lowpower = 1;
|
|
result = 0;
|
|
}
|
|
// Error condition: plane keeps climbing despite minimum thrust (opposite of above)
|
|
fixedWingPathFollowerStatus.Errors.Highpower = 0;
|
|
if (fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand <= fixedWingPathFollowerSettings.ThrustLimit.Min && // thrust at minimum
|
|
velocityState.Down < 0.0f && // we ARE going up
|
|
descentspeedDesired > 0.0f && // we WANT to go down
|
|
airspeedError < 0.0f && // we are too fast already
|
|
fixedWingPathFollowerSettings.Safetymargins.Highpower > 0.5f) { // alarm switched on
|
|
fixedWingPathFollowerStatus.Errors.Highpower = 1;
|
|
result = 0;
|
|
}
|
|
|
|
/**
|
|
* Compute desired pitch command
|
|
*/
|
|
// Compute the cross feed from vertical speed to pitch, with saturation
|
|
float verticalSpeedToPitchCommandComponent = boundf(-descentspeedError * fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Kp,
|
|
-fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Max,
|
|
fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Max
|
|
);
|
|
|
|
// Compute the pitch command as err*Kp + errInt*Ki + X_feed.
|
|
pitchCommand = -pid_apply(&global.PIDspeed, airspeedError, dT) + verticalSpeedToPitchCommandComponent;
|
|
|
|
fixedWingPathFollowerStatus.Error.Speed = airspeedError;
|
|
fixedWingPathFollowerStatus.ErrorInt.Speed = global.PIDspeed.iAccumulator;
|
|
fixedWingPathFollowerStatus.Command.Speed = pitchCommand;
|
|
|
|
stabDesired.Pitch = boundf(fixedWingPathFollowerSettings.PitchLimit.Neutral + pitchCommand,
|
|
fixedWingPathFollowerSettings.PitchLimit.Min,
|
|
fixedWingPathFollowerSettings.PitchLimit.Max);
|
|
|
|
// Error condition: high speed dive
|
|
fixedWingPathFollowerStatus.Errors.Pitchcontrol = 0;
|
|
if (fixedWingPathFollowerSettings.PitchLimit.Neutral + pitchCommand >= fixedWingPathFollowerSettings.PitchLimit.Max && // pitch demand is full up
|
|
velocityState.Down > 0.0f && // we ARE going down
|
|
descentspeedDesired < 0.0f && // we WANT to go up
|
|
airspeedError < 0.0f && // we are too fast already
|
|
fixedWingPathFollowerSettings.Safetymargins.Pitchcontrol > 0.5f) { // alarm switched on
|
|
fixedWingPathFollowerStatus.Errors.Pitchcontrol = 1;
|
|
result = 0;
|
|
}
|
|
|
|
/**
|
|
* Compute desired roll command
|
|
*/
|
|
courseError = RAD2DEG(atan2f(courseComponent[1], courseComponent[0])) - attitudeState.Yaw;
|
|
|
|
if (courseError < -180.0f) {
|
|
courseError += 360.0f;
|
|
}
|
|
if (courseError > 180.0f) {
|
|
courseError -= 360.0f;
|
|
}
|
|
|
|
// overlap calculation. Theres a dead zone behind the craft where the
|
|
// counter-yawing of some craft while rolling could render a desired right
|
|
// turn into a desired left turn. Making the turn direction based on
|
|
// current roll angle keeps the plane committed to a direction once chosen
|
|
if (courseError < -180.0f + (fixedWingPathFollowerSettings.ReverseCourseOverlap * 0.5f)
|
|
&& attitudeState.Roll > 0.0f) {
|
|
courseError += 360.0f;
|
|
}
|
|
if (courseError > 180.0f - (fixedWingPathFollowerSettings.ReverseCourseOverlap * 0.5f)
|
|
&& attitudeState.Roll < 0.0f) {
|
|
courseError -= 360.0f;
|
|
}
|
|
|
|
courseCommand = pid_apply(&global.PIDcourse, courseError, dT);
|
|
|
|
fixedWingPathFollowerStatus.Error.Course = courseError;
|
|
fixedWingPathFollowerStatus.ErrorInt.Course = global.PIDcourse.iAccumulator;
|
|
fixedWingPathFollowerStatus.Command.Course = courseCommand;
|
|
|
|
stabDesired.Roll = boundf(fixedWingPathFollowerSettings.RollLimit.Neutral +
|
|
courseCommand,
|
|
fixedWingPathFollowerSettings.RollLimit.Min,
|
|
fixedWingPathFollowerSettings.RollLimit.Max);
|
|
|
|
// TODO: find a check to determine loss of directional control. Likely needs some check of derivative
|
|
|
|
|
|
/**
|
|
* Compute desired yaw command
|
|
*/
|
|
// TODO implement raw control mode for yaw and base on Accels.Y
|
|
stabDesired.Yaw = 0.0f;
|
|
|
|
|
|
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
|
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
|
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
|
|
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
|
|
|
|
StabilizationDesiredSet(&stabDesired);
|
|
|
|
FixedWingPathFollowerStatusSet(&fixedWingPathFollowerStatus);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/**
|
|
* Function to calculate course vector C based on airspeed s, fluid movement F
|
|
* and desired movement vector V
|
|
* parameters in: V,F,s
|
|
* parameters out: C
|
|
* returns true if a valid solution could be found for V,F,s, false if not
|
|
* C will be set to a best effort attempt either way
|
|
*/
|
|
static bool correctCourse(float *C, float *V, float *F, float s)
|
|
{
|
|
// Approach:
|
|
// Let Sc be a circle around origin marking possible movement vectors
|
|
// of the craft with airspeed s (all possible options for C)
|
|
// Let Vl be a line through the origin along movement vector V where fr any
|
|
// point v on line Vl v = k * (V / |V|) = k' * V
|
|
// Let Wl be a line parallel to Vl where for any point v on line Vl exists
|
|
// a point w on WL with w = v - F
|
|
// Then any intersection between circle Sc and line Wl represents course
|
|
// vector which would result in a movement vector
|
|
// V' = k * ( V / |V|) = k' * V
|
|
// If there is no intersection point, S is insufficient to compensate
|
|
// for F and we can only try to fly in direction of V (thus having wind drift
|
|
// but at least making progress orthogonal to wind)
|
|
|
|
s = fabsf(s);
|
|
float f = vector_lengthf(F, 2);
|
|
|
|
// normalize Cn=V/|V|, |V| must be >0
|
|
float v = vector_lengthf(V, 2);
|
|
if (v < 1e-6f) {
|
|
// if |V|=0, we aren't supposed to move, turn into the wind
|
|
// (this allows hovering)
|
|
C[0] = -F[0];
|
|
C[1] = -F[1];
|
|
// if desired airspeed matches fluidmovement a hover is actually
|
|
// intended so return true
|
|
return fabsf(f - s) < 1e-3f;
|
|
}
|
|
float Vn[2] = { V[0] / v, V[1] / v };
|
|
|
|
// project F on V
|
|
float fp = F[0] * Vn[0] + F[1] * Vn[1];
|
|
|
|
// find component Fo of F that is orthogonal to V
|
|
// (which is exactly the distance between Vl and Wl)
|
|
float Fo[2] = { F[0] - (fp * Vn[0]), F[1] - (fp * Vn[1]) };
|
|
float fo2 = Fo[0] * Fo[0] + Fo[1] * Fo[1];
|
|
|
|
// find k where k * Vn = C - Fo
|
|
// |C|=s is the hypothenuse in any rectangular triangle formed by k * Vn and Fo
|
|
// so k^2 + fo^2 = s^2 (since |Vn|=1)
|
|
float k2 = s * s - fo2;
|
|
if (k2 <= -1e-3f) {
|
|
// there is no solution, we will be drifted off either way
|
|
// fallback: fly stupidly in direction of V and hope for the best
|
|
C[0] = V[0];
|
|
C[1] = V[1];
|
|
return false;
|
|
} else if (k2 <= 1e-3f) {
|
|
// there is exactly one solution: -Fo
|
|
C[0] = -Fo[0];
|
|
C[1] = -Fo[1];
|
|
return true;
|
|
}
|
|
// we have two possible solutions k positive and k negative as there are
|
|
// two intersection points between Wl and Sc
|
|
// which one is better? two criteria:
|
|
// 1. we MUST move in the right direction, if any k leads to -v its invalid
|
|
// 2. we should minimize the speed error
|
|
float k = sqrt(k2);
|
|
float C1[2] = { -k * Vn[0] - Fo[0], -k * Vn[1] - Fo[1] };
|
|
float C2[2] = { k *Vn[0] - Fo[0], k * Vn[1] - Fo[1] };
|
|
// project C+F on Vn to find signed resulting movement vector length
|
|
float vp1 = (C1[0] + F[0]) * Vn[0] + (C1[1] + F[1]) * Vn[1];
|
|
float vp2 = (C2[0] + F[0]) * Vn[0] + (C2[1] + F[1]) * Vn[1];
|
|
if (vp1 >= 0.0f && fabsf(v - vp1) < fabsf(v - vp2)) {
|
|
// in this case the angle between course and resulting movement vector
|
|
// is greater than 90 degrees - so we actually fly backwards
|
|
C[0] = C1[0];
|
|
C[1] = C1[1];
|
|
return true;
|
|
}
|
|
C[0] = C2[0];
|
|
C[1] = C2[1];
|
|
if (vp2 >= 0.0f) {
|
|
// in this case the angle between course and movement vector is less than
|
|
// 90 degrees, but we do move in the right direction
|
|
return true;
|
|
} else {
|
|
// in this case we actually get driven in the opposite direction of V
|
|
// with both solutions for C
|
|
// this might be reached in headwind stronger than maximum allowed
|
|
// airspeed.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute desired attitude from the desired velocity
|
|
*
|
|
* Takes in @ref NedState which has the acceleration in the
|
|
* NED frame as the feedback term and then compares the
|
|
* @ref VelocityState against the @ref VelocityDesired
|
|
*/
|
|
static int8_t updateVtolDesiredAttitude(bool yaw_attitude, float yaw_direction)
|
|
{
|
|
const float dT = updatePeriod / 1000.0f;
|
|
uint8_t result = 1;
|
|
|
|
VelocityDesiredData velocityDesired;
|
|
VelocityStateData velocityState;
|
|
StabilizationDesiredData stabDesired;
|
|
AttitudeStateData attitudeState;
|
|
StabilizationBankData stabSettings;
|
|
SystemSettingsData systemSettings;
|
|
|
|
float northError;
|
|
float northCommand;
|
|
|
|
float eastError;
|
|
float eastCommand;
|
|
|
|
float downError;
|
|
float downCommand;
|
|
|
|
SystemSettingsGet(&systemSettings);
|
|
VelocityStateGet(&velocityState);
|
|
VelocityDesiredGet(&velocityDesired);
|
|
StabilizationDesiredGet(&stabDesired);
|
|
VelocityDesiredGet(&velocityDesired);
|
|
AttitudeStateGet(&attitudeState);
|
|
StabilizationBankGet(&stabSettings);
|
|
|
|
// Testing code - refactor into manual control command
|
|
ManualControlCommandData manualControlData;
|
|
ManualControlCommandGet(&manualControlData);
|
|
|
|
// scale velocity if it is above configured maximum
|
|
float velH = sqrtf(velocityDesired.North * velocityDesired.North + velocityDesired.East * velocityDesired.East);
|
|
if (velH > vtolPathFollowerSettings.HorizontalVelMax) {
|
|
velocityDesired.North *= vtolPathFollowerSettings.HorizontalVelMax / velH;
|
|
velocityDesired.East *= vtolPathFollowerSettings.HorizontalVelMax / velH;
|
|
}
|
|
if (fabsf(velocityDesired.Down) > vtolPathFollowerSettings.VerticalVelMax) {
|
|
velocityDesired.Down *= vtolPathFollowerSettings.VerticalVelMax / fabsf(velocityDesired.Down);
|
|
}
|
|
|
|
// Compute desired north command
|
|
northError = velocityDesired.North - velocityState.North;
|
|
northCommand = pid_apply(&global.PIDvel[0], northError, dT) + velocityDesired.North * vtolPathFollowerSettings.VelocityFeedforward;
|
|
|
|
// Compute desired east command
|
|
eastError = velocityDesired.East - velocityState.East;
|
|
eastCommand = pid_apply(&global.PIDvel[1], eastError, dT) + velocityDesired.East * vtolPathFollowerSettings.VelocityFeedforward;
|
|
|
|
// Compute desired down command
|
|
downError = velocityDesired.Down - velocityState.Down;
|
|
// Must flip this sign
|
|
downError = -downError;
|
|
downCommand = pid_apply(&global.PIDvel[2], downError, dT);
|
|
|
|
stabDesired.Thrust = boundf(downCommand + vtolPathFollowerSettings.ThrustLimits.Neutral, vtolPathFollowerSettings.ThrustLimits.Min, vtolPathFollowerSettings.ThrustLimits.Max);
|
|
|
|
|
|
// DEBUG HACK: allow user to skew compass on purpose to see if emergency failsafe kicks in
|
|
if (vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_DEBUGTEST) {
|
|
attitudeState.Yaw += 120.0f;
|
|
if (attitudeState.Yaw > 180.0f) {
|
|
attitudeState.Yaw -= 360.0f;
|
|
}
|
|
}
|
|
|
|
if ( // emergency flyaway detection
|
|
( // integral already at its limit
|
|
vtolPathFollowerSettings.HorizontalVelPID.ILimit - fabsf(global.PIDvel[0].iAccumulator) < 1e-6f ||
|
|
vtolPathFollowerSettings.HorizontalVelPID.ILimit - fabsf(global.PIDvel[1].iAccumulator) < 1e-6f
|
|
) &&
|
|
// angle between desired and actual velocity >90 degrees (by dot product)
|
|
(velocityDesired.North * velocityState.North + velocityDesired.East * velocityState.East < 0.0f) &&
|
|
// quad is moving at significant speed (during flyaway it would keep speeding up)
|
|
squaref(velocityState.North) + squaref(velocityState.East) > 1.0f
|
|
) {
|
|
global.vtolEmergencyFallback += dT;
|
|
if (global.vtolEmergencyFallback >= vtolPathFollowerSettings.FlyawayEmergencyFallbackTriggerTime) {
|
|
// after emergency timeout, trigger alarm - everything else is handled by callers
|
|
// (switch to emergency algorithm, switch to emergency waypoint in pathplanner, alarms, ...)
|
|
result = 0;
|
|
}
|
|
} else {
|
|
global.vtolEmergencyFallback = 0.0f;
|
|
}
|
|
|
|
// Project the north and east command signals into the pitch and roll based on yaw. For this to behave well the
|
|
// craft should move similarly for 5 deg roll versus 5 deg pitch
|
|
stabDesired.Pitch = boundf(-northCommand * cosf(DEG2RAD(attitudeState.Yaw)) +
|
|
-eastCommand * sinf(DEG2RAD(attitudeState.Yaw)),
|
|
-vtolPathFollowerSettings.MaxRollPitch, vtolPathFollowerSettings.MaxRollPitch);
|
|
stabDesired.Roll = boundf(-northCommand * sinf(DEG2RAD(attitudeState.Yaw)) +
|
|
eastCommand * cosf(DEG2RAD(attitudeState.Yaw)),
|
|
-vtolPathFollowerSettings.MaxRollPitch, vtolPathFollowerSettings.MaxRollPitch);
|
|
|
|
if (vtolPathFollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_MANUAL) {
|
|
// For now override thrust with manual control. Disable at your risk, quad goes to China.
|
|
ManualControlCommandData manualControl;
|
|
ManualControlCommandGet(&manualControl);
|
|
stabDesired.Thrust = manualControl.Thrust;
|
|
}
|
|
|
|
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
|
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
|
if (yaw_attitude) {
|
|
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
|
stabDesired.Yaw = yaw_direction;
|
|
} else {
|
|
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
|
|
stabDesired.Yaw = stabSettings.MaximumRate.Yaw * manualControlData.Yaw;
|
|
}
|
|
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
|
|
StabilizationDesiredSet(&stabDesired);
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Compute desired attitude for vtols - emergency fallback
|
|
*/
|
|
static void updateVtolDesiredAttitudeEmergencyFallback()
|
|
{
|
|
const float dT = updatePeriod / 1000.0f;
|
|
|
|
VelocityDesiredData velocityDesired;
|
|
VelocityStateData velocityState;
|
|
StabilizationDesiredData stabDesired;
|
|
|
|
float courseError;
|
|
float courseCommand;
|
|
|
|
float downError;
|
|
float downCommand;
|
|
|
|
VelocityStateGet(&velocityState);
|
|
VelocityDesiredGet(&velocityDesired);
|
|
|
|
ManualControlCommandData manualControlData;
|
|
ManualControlCommandGet(&manualControlData);
|
|
|
|
courseError = RAD2DEG(atan2f(velocityDesired.East, velocityDesired.North) - atan2f(velocityState.East, velocityState.North));
|
|
|
|
if (courseError < -180.0f) {
|
|
courseError += 360.0f;
|
|
}
|
|
if (courseError > 180.0f) {
|
|
courseError -= 360.0f;
|
|
}
|
|
|
|
|
|
courseCommand = (courseError * vtolPathFollowerSettings.EmergencyFallbackYawRate.kP);
|
|
|
|
stabDesired.Yaw = boundf(courseCommand, -vtolPathFollowerSettings.EmergencyFallbackYawRate.Max, vtolPathFollowerSettings.EmergencyFallbackYawRate.Max);
|
|
|
|
// Compute desired down command
|
|
downError = velocityDesired.Down - velocityState.Down;
|
|
// Must flip this sign
|
|
downError = -downError;
|
|
downCommand = pid_apply(&global.PIDvel[2], downError, dT);
|
|
|
|
stabDesired.Thrust = boundf(downCommand + vtolPathFollowerSettings.ThrustLimits.Neutral, vtolPathFollowerSettings.ThrustLimits.Min, vtolPathFollowerSettings.ThrustLimits.Max);
|
|
|
|
|
|
stabDesired.Roll = vtolPathFollowerSettings.EmergencyFallbackAttitude.Roll;
|
|
stabDesired.Pitch = vtolPathFollowerSettings.EmergencyFallbackAttitude.Pitch;
|
|
|
|
if (vtolPathFollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_MANUAL) {
|
|
// For now override thrust with manual control. Disable at your risk, quad goes to China.
|
|
ManualControlCommandData manualControl;
|
|
ManualControlCommandGet(&manualControl);
|
|
stabDesired.Thrust = manualControl.Thrust;
|
|
}
|
|
|
|
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
|
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
|
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
|
|
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
|
|
StabilizationDesiredSet(&stabDesired);
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute desired attitude from a fixed preset
|
|
*
|
|
*/
|
|
static void updateFixedAttitude(float *attitude)
|
|
{
|
|
StabilizationDesiredData stabDesired;
|
|
|
|
StabilizationDesiredGet(&stabDesired);
|
|
stabDesired.Roll = attitude[0];
|
|
stabDesired.Pitch = attitude[1];
|
|
stabDesired.Yaw = attitude[2];
|
|
stabDesired.Thrust = attitude[3];
|
|
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
|
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
|
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
|
|
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
|
|
StabilizationDesiredSet(&stabDesired);
|
|
}
|