1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-30 08:24:11 +01:00
LibrePilot/flight/Modules/RadioComBridge/RadioComBridge.c
2012-07-14 17:14:43 -07:00

1225 lines
36 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup RadioComBridgeModule Com Port to Radio Bridge Module
* @brief Bridge Com and Radio ports
* @{
*
* @file RadioComBridge.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Bridges selected Com Port to the COM VCP emulated serial port
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
// ****************
#include <openpilot.h>
#include <radiocombridge.h>
#include <packet_handler.h>
#include <gcsreceiver.h>
#include <pipxstatus.h>
#include <objectpersistence.h>
#include <pipxsettings.h>
#include <uavtalk_priv.h>
#include <pios_rfm22b.h>
#include <ecc.h>
#if defined(PIOS_INCLUDE_FLASH_EEPROM)
#include <pios_eeprom.h>
#endif
#include <stdbool.h>
// ****************
// Private constants
#define TEMP_BUFFER_SIZE 25
#define STACK_SIZE_BYTES 150
#define TASK_PRIORITY (tskIDLE_PRIORITY + 1)
#define BRIDGE_BUF_LEN 512
#define MAX_RETRIES 2
#define RETRY_TIMEOUT_MS 20
#define STATS_UPDATE_PERIOD_MS 500
#define RADIOSTATS_UPDATE_PERIOD_MS 250
#define MAX_LOST_CONTACT_TIME 4
#define PACKET_QUEUE_SIZE 10
#define MAX_PORT_DELAY 200
#define EV_PACKET_RECEIVED 0x20
#define EV_TRANSMIT_PACKET 0x30
#define EV_SEND_ACK 0x40
#define EV_SEND_NACK 0x50
// ****************
// Private types
typedef struct {
uint32_t pairID;
uint16_t retries;
uint16_t errors;
uint16_t uavtalk_errors;
uint16_t resets;
uint16_t dropped;
int8_t rssi;
uint8_t lastContact;
} PairStats;
typedef struct {
uint32_t comPort;
UAVTalkConnection UAVTalkCon;
xQueueHandle sendQueue;
xQueueHandle recvQueue;
xQueueHandle gcsQueue;
uint16_t wdg;
bool checkHID;
} UAVTalkComTaskParams;
typedef struct {
// The task handles.
xTaskHandle GCSUAVTalkRecvTaskHandle;
xTaskHandle UAVTalkRecvTaskHandle;
xTaskHandle radioReceiveTaskHandle;
xTaskHandle sendPacketTaskHandle;
xTaskHandle UAVTalkSendTaskHandle;
xTaskHandle radioStatusTaskHandle;
xTaskHandle transparentCommTaskHandle;
xTaskHandle ppmInputTaskHandle;
// The UAVTalk connection on the com side.
UAVTalkConnection UAVTalkCon;
UAVTalkConnection GCSUAVTalkCon;
// Queue handles.
xQueueHandle radioPacketQueue;
xQueueHandle gcsEventQueue;
xQueueHandle uavtalkEventQueue;
xQueueHandle ppmOutQueue;
// Error statistics.
uint32_t comTxErrors;
uint32_t comTxRetries;
uint32_t comRxErrors;
uint32_t radioTxErrors;
uint32_t radioTxRetries;
uint32_t radioRxErrors;
uint32_t UAVTalkErrors;
uint32_t packetErrors;
uint32_t droppedPackets;
uint16_t txBytes;
uint16_t rxBytes;
// The destination ID
uint32_t destination_id;
// The packet timeout.
portTickType send_timeout;
uint16_t min_packet_size;
// Track other radios that are in range.
PairStats pairStats[PIPXSTATUS_PAIRIDS_NUMELEM];
// The RSSI of the last packet received.
int8_t RSSI;
// Thread parameters.
UAVTalkComTaskParams uavtalk_params;
UAVTalkComTaskParams gcs_uavtalk_params;
} RadioComBridgeData;
typedef struct {
uint32_t com_port;
uint8_t *buffer;
uint16_t length;
uint16_t index;
uint16_t data_length;
} ReadBuffer, *BufferedReadHandle;
// ****************
// Private functions
static void UAVTalkRecvTask(void *parameters);
static void radioReceiveTask(void *parameters);
static void sendPacketTask(void *parameters);
static void UAVTalkSendTask(void *parameters);
static void transparentCommTask(void * parameters);
static void radioStatusTask(void *parameters);
static void ppmInputTask(void *parameters);
static int32_t UAVTalkSendHandler(uint8_t * data, int32_t length);
static int32_t GCSUAVTalkSendHandler(uint8_t * data, int32_t length);
static int32_t transmitPacket(PHPacketHandle packet);
static void receiveData(uint8_t *buf, uint8_t len, int8_t rssi, int8_t afc);
static void transmitData(uint32_t outputPort, uint8_t *buf, uint8_t len, bool checkHid);
static void StatusHandler(PHStatusPacketHandle p, int8_t rssi, int8_t afc);
static void PPMHandler(uint16_t *channels);
static BufferedReadHandle BufferedReadInit(uint32_t com_port, uint16_t buffer_length);
static bool BufferedRead(BufferedReadHandle h, uint8_t *value, uint32_t timeout_ms);
static void BufferedReadSetCom(BufferedReadHandle h, uint32_t com_port);
static void queueEvent(xQueueHandle queue, void *obj, uint16_t instId, UAVObjEventType type);
static void updateSettings();
// ****************
// Private variables
static RadioComBridgeData *data;
/**
* Start the module
* \return -1 if initialisation failed
* \return 0 on success
*/
static int32_t RadioComBridgeStart(void)
{
if(data) {
// Start the primary tasks for receiving/sending UAVTalk packets from the GCS.
xTaskCreate(UAVTalkRecvTask, (signed char *)"GCSUAVTalkRecvTask", STACK_SIZE_BYTES, (void*)&(data->gcs_uavtalk_params), TASK_PRIORITY + 2, &(data->GCSUAVTalkRecvTaskHandle));
xTaskCreate(UAVTalkSendTask, (signed char *)"GCSUAVTalkSendTask", STACK_SIZE_BYTES, (void*)&(data->gcs_uavtalk_params), TASK_PRIORITY+ 2, &(data->UAVTalkSendTaskHandle));
// If a UAVTalk (non-GCS) com port is set it implies that the com port is connected on the flight side.
// In this case we want to start another com thread on the HID port to talk to the GCS when connected.
if (PIOS_COM_UAVTALK)
{
xTaskCreate(UAVTalkRecvTask, (signed char *)"UAVTalkRecvTask", STACK_SIZE_BYTES, (void*)&(data->uavtalk_params), TASK_PRIORITY + 2, &(data->UAVTalkRecvTaskHandle));
xTaskCreate(UAVTalkSendTask, (signed char *)"UAVTalkSendTask", STACK_SIZE_BYTES, (void*)&(data->uavtalk_params), TASK_PRIORITY+ 2, &(data->UAVTalkSendTaskHandle));
}
// Start the tasks
if(PIOS_COM_TRANS_COM)
xTaskCreate(transparentCommTask, (signed char *)"transparentComm", STACK_SIZE_BYTES, NULL, TASK_PRIORITY + 2, &(data->transparentCommTaskHandle));
xTaskCreate(radioReceiveTask, (signed char *)"RadioReceive", STACK_SIZE_BYTES, NULL, TASK_PRIORITY+ 2, &(data->radioReceiveTaskHandle));
xTaskCreate(sendPacketTask, (signed char *)"SendPacketTask", STACK_SIZE_BYTES, NULL, TASK_PRIORITY + 2, &(data->sendPacketTaskHandle));
xTaskCreate(radioStatusTask, (signed char *)"RadioStatus", STACK_SIZE_BYTES, NULL, TASK_PRIORITY, &(data->radioStatusTaskHandle));
if(PIOS_PPM_RECEIVER)
xTaskCreate(ppmInputTask, (signed char *)"PPMInputTask", STACK_SIZE_BYTES, NULL, TASK_PRIORITY + 2, &(data->ppmInputTaskHandle));
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_RegisterFlag(PIOS_WDG_COMGCS);
if(PIOS_COM_UAVTALK)
PIOS_WDG_RegisterFlag(PIOS_WDG_COMUAVTALK);
if(PIOS_COM_TRANS_COM)
PIOS_WDG_RegisterFlag(PIOS_WDG_TRANSCOMM);
PIOS_WDG_RegisterFlag(PIOS_WDG_RADIORECEIVE);
//PIOS_WDG_RegisterFlag(PIOS_WDG_SENDPACKET);
if(PIOS_PPM_RECEIVER)
PIOS_WDG_RegisterFlag(PIOS_WDG_PPMINPUT);
#endif
return 0;
}
return -1;
}
/**
* Initialise the module
* \return -1 if initialisation failed
* \return 0 on success
*/
static int32_t RadioComBridgeInitialize(void)
{
// allocate and initialize the static data storage only if module is enabled
data = (RadioComBridgeData *)pvPortMalloc(sizeof(RadioComBridgeData));
if (!data)
return -1;
// Initialize the UAVObjects that we use
GCSReceiverInitialize();
PipXStatusInitialize();
ObjectPersistenceInitialize();
updateSettings();
// Initialise UAVTalk
data->GCSUAVTalkCon = UAVTalkInitialize(&GCSUAVTalkSendHandler);
if (PIOS_COM_UAVTALK)
data->UAVTalkCon = UAVTalkInitialize(&UAVTalkSendHandler);
// Initialize the queues.
data->ppmOutQueue = 0;
data->radioPacketQueue = xQueueCreate(PACKET_QUEUE_SIZE, sizeof(UAVObjEvent));
data->gcsEventQueue = xQueueCreate(PACKET_QUEUE_SIZE, sizeof(UAVObjEvent));
if (PIOS_COM_UAVTALK)
data->uavtalkEventQueue = xQueueCreate(PACKET_QUEUE_SIZE, sizeof(UAVObjEvent));
else
{
data->uavtalkEventQueue = 0;
data->ppmOutQueue = data->radioPacketQueue;
}
// Initialize the statistics.
data->radioTxErrors = 0;
data->radioTxRetries = 0;
data->radioRxErrors = 0;
data->comTxErrors = 0;
data->comTxRetries = 0;
data->comRxErrors = 0;
data->UAVTalkErrors = 0;
data->packetErrors = 0;
data->RSSI = -127;
// Register the callbacks with the packet handler
PHRegisterOutputStream(pios_packet_handler, transmitPacket);
PHRegisterDataHandler(pios_packet_handler, receiveData);
PHRegisterPPMHandler(pios_packet_handler, PPMHandler);
PHRegisterStatusHandler(pios_packet_handler, StatusHandler);
// Initialize the packet send timeout
data->send_timeout = 25; // ms
data->min_packet_size = 50;
// Initialize the detected device statistics.
for (uint8_t i = 0; i < PIPXSTATUS_PAIRIDS_NUMELEM; ++i)
{
data->pairStats[i].pairID = 0;
data->pairStats[i].rssi = -127;
data->pairStats[i].retries = 0;
data->pairStats[i].errors = 0;
data->pairStats[i].uavtalk_errors = 0;
data->pairStats[i].resets = 0;
data->pairStats[i].dropped = 0;
data->pairStats[i].lastContact = 0;
}
// The first slot is reserved for our current pairID
PipXSettingsPairIDGet(&(data->pairStats[0].pairID));
// Configure our UAVObjects for updates.
UAVObjConnectQueue(UAVObjGetByID(PIPXSTATUS_OBJID), data->gcsEventQueue, EV_UPDATED | EV_UPDATED_MANUAL | EV_UPDATE_REQ);
UAVObjConnectQueue(UAVObjGetByID(GCSRECEIVER_OBJID), data->uavtalkEventQueue ? data->uavtalkEventQueue : data->gcsEventQueue, EV_UPDATED | EV_UPDATED_MANUAL | EV_UPDATE_REQ);
UAVObjConnectQueue(UAVObjGetByID(OBJECTPERSISTENCE_OBJID), data->gcsEventQueue, EV_UPDATED | EV_UPDATED_MANUAL);
// Initialize the UAVTalk comm parameters.
data->gcs_uavtalk_params.UAVTalkCon = data->GCSUAVTalkCon;
data->gcs_uavtalk_params.sendQueue = data->radioPacketQueue;
data->gcs_uavtalk_params.recvQueue = data->gcsEventQueue;
data->gcs_uavtalk_params.wdg = PIOS_WDG_COMGCS;
data->gcs_uavtalk_params.checkHID = true;
data->gcs_uavtalk_params.comPort = PIOS_COM_GCS;
if (PIOS_COM_UAVTALK)
{
data->gcs_uavtalk_params.sendQueue = data->uavtalkEventQueue;
data->uavtalk_params.UAVTalkCon = data->UAVTalkCon;
data->uavtalk_params.sendQueue = data->radioPacketQueue;
data->uavtalk_params.recvQueue = data->uavtalkEventQueue;
data->uavtalk_params.gcsQueue = data->gcsEventQueue;
data->uavtalk_params.wdg = PIOS_WDG_COMUAVTALK;
data->uavtalk_params.checkHID = false;
data->uavtalk_params.comPort = PIOS_COM_UAVTALK;
}
return 0;
}
MODULE_INITCALL(RadioComBridgeInitialize, RadioComBridgeStart)
/**
* Reads UAVTalk messages froma com port and creates packets out of them.
*/
static void UAVTalkRecvTask(void *parameters)
{
UAVTalkComTaskParams *params = (UAVTalkComTaskParams *)parameters;
PHPacketHandle p = NULL;
// Create the buffered reader.
BufferedReadHandle f = BufferedReadInit(params->comPort, TEMP_BUFFER_SIZE);
while (1) {
#ifdef PIOS_INCLUDE_WDG
// Update the watchdog timer.
if (params->wdg)
PIOS_WDG_UpdateFlag(params->wdg);
#endif /* PIOS_INCLUDE_WDG */
// Receive from USB HID if available, otherwise UAVTalk com if it's available.
#if defined(PIOS_INCLUDE_USB)
// Determine input port (USB takes priority over telemetry port)
if (params->checkHID && PIOS_USB_CheckAvailable(0))
BufferedReadSetCom(f, PIOS_COM_USB_HID);
else
#endif /* PIOS_INCLUDE_USB */
{
if (params->comPort)
BufferedReadSetCom(f, params->comPort);
else
{
vTaskDelay(5);
continue;
}
}
// Read the next byte
uint8_t rx_byte;
if(!BufferedRead(f, &rx_byte, MAX_PORT_DELAY))
continue;
// Get a TX packet from the packet handler if required.
if (p == NULL)
{
// Wait until we receive a sync.
UAVTalkRxState state = UAVTalkProcessInputStreamQuiet(params->UAVTalkCon, rx_byte);
if (state != UAVTALK_STATE_TYPE)
continue;
// Get a packet when we see the sync
p = PHGetTXPacket(pios_packet_handler);
// No packets available?
if (p == NULL)
{
data->droppedPackets++;
continue;
}
// Initialize the packet.
p->header.destination_id = data->destination_id;
p->header.source_id = PIOS_RFM22B_DeviceID(pios_rfm22b_id);
p->header.type = PACKET_TYPE_DATA;
p->data[0] = rx_byte;
p->header.data_size = 1;
continue;
}
// Insert this byte.
p->data[p->header.data_size++] = rx_byte;
// Keep reading until we receive a completed packet.
UAVTalkRxState state = UAVTalkProcessInputStreamQuiet(params->UAVTalkCon, rx_byte);
UAVTalkConnectionData *connection = (UAVTalkConnectionData*)(params->UAVTalkCon);
UAVTalkInputProcessor *iproc = &(connection->iproc);
if (state == UAVTALK_STATE_COMPLETE)
{
xQueueHandle sendQueue = params->sendQueue;
#if defined(PIOS_INCLUDE_USB)
if (params->gcsQueue)
if (PIOS_USB_CheckAvailable(0) && PIOS_COM_USB_HID)
sendQueue = params->gcsQueue;
#endif /* PIOS_INCLUDE_USB */
// Is this a local UAVObject?
// We only generate GcsReceiver ojects, we don't consume them.
if ((iproc->obj != NULL) && (iproc->objId != GCSRECEIVER_OBJID))
{
// We treat the ObjectPersistence object differently
if(iproc->objId == OBJECTPERSISTENCE_OBJID)
{
// Unpack object, if the instance does not exist it will be created!
UAVObjUnpack(iproc->obj, iproc->instId, connection->rxBuffer);
// Get the ObjectPersistence object.
ObjectPersistenceData obj_per;
ObjectPersistenceGet(&obj_per);
// Is this concerning or setting object?
if (obj_per.ObjectID == PIPXSETTINGS_OBJID)
{
// Queue up the ACK.
queueEvent(params->recvQueue, (void*)iproc->obj, iproc->instId, EV_SEND_ACK);
// Is this a save, load, or delete?
bool success = true;
switch (obj_per.Operation)
{
case OBJECTPERSISTENCE_OPERATION_LOAD:
{
#if defined(PIOS_INCLUDE_FLASH_EEPROM)
// Load the settings.
PipXSettingsData pipxSettings;
if (PIOS_EEPROM_Load((uint8_t*)&pipxSettings, sizeof(PipXSettingsData)) == 0)
PipXSettingsSet(&pipxSettings);
else
success = false;
#endif
break;
}
case OBJECTPERSISTENCE_OPERATION_SAVE:
{
#if defined(PIOS_INCLUDE_FLASH_EEPROM)
// Save the settings.
PipXSettingsData pipxSettings;
PipXSettingsGet(&pipxSettings);
int32_t ret = PIOS_EEPROM_Save((uint8_t*)&pipxSettings, sizeof(PipXSettingsData));
if (ret != 0)
success = false;
#endif
break;
}
case OBJECTPERSISTENCE_OPERATION_DELETE:
{
#if defined(PIOS_INCLUDE_FLASH_EEPROM)
// Erase the settings.
PipXSettingsData pipxSettings;
uint8_t *ptr = (uint8_t*)&pipxSettings;
memset(ptr, 0, sizeof(PipXSettingsData));
int32_t ret = PIOS_EEPROM_Save(ptr, sizeof(PipXSettingsData));
if (ret != 0)
success = false;
#endif
break;
}
default:
break;
}
if (success == true)
{
obj_per.Operation = OBJECTPERSISTENCE_OPERATION_COMPLETED;
ObjectPersistenceSet(&obj_per);
}
// Release the packet, since we don't need it.
PHReleaseTXPacket(pios_packet_handler, p);
}
else
{
// Otherwise, queue the packet for transmission.
queueEvent(sendQueue, (void*)p, 0, EV_TRANSMIT_PACKET);
}
}
else
{
switch (iproc->type)
{
case UAVTALK_TYPE_OBJ:
// Unpack object, if the instance does not exist it will be created!
UAVObjUnpack(iproc->obj, iproc->instId, connection->rxBuffer);
break;
case UAVTALK_TYPE_OBJ_REQ:
// Queue up an object send request.
queueEvent(params->recvQueue, (void*)iproc->obj, iproc->instId, EV_UPDATE_REQ);
break;
case UAVTALK_TYPE_OBJ_ACK:
if (UAVObjUnpack(iproc->obj, iproc->instId, connection->rxBuffer) == 0)
// Queue up an ACK
queueEvent(params->recvQueue, (void*)iproc->obj, iproc->instId, EV_SEND_ACK);
break;
}
// Release the packet, since we don't need it.
PHReleaseTXPacket(pios_packet_handler, p);
}
}
else
{
// Queue the packet for transmission.
queueEvent(sendQueue, (void*)p, 0, EV_TRANSMIT_PACKET);
}
p = NULL;
} else if(state == UAVTALK_STATE_ERROR) {
xQueueHandle sendQueue = params->sendQueue;
#if defined(PIOS_INCLUDE_USB)
if (params->gcsQueue)
if (PIOS_USB_CheckAvailable(0) && PIOS_COM_USB_HID)
sendQueue = params->gcsQueue;
#endif /* PIOS_INCLUDE_USB */
data->UAVTalkErrors++;
// Send a NACK if required.
if((iproc->obj) && (iproc->type == UAVTALK_TYPE_OBJ_ACK))
{
// Queue up a NACK
queueEvent(params->recvQueue, iproc->obj, iproc->instId, EV_SEND_NACK);
// Release the packet and start over again.
PHReleaseTXPacket(pios_packet_handler, p);
}
else
{
// Transmit the packet anyway...
queueEvent(sendQueue, (void*)p, 0, EV_TRANSMIT_PACKET);
}
p = NULL;
}
}
}
/**
* The radio to com bridge task.
*/
static void radioReceiveTask(void *parameters)
{
PHPacketHandle p = NULL;
/* Handle radio -> usart/usb direction */
while (1) {
uint32_t rx_bytes;
#ifdef PIOS_INCLUDE_WDG
// Update the watchdog timer.
PIOS_WDG_UpdateFlag(PIOS_WDG_RADIORECEIVE);
#endif /* PIOS_INCLUDE_WDG */
// Get a RX packet from the packet handler if required.
if (p == NULL)
p = PHGetRXPacket(pios_packet_handler);
if(p == NULL) {
DEBUG_PRINTF(2, "RX Packet Unavailable.!\n\r");
// Wait a bit for a packet to come available.
vTaskDelay(5);
continue;
}
// Receive data from the radio port
rx_bytes = PIOS_COM_ReceiveBuffer(PIOS_COM_RADIO, (uint8_t*)p, PIOS_PH_MAX_PACKET, MAX_PORT_DELAY);
if(rx_bytes == 0)
continue;
data->rxBytes += rx_bytes;
// Verify that the packet is valid and pass it on.
if(PHVerifyPacket(pios_packet_handler, p, rx_bytes) > 0) {
UAVObjEvent ev;
ev.obj = (UAVObjHandle)p;
ev.event = EV_PACKET_RECEIVED;
xQueueSend(data->gcsEventQueue, &ev, portMAX_DELAY);
} else
{
data->packetErrors++;
PHReceivePacket(pios_packet_handler, p, true);
}
p = NULL;
}
}
/**
* Send packets to the radio.
*/
static void sendPacketTask(void *parameters)
{
UAVObjEvent ev;
// Loop forever
while (1) {
#ifdef PIOS_INCLUDE_WDG
// Update the watchdog timer.
//PIOS_WDG_UpdateFlag(PIOS_WDG_SENDPACKET);
#endif /* PIOS_INCLUDE_WDG */
// Wait for a packet on the queue.
if (xQueueReceive(data->radioPacketQueue, &ev, MAX_PORT_DELAY) == pdTRUE) {
PHPacketHandle p = (PHPacketHandle)ev.obj;
// Send the packet.
if(!PHTransmitPacket(pios_packet_handler, p))
PHReleaseRXPacket(pios_packet_handler, p);
}
}
}
/**
* Send packets to the com port.
*/
static void UAVTalkSendTask(void *parameters)
{
UAVTalkComTaskParams *params = (UAVTalkComTaskParams *)parameters;
UAVObjEvent ev;
// Loop forever
while (1) {
#ifdef PIOS_INCLUDE_WDG
// Update the watchdog timer.
// NOTE: this is temporarily turned off becase PIOS_Com_SendBuffer appears to block for an uncontrollable time,
// and SendBufferNonBlocking doesn't seem to be working in this case.
//PIOS_WDG_UpdateFlag(PIOS_WDG_SENDDATA);
#endif /* PIOS_INCLUDE_WDG */
// Wait for a packet on the queue.
if (xQueueReceive(params->recvQueue, &ev, MAX_PORT_DELAY) == pdTRUE) {
if ((ev.event == EV_UPDATED) || (ev.event == EV_UPDATE_REQ))
{
// Send update (with retries)
uint32_t retries = 0;
int32_t success = -1;
while (retries < MAX_RETRIES && success == -1) {
success = UAVTalkSendObject(params->UAVTalkCon, ev.obj, 0, 0, RETRY_TIMEOUT_MS) == 0;
if (!success)
++retries;
}
data->comTxRetries += retries;
}
else if(ev.event == EV_SEND_ACK)
{
// Send the ACK
uint32_t retries = 0;
int32_t success = -1;
while (retries < MAX_RETRIES && success == -1) {
success = UAVTalkSendAck(params->UAVTalkCon, ev.obj, ev.instId) == 0;
if (!success)
++retries;
}
data->comTxRetries += retries;
}
else if(ev.event == EV_SEND_NACK)
{
// Send the NACK
uint32_t retries = 0;
int32_t success = -1;
while (retries < MAX_RETRIES && success == -1) {
success = UAVTalkSendNack(params->UAVTalkCon, UAVObjGetID(ev.obj)) == 0;
if (!success)
++retries;
}
data->comTxRetries += retries;
}
else if(ev.event == EV_PACKET_RECEIVED)
{
// Receive the packet.
PHReceivePacket(pios_packet_handler, (PHPacketHandle)ev.obj, false);
}
else if(ev.event == EV_TRANSMIT_PACKET)
{
// Transmit the packet.
PHPacketHandle p = (PHPacketHandle)ev.obj;
transmitData(params->comPort, p->data, p->header.data_size, params->checkHID);
PHReleaseTXPacket(pios_packet_handler, p);
}
}
}
}
/**
* The com to radio bridge task.
*/
static void transparentCommTask(void * parameters)
{
portTickType packet_start_time = 0;
uint32_t timeout = MAX_PORT_DELAY;
PHPacketHandle p = NULL;
/* Handle usart/usb -> radio direction */
while (1) {
#ifdef PIOS_INCLUDE_WDG
// Update the watchdog timer.
PIOS_WDG_UpdateFlag(PIOS_WDG_TRANSCOMM);
#endif /* PIOS_INCLUDE_WDG */
// Get a TX packet from the packet handler if required.
if (p == NULL)
{
p = PHGetTXPacket(pios_packet_handler);
// No packets available?
if (p == NULL)
{
data->droppedPackets++;
// Wait a bit for a packet to come available.
vTaskDelay(5);
continue;
}
// Initialize the packet.
p->header.destination_id = data->destination_id;
p->header.source_id = PIOS_RFM22B_DeviceID(pios_rfm22b_id);
//p->header.type = PACKET_TYPE_ACKED_DATA;
p->header.type = PACKET_TYPE_DATA;
p->header.data_size = 0;
}
// Receive data from the com port
uint32_t cur_rx_bytes = PIOS_COM_ReceiveBuffer(PIOS_COM_TRANS_COM, p->data + p->header.data_size,
PH_MAX_DATA - p->header.data_size, timeout);
// Do we have an data to send?
p->header.data_size += cur_rx_bytes;
if (p->header.data_size > 0) {
// Check how long since last update
portTickType cur_sys_time = xTaskGetTickCount();
// Is this the start of a packet?
if(packet_start_time == 0)
packet_start_time = cur_sys_time;
// Just send the packet on wraparound
bool send_packet = (cur_sys_time < packet_start_time);
if (!send_packet)
{
portTickType dT = (cur_sys_time - packet_start_time) / portTICK_RATE_MS;
if (dT > data->send_timeout)
send_packet = true;
else
timeout = data->send_timeout - dT;
}
// Also send the packet if the size is over the minimum.
send_packet |= (p->header.data_size > data->min_packet_size);
// Should we send this packet?
if (send_packet)
{
// Queue the packet for transmission.
queueEvent(data->radioPacketQueue, (void*)p, 0, EV_TRANSMIT_PACKET);
// Reset the timeout
timeout = MAX_PORT_DELAY;
p = NULL;
packet_start_time = 0;
}
}
}
}
/**
* The stats update task.
*/
static void radioStatusTask(void *parameters)
{
PHStatusPacket status_packet;
while (1) {
PipXStatusData pipxStatus;
uint32_t pairID;
// Get object data
PipXStatusGet(&pipxStatus);
PipXSettingsPairIDGet(&pairID);
// Update the status
pipxStatus.DeviceID = PIOS_RFM22B_DeviceID(pios_rfm22b_id);
pipxStatus.Retries = data->comTxRetries;
pipxStatus.Errors = data->packetErrors;
pipxStatus.UAVTalkErrors = data->UAVTalkErrors;
pipxStatus.Dropped = data->droppedPackets;
pipxStatus.Resets = PIOS_RFM22B_Resets(pios_rfm22b_id);
pipxStatus.TXRate = (uint16_t)((float)(data->txBytes * 1000) / STATS_UPDATE_PERIOD_MS);
data->txBytes = 0;
pipxStatus.RXRate = (uint16_t)((float)(data->rxBytes * 1000) / STATS_UPDATE_PERIOD_MS);
data->rxBytes = 0;
pipxStatus.LinkState = PIPXSTATUS_LINKSTATE_DISCONNECTED;
pipxStatus.RSSI = data->RSSI;
LINK_LED_OFF;
// Update the potential pairing contacts
for (uint8_t i = 0; i < PIPXSTATUS_PAIRIDS_NUMELEM; ++i)
{
pipxStatus.PairIDs[i] = data->pairStats[i].pairID;
pipxStatus.PairSignalStrengths[i] = data->pairStats[i].rssi;
data->pairStats[i].lastContact++;
// Remove this device if it's stale.
if(data->pairStats[i].lastContact > MAX_LOST_CONTACT_TIME)
{
data->pairStats[i].pairID = 0;
data->pairStats[i].rssi = -127;
data->pairStats[i].retries = 0;
data->pairStats[i].errors = 0;
data->pairStats[i].uavtalk_errors = 0;
data->pairStats[i].resets = 0;
data->pairStats[i].dropped = 0;
data->pairStats[i].lastContact = 0;
}
// Add the paired devices statistics to ours.
if(pairID && (data->pairStats[i].pairID == pairID) && (data->pairStats[i].rssi > -127))
{
pipxStatus.Retries += data->pairStats[i].retries;
pipxStatus.Errors += data->pairStats[i].errors;
pipxStatus.UAVTalkErrors += data->pairStats[i].uavtalk_errors;
pipxStatus.Dropped += data->pairStats[i].dropped;
pipxStatus.Resets += data->pairStats[i].resets;
pipxStatus.Dropped += data->pairStats[i].dropped;
pipxStatus.LinkState = PIPXSTATUS_LINKSTATE_CONNECTED;
LINK_LED_ON;
}
}
// Update the object
PipXStatusSet(&pipxStatus);
// Broadcast the status.
{
static uint16_t cntr = 0;
if(cntr++ == RADIOSTATS_UPDATE_PERIOD_MS / STATS_UPDATE_PERIOD_MS)
{
// Queue the status message
status_packet.header.destination_id = 0xffffffff;
status_packet.header.type = PACKET_TYPE_STATUS;
status_packet.header.data_size = PH_STATUS_DATA_SIZE(&status_packet);
status_packet.header.source_id = pipxStatus.DeviceID;
status_packet.retries = data->comTxRetries;
status_packet.errors = data->packetErrors;
status_packet.uavtalk_errors = data->UAVTalkErrors;
status_packet.dropped = data->droppedPackets;
status_packet.resets = PIOS_RFM22B_Resets(pios_rfm22b_id);
PHPacketHandle sph = (PHPacketHandle)&status_packet;
queueEvent(data->radioPacketQueue, (void*)sph, 0, EV_TRANSMIT_PACKET);
cntr = 0;
}
}
// Delay until the next update period.
vTaskDelay(STATS_UPDATE_PERIOD_MS / portTICK_RATE_MS);
}
}
/**
* The PPM input task.
*/
static void ppmInputTask(void *parameters)
{
PHPpmPacket ppm_packet;
PHPacketHandle pph = (PHPacketHandle)&ppm_packet;
while (1) {
#ifdef PIOS_INCLUDE_WDG
// Update the watchdog timer.
PIOS_WDG_UpdateFlag(PIOS_WDG_PPMINPUT);
#endif /* PIOS_INCLUDE_WDG */
// Read the receiver.
for (uint8_t i = 1; i <= PIOS_PPM_NUM_INPUTS; ++i)
ppm_packet.channels[i - 1] = PIOS_RCVR_Read(PIOS_PPM_RECEIVER, i);
// Send the PPM packet
if (data->ppmOutQueue)
{
ppm_packet.header.destination_id = data->destination_id;
ppm_packet.header.source_id = PIOS_RFM22B_DeviceID(pios_rfm22b_id);
ppm_packet.header.type = PACKET_TYPE_PPM;
ppm_packet.header.data_size = PH_PPM_DATA_SIZE(&ppm_packet);
queueEvent(data->ppmOutQueue, (void*)pph, 0, EV_TRANSMIT_PACKET);
}
else
PPMHandler(ppm_packet.channels);
// Delay until the next update period.
vTaskDelay(PIOS_PPM_PACKET_UPDATE_PERIOD_MS / portTICK_RATE_MS);
}
}
/**
* Transmit data buffer to the com port.
* \param[in] params The comm parameters.
* \param[in] buf Data buffer to send
* \param[in] length Length of buffer
* \return -1 on failure
* \return number of bytes transmitted on success
*/
static int32_t UAVTalkSend(UAVTalkComTaskParams *params, uint8_t *buf, int32_t length)
{
uint32_t outputPort = params->comPort;
#if defined(PIOS_INCLUDE_USB)
if (params->checkHID)
{
// Determine output port (USB takes priority over telemetry port)
if (PIOS_USB_CheckAvailable(0) && PIOS_COM_USB_HID)
outputPort = PIOS_COM_USB_HID;
}
#endif /* PIOS_INCLUDE_USB */
if(outputPort)
return PIOS_COM_SendBuffer(outputPort, buf, length);
else
return -1;
}
/**
* Transmit data buffer to the com port.
* \param[in] buf Data buffer to send
* \param[in] length Length of buffer
* \return -1 on failure
* \return number of bytes transmitted on success
*/
static int32_t UAVTalkSendHandler(uint8_t *buf, int32_t length)
{
return UAVTalkSend(&(data->uavtalk_params), buf, length);
}
/**
* Transmit data buffer to the com port.
* \param[in] buf Data buffer to send
* \param[in] length Length of buffer
* \return -1 on failure
* \return number of bytes transmitted on success
*/
static int32_t GCSUAVTalkSendHandler(uint8_t *buf, int32_t length)
{
return UAVTalkSend(&(data->gcs_uavtalk_params), buf, length);
}
/**
* Transmit a packet to the radio port.
* \param[in] buf Data buffer to send
* \param[in] length Length of buffer
* \return -1 on failure
* \return number of bytes transmitted on success
*/
static int32_t transmitPacket(PHPacketHandle p)
{
data->txBytes += PH_PACKET_SIZE(p);
return PIOS_COM_SendBuffer(PIOS_COM_RADIO, (uint8_t*)p, PH_PACKET_SIZE(p));
}
/**
* Receive a packet
* \param[in] buf The received data buffer
* \param[in] length Length of buffer
*/
static void transmitData(uint32_t outputPort, uint8_t *buf, uint8_t len, bool checkHid)
{
#if defined(PIOS_INCLUDE_USB)
// See if USB is connected if requested.
if(checkHid)
// Determine output port (USB takes priority over telemetry port)
if (PIOS_USB_CheckAvailable(0) && PIOS_COM_USB_HID)
outputPort = PIOS_COM_USB_HID;
#endif /* PIOS_INCLUDE_USB */
if (!outputPort)
return;
// Send the received data to the com port
if (PIOS_COM_SendBuffer(outputPort, buf, len) != len)
// Error on transmit
data->comTxErrors++;
}
/**
* Receive a packet
* \param[in] buf The received data buffer
* \param[in] length Length of buffer
*/
static void receiveData(uint8_t *buf, uint8_t len, int8_t rssi, int8_t afc)
{
data->RSSI = rssi;
// Packet data should go to transparent com if it's configured,
// USB HID if it's connected, otherwise, UAVTalk com if it's configured.
uint32_t outputPort = PIOS_COM_TRANS_COM ? PIOS_COM_TRANS_COM : PIOS_COM_UAVTALK;
bool checkHid = (PIOS_COM_TRANS_COM == 0);
transmitData(outputPort, buf, len, checkHid);
}
/**
* Receive a status packet
* \param[in] status The status structure
*/
static void StatusHandler(PHStatusPacketHandle status, int8_t rssi, int8_t afc)
{
uint32_t id = status->header.source_id;
bool found = false;
// Have we seen this device recently?
uint8_t id_idx = 0;
for ( ; id_idx < PIPXSTATUS_PAIRIDS_NUMELEM; ++id_idx)
if(data->pairStats[id_idx].pairID == id)
{
found = true;
break;
}
// If we have seen it, update the RSSI and reset the last contact couter
if(found)
{
data->pairStats[id_idx].rssi = rssi;
data->pairStats[id_idx].retries = status->retries;
data->pairStats[id_idx].errors = status->errors;
data->pairStats[id_idx].uavtalk_errors = status->uavtalk_errors;
data->pairStats[id_idx].resets = status->resets;
data->pairStats[id_idx].dropped = status->dropped;
data->pairStats[id_idx].lastContact = 0;
}
// If we haven't seen it, find a slot to put it in.
if (!found)
{
uint32_t pairID;
PipXSettingsPairIDGet(&pairID);
uint8_t min_idx = 0;
if(id != pairID)
{
int8_t min_rssi = data->pairStats[0].rssi;
for (id_idx = 1; id_idx < PIPXSTATUS_PAIRIDS_NUMELEM; ++id_idx)
{
if(data->pairStats[id_idx].rssi < min_rssi)
{
min_rssi = data->pairStats[id_idx].rssi;
min_idx = id_idx;
}
}
}
data->pairStats[min_idx].pairID = id;
data->pairStats[min_idx].rssi = rssi;
data->pairStats[min_idx].retries = status->retries;
data->pairStats[min_idx].errors = status->errors;
data->pairStats[min_idx].uavtalk_errors = status->uavtalk_errors;
data->pairStats[min_idx].resets = status->resets;
data->pairStats[min_idx].dropped = status->dropped;
data->pairStats[min_idx].lastContact = 0;
}
}
/**
* Receive a ppm packet
* \param[in] channels The ppm channels
*/
static void PPMHandler(uint16_t *channels)
{
GCSReceiverData rcvr;
// Copy the receiver channels into the GCSReceiver object.
for (uint8_t i = 0; i < GCSRECEIVER_CHANNEL_NUMELEM; ++i)
rcvr.Channel[i] = channels[i];
// Set the GCSReceiverData object.
GCSReceiverSet(&rcvr);
}
static BufferedReadHandle BufferedReadInit(uint32_t com_port, uint16_t buffer_length)
{
BufferedReadHandle h = (BufferedReadHandle)pvPortMalloc(sizeof(ReadBuffer));
if (!h)
return NULL;
h->com_port = com_port;
h->buffer = (uint8_t*)pvPortMalloc(buffer_length);
h->length = buffer_length;
h->index = 0;
h->data_length = 0;
if (h->buffer == NULL)
return NULL;
return h;
}
static bool BufferedRead(BufferedReadHandle h, uint8_t *value, uint32_t timeout_ms)
{
// Read some data if required.
if(h->index == h->data_length)
{
uint32_t rx_bytes = PIOS_COM_ReceiveBuffer(h->com_port, h->buffer, h->length, timeout_ms);
if (rx_bytes == 0)
return false;
h->index = 0;
h->data_length = rx_bytes;
}
// Return the next byte.
*value = h->buffer[h->index++];
return true;
}
static void BufferedReadSetCom(BufferedReadHandle h, uint32_t com_port)
{
h->com_port = com_port;
}
/**
* Queue and event into an event queue.
* \param[in] queue The event queue
* \param[in] obj The data pointer
* \param[in] type The event type
*/
static void queueEvent(xQueueHandle queue, void *obj, uint16_t instId, UAVObjEventType type)
{
UAVObjEvent ev;
ev.obj = (UAVObjHandle)obj;
ev.instId = instId;
ev.event = type;
xQueueSend(queue, &ev, portMAX_DELAY);
}
/**
* Update the telemetry settings, called on startup.
* FIXME: This should be in the TelemetrySettings object. But objects
* have too much overhead yet. Also the telemetry has no any specific
* settings, etc. Thus the HwSettings object which contains the
* telemetry port speed is used for now.
*/
static void updateSettings()
{
// Get the settings.
PipXSettingsData pipxSettings;
PipXSettingsGet(&pipxSettings);
// Initialize the destination ID
data->destination_id = pipxSettings.PairID ? pipxSettings.PairID : 0xffffffff;
if (PIOS_COM_TELEMETRY) {
switch (pipxSettings.TelemetrySpeed) {
case PIPXSETTINGS_TELEMETRYSPEED_2400:
PIOS_COM_ChangeBaud(PIOS_COM_TELEMETRY, 2400);
break;
case PIPXSETTINGS_TELEMETRYSPEED_4800:
PIOS_COM_ChangeBaud(PIOS_COM_TELEMETRY, 4800);
break;
case PIPXSETTINGS_TELEMETRYSPEED_9600:
PIOS_COM_ChangeBaud(PIOS_COM_TELEMETRY, 9600);
break;
case PIPXSETTINGS_TELEMETRYSPEED_19200:
PIOS_COM_ChangeBaud(PIOS_COM_TELEMETRY, 19200);
break;
case PIPXSETTINGS_TELEMETRYSPEED_38400:
PIOS_COM_ChangeBaud(PIOS_COM_TELEMETRY, 38400);
break;
case PIPXSETTINGS_TELEMETRYSPEED_57600:
PIOS_COM_ChangeBaud(PIOS_COM_TELEMETRY, 57600);
break;
case PIPXSETTINGS_TELEMETRYSPEED_115200:
PIOS_COM_ChangeBaud(PIOS_COM_TELEMETRY, 115200);
break;
}
}
if (PIOS_COM_FLEXI) {
switch (pipxSettings.FlexiSpeed) {
case PIPXSETTINGS_TELEMETRYSPEED_2400:
PIOS_COM_ChangeBaud(PIOS_COM_FLEXI, 2400);
break;
case PIPXSETTINGS_TELEMETRYSPEED_4800:
PIOS_COM_ChangeBaud(PIOS_COM_FLEXI, 4800);
break;
case PIPXSETTINGS_TELEMETRYSPEED_9600:
PIOS_COM_ChangeBaud(PIOS_COM_FLEXI, 9600);
break;
case PIPXSETTINGS_TELEMETRYSPEED_19200:
PIOS_COM_ChangeBaud(PIOS_COM_FLEXI, 19200);
break;
case PIPXSETTINGS_TELEMETRYSPEED_38400:
PIOS_COM_ChangeBaud(PIOS_COM_FLEXI, 38400);
break;
case PIPXSETTINGS_TELEMETRYSPEED_57600:
PIOS_COM_ChangeBaud(PIOS_COM_FLEXI, 57600);
break;
case PIPXSETTINGS_TELEMETRYSPEED_115200:
PIOS_COM_ChangeBaud(PIOS_COM_FLEXI, 115200);
break;
}
}
if (PIOS_COM_VCP) {
switch (pipxSettings.VCPSpeed) {
case PIPXSETTINGS_TELEMETRYSPEED_2400:
PIOS_COM_ChangeBaud(PIOS_COM_VCP, 2400);
break;
case PIPXSETTINGS_TELEMETRYSPEED_4800:
PIOS_COM_ChangeBaud(PIOS_COM_VCP, 4800);
break;
case PIPXSETTINGS_TELEMETRYSPEED_9600:
PIOS_COM_ChangeBaud(PIOS_COM_VCP, 9600);
break;
case PIPXSETTINGS_TELEMETRYSPEED_19200:
PIOS_COM_ChangeBaud(PIOS_COM_VCP, 19200);
break;
case PIPXSETTINGS_TELEMETRYSPEED_38400:
PIOS_COM_ChangeBaud(PIOS_COM_VCP, 38400);
break;
case PIPXSETTINGS_TELEMETRYSPEED_57600:
PIOS_COM_ChangeBaud(PIOS_COM_VCP, 57600);
break;
case PIPXSETTINGS_TELEMETRYSPEED_115200:
PIOS_COM_ChangeBaud(PIOS_COM_VCP, 115200);
break;
}
}
}