mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2025-01-18 03:52:11 +01:00
92 lines
3.1 KiB
C
92 lines
3.1 KiB
C
/**
|
|
******************************************************************************
|
|
* @addtogroup PIOS PIOS Core hardware abstraction layer
|
|
* @{
|
|
* @addtogroup PIOS_MPXV Functions
|
|
* @brief Hardware functions to deal with the DIYDrones airspeed kit, using MPXV*.
|
|
* This is a differential sensor, so the value returned is first converted into
|
|
* calibrated airspeed, using http://en.wikipedia.org/wiki/Calibrated_airspeed
|
|
* @{
|
|
*
|
|
* @file pios_mpxv.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
|
|
* @brief ETASV3 Airspeed Sensor Driver
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
******************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/* Project Includes */
|
|
#include "pios.h"
|
|
|
|
#if defined(PIOS_INCLUDE_MPXV)
|
|
|
|
#define A0 340.27f //speed of sound at standard sea level in [m/s]
|
|
#define P0 101.325f //static air pressure at standard sea level in kPa
|
|
#define POWER (2.0f/7.0f)
|
|
|
|
#include "pios_mpxv.h"
|
|
|
|
/*
|
|
* Reads ADC.
|
|
*/
|
|
uint16_t PIOS_MPXV_Measure(PIOS_MPXV_descriptor *desc)
|
|
{
|
|
if (desc)
|
|
return PIOS_ADC_PinGet(desc->airspeedADCPin);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
*Returns zeroPoint so that the user can inspect the calibration vs. the sensor value
|
|
*/
|
|
uint16_t PIOS_MPXV_Calibrate(PIOS_MPXV_descriptor *desc,uint16_t measurement){
|
|
desc->calibrationSum += measurement;
|
|
desc->calibrationCount++;
|
|
desc->zeroPoint = (uint16_t)(((float)desc->calibrationSum) / desc->calibrationCount);
|
|
return desc->zeroPoint;
|
|
}
|
|
|
|
|
|
/*
|
|
* Reads the airspeed and returns CAS (calibrated airspeed) in the case of success.
|
|
* In the case of a failed read, returns -1.
|
|
*/
|
|
float PIOS_MPXV_CalcAirspeed(PIOS_MPXV_descriptor *desc,uint16_t measurement)
|
|
{
|
|
//Calculate dynamic pressure, as per docs
|
|
float Qc = 3.3f/4096.0f * (float)(measurement - desc->zeroPoint);
|
|
|
|
//Saturate Qc on the lower bound, in order to make sure we don't have negative airspeeds. No need
|
|
// to saturate on the upper bound, we'll handle that later with calibratedAirspeed.
|
|
if (Qc < 0) {
|
|
Qc=0;
|
|
}
|
|
|
|
//Compute calibrated airspeed, as per http://en.wikipedia.org/wiki/Calibrated_airspeed
|
|
float calibratedAirspeed = A0*sqrt(5.0f*(pow(Qc/P0+1.0f,POWER)-1.0f));
|
|
|
|
//Upper bound airspeed. No need to lower bound it, that comes from Qc
|
|
if (calibratedAirspeed > desc->maxSpeed) { //in [m/s]
|
|
calibratedAirspeed=desc->maxSpeed;
|
|
}
|
|
|
|
return calibratedAirspeed;
|
|
}
|
|
|
|
#endif /* PIOS_INCLUDE_MPXV */
|