mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-12-02 10:24:11 +01:00
747 lines
31 KiB
C
747 lines
31 KiB
C
/**
|
|
******************************************************************************
|
|
*
|
|
* @file fixedwingpathfollower.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
|
* @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
|
|
* and sets @ref AttitudeDesired. It only does this when the FlightMode field
|
|
* of @ref ManualControlCommand is Auto.
|
|
*
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
*****************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/**
|
|
* Input object: ActiveWaypoint
|
|
* Input object: PositionState
|
|
* Input object: ManualControlCommand
|
|
* Output object: AttitudeDesired
|
|
*
|
|
* This module will periodically update the value of the AttitudeDesired object.
|
|
*
|
|
* The module executes in its own thread in this example.
|
|
*
|
|
* Modules have no API, all communication to other modules is done through UAVObjects.
|
|
* However modules may use the API exposed by shared libraries.
|
|
* See the OpenPilot wiki for more details.
|
|
* http://www.openpilot.org/OpenPilot_Application_Architecture
|
|
*
|
|
*/
|
|
|
|
#include <openpilot.h>
|
|
|
|
#include "hwsettings.h"
|
|
#include "attitudestate.h"
|
|
#include "pathdesired.h" // object that will be updated by the module
|
|
#include "positionstate.h"
|
|
#include "flightstatus.h"
|
|
#include "pathstatus.h"
|
|
#include "airspeedstate.h"
|
|
#include "fixedwingpathfollowersettings.h"
|
|
#include "fixedwingpathfollowerstatus.h"
|
|
#include "homelocation.h"
|
|
#include "stabilizationdesired.h"
|
|
#include "stabilizationsettings.h"
|
|
#include "systemsettings.h"
|
|
#include "velocitydesired.h"
|
|
#include "velocitystate.h"
|
|
#include "taskinfo.h"
|
|
#include <pios_struct_helper.h>
|
|
|
|
#include "sin_lookup.h"
|
|
#include "paths.h"
|
|
#include "CoordinateConversions.h"
|
|
|
|
// Private constants
|
|
#define MAX_QUEUE_SIZE 4
|
|
#define STACK_SIZE_BYTES 1548
|
|
#define TASK_PRIORITY (tskIDLE_PRIORITY + 2)
|
|
|
|
// Private variables
|
|
static bool followerEnabled = false;
|
|
static xTaskHandle pathfollowerTaskHandle;
|
|
static PathDesiredData pathDesired;
|
|
static PathStatusData pathStatus;
|
|
static FixedWingPathFollowerSettingsData fixedwingpathfollowerSettings;
|
|
|
|
// Private functions
|
|
static void pathfollowerTask(void *parameters);
|
|
static void SettingsUpdatedCb(UAVObjEvent *ev);
|
|
static void updatePathVelocity();
|
|
static uint8_t updateFixedDesiredAttitude();
|
|
static void updateFixedAttitude();
|
|
static void airspeedStateUpdatedCb(UAVObjEvent *ev);
|
|
static bool correctCourse(float *C, float *V, float *F, float s);
|
|
|
|
/**
|
|
* Initialise the module, called on startup
|
|
* \returns 0 on success or -1 if initialisation failed
|
|
*/
|
|
int32_t FixedWingPathFollowerStart()
|
|
{
|
|
if (followerEnabled) {
|
|
// Start main task
|
|
xTaskCreate(pathfollowerTask, (signed char *)"PathFollower", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &pathfollowerTaskHandle);
|
|
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_PATHFOLLOWER, pathfollowerTaskHandle);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Initialise the module, called on startup
|
|
* \returns 0 on success or -1 if initialisation failed
|
|
*/
|
|
int32_t FixedWingPathFollowerInitialize()
|
|
{
|
|
HwSettingsInitialize();
|
|
HwSettingsOptionalModulesData optionalModules;
|
|
HwSettingsOptionalModulesGet(&optionalModules);
|
|
if (optionalModules.FixedWingPathFollower == HWSETTINGS_OPTIONALMODULES_ENABLED) {
|
|
followerEnabled = true;
|
|
FixedWingPathFollowerSettingsInitialize();
|
|
FixedWingPathFollowerStatusInitialize();
|
|
PathDesiredInitialize();
|
|
PathStatusInitialize();
|
|
VelocityDesiredInitialize();
|
|
AirspeedStateInitialize();
|
|
} else {
|
|
followerEnabled = false;
|
|
}
|
|
return 0;
|
|
}
|
|
MODULE_INITCALL(FixedWingPathFollowerInitialize, FixedWingPathFollowerStart);
|
|
|
|
static float northVelIntegral = 0;
|
|
static float eastVelIntegral = 0;
|
|
static float downVelIntegral = 0;
|
|
|
|
static float courseIntegral = 0;
|
|
static float speedIntegral = 0;
|
|
static float powerIntegral = 0;
|
|
static float airspeedErrorInt = 0;
|
|
|
|
// correct speed by measured airspeed
|
|
static float indicatedAirspeedStateBias = 0;
|
|
|
|
/**
|
|
* Module thread, should not return.
|
|
*/
|
|
static void pathfollowerTask(__attribute__((unused)) void *parameters)
|
|
{
|
|
SystemSettingsData systemSettings;
|
|
FlightStatusData flightStatus;
|
|
|
|
portTickType lastUpdateTime;
|
|
|
|
AirspeedStateConnectCallback(airspeedStateUpdatedCb);
|
|
FixedWingPathFollowerSettingsConnectCallback(SettingsUpdatedCb);
|
|
PathDesiredConnectCallback(SettingsUpdatedCb);
|
|
|
|
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
|
|
PathDesiredGet(&pathDesired);
|
|
|
|
// Main task loop
|
|
lastUpdateTime = xTaskGetTickCount();
|
|
while (1) {
|
|
// Conditions when this runs:
|
|
// 1. Must have FixedWing type airframe
|
|
// 2. Flight mode is PositionHold and PathDesired.Mode is Endpoint OR
|
|
// FlightMode is PathPlanner and PathDesired.Mode is Endpoint or Path
|
|
|
|
SystemSettingsGet(&systemSettings);
|
|
if ((systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWING) &&
|
|
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGELEVON) &&
|
|
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGVTAIL)) {
|
|
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
|
|
vTaskDelay(1000);
|
|
continue;
|
|
}
|
|
|
|
// Continue collecting data if not enough time
|
|
vTaskDelayUntil(&lastUpdateTime, fixedwingpathfollowerSettings.UpdatePeriod / portTICK_RATE_MS);
|
|
|
|
|
|
FlightStatusGet(&flightStatus);
|
|
PathStatusGet(&pathStatus);
|
|
|
|
uint8_t result;
|
|
// Check the combinations of flightmode and pathdesired mode
|
|
if (flightStatus.ControlChain.PathFollower == FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
|
|
if (flightStatus.ControlChain.PathPlanner == FLIGHTSTATUS_CONTROLCHAIN_FALSE) {
|
|
if (pathDesired.Mode == PATHDESIRED_MODE_FLYENDPOINT) {
|
|
updatePathVelocity();
|
|
result = updateFixedDesiredAttitude();
|
|
if (result) {
|
|
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
|
|
} else {
|
|
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
|
|
}
|
|
} else {
|
|
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
|
|
}
|
|
} else {
|
|
pathStatus.UID = pathDesired.UID;
|
|
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
|
|
switch (pathDesired.Mode) {
|
|
case PATHDESIRED_MODE_FLYENDPOINT:
|
|
case PATHDESIRED_MODE_FLYVECTOR:
|
|
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
|
|
case PATHDESIRED_MODE_FLYCIRCLELEFT:
|
|
updatePathVelocity();
|
|
result = updateFixedDesiredAttitude();
|
|
if (result) {
|
|
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
|
|
} else {
|
|
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
|
|
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
|
|
}
|
|
break;
|
|
case PATHDESIRED_MODE_FIXEDATTITUDE:
|
|
updateFixedAttitude(pathDesired.ModeParameters);
|
|
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
|
|
break;
|
|
case PATHDESIRED_MODE_DISARMALARM:
|
|
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
|
|
break;
|
|
default:
|
|
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
|
|
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// Be cleaner and get rid of global variables
|
|
northVelIntegral = 0;
|
|
eastVelIntegral = 0;
|
|
downVelIntegral = 0;
|
|
courseIntegral = 0;
|
|
speedIntegral = 0;
|
|
powerIntegral = 0;
|
|
}
|
|
PathStatusSet(&pathStatus);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute desired velocity from the current position and path
|
|
*
|
|
* Takes in @ref PositionState and compares it to @ref PathDesired
|
|
* and computes @ref VelocityDesired
|
|
*/
|
|
static void updatePathVelocity()
|
|
{
|
|
PositionStateData positionState;
|
|
|
|
PositionStateGet(&positionState);
|
|
VelocityStateData velocityState;
|
|
VelocityStateGet(&velocityState);
|
|
|
|
// look ahead fixedwingpathfollowerSettings.CourseFeedForward seconds
|
|
float cur[3] = { positionState.North + (velocityState.North * fixedwingpathfollowerSettings.CourseFeedForward),
|
|
positionState.East + (velocityState.East * fixedwingpathfollowerSettings.CourseFeedForward),
|
|
positionState.Down + (velocityState.Down * fixedwingpathfollowerSettings.CourseFeedForward) };
|
|
struct path_status progress;
|
|
|
|
path_progress(cast_struct_to_array(pathDesired.Start, pathDesired.Start.North),
|
|
cast_struct_to_array(pathDesired.End, pathDesired.End.North),
|
|
cur, &progress, pathDesired.Mode);
|
|
|
|
float groundspeed;
|
|
float altitudeSetpoint;
|
|
switch (pathDesired.Mode) {
|
|
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
|
|
case PATHDESIRED_MODE_DRIVECIRCLERIGHT:
|
|
case PATHDESIRED_MODE_FLYCIRCLELEFT:
|
|
case PATHDESIRED_MODE_DRIVECIRCLELEFT:
|
|
groundspeed = pathDesired.EndingVelocity;
|
|
altitudeSetpoint = pathDesired.End.Down;
|
|
break;
|
|
case PATHDESIRED_MODE_FLYENDPOINT:
|
|
case PATHDESIRED_MODE_DRIVEENDPOINT:
|
|
case PATHDESIRED_MODE_FLYVECTOR:
|
|
case PATHDESIRED_MODE_DRIVEVECTOR:
|
|
default:
|
|
groundspeed = pathDesired.StartingVelocity + (pathDesired.EndingVelocity - pathDesired.StartingVelocity) *
|
|
boundf(progress.fractional_progress, 0, 1);
|
|
altitudeSetpoint = pathDesired.Start.Down + (pathDesired.End.Down - pathDesired.Start.Down) *
|
|
boundf(progress.fractional_progress, 0, 1);
|
|
break;
|
|
}
|
|
// make sure groundspeed is not zero
|
|
if (groundspeed < 1e-2f) {
|
|
groundspeed = 1e-2f;
|
|
}
|
|
|
|
// calculate velocity - can be zero if waypoints are too close
|
|
VelocityDesiredData velocityDesired;
|
|
velocityDesired.North = progress.path_direction[0];
|
|
velocityDesired.East = progress.path_direction[1];
|
|
|
|
float error_speed = progress.error * fixedwingpathfollowerSettings.HorizontalPosP;
|
|
|
|
// if a plane is crossing its desired flightpath facing the wrong way (away from flight direction)
|
|
// it would turn towards the flightpath to get on its desired course. This however would reverse the correction vector
|
|
// once it crosses the flightpath again, which would make it again turn towards the flightpath (but away from its desired heading)
|
|
// leading to an S-shape snake course the wrong way
|
|
// this only happens especially if HorizontalPosP is too high, as otherwise the angle between velocity desired and path_direction won't
|
|
// turn steep unless there is enough space complete the turn before crossing the flightpath
|
|
// in this case the plane effectively needs to be turned around
|
|
// indicators:
|
|
// difference between correction_direction and velocitystate >90 degrees and
|
|
// difference between path_direction and velocitystate >90 degrees ( 4th sector, facing away from everything )
|
|
// fix: ignore correction, steer in path direction until the situation has become better (condition doesn't apply anymore)
|
|
if ( // calculating angles < 90 degrees through dot products
|
|
((progress.path_direction[0] * velocityState.North + progress.path_direction[1] * velocityState.East) < 0.0f) &&
|
|
((progress.correction_direction[0] * velocityState.North + progress.correction_direction[1] * velocityState.East) < 0.0f)) {
|
|
error_speed = 0;
|
|
}
|
|
|
|
// calculate correction - can also be zero if correction vector is 0 or no error present
|
|
velocityDesired.North += progress.correction_direction[0] * error_speed;
|
|
velocityDesired.East += progress.correction_direction[1] * error_speed;
|
|
|
|
// scale to correct length
|
|
float l = sqrtf(velocityDesired.North * velocityDesired.North + velocityDesired.East * velocityDesired.East);
|
|
if (l > 0.0f) {
|
|
velocityDesired.North *= groundspeed / l;
|
|
velocityDesired.East *= groundspeed / l;
|
|
}
|
|
|
|
float downError = altitudeSetpoint - positionState.Down;
|
|
velocityDesired.Down = downError * fixedwingpathfollowerSettings.VerticalPosP;
|
|
|
|
// update pathstatus
|
|
pathStatus.error = progress.error;
|
|
pathStatus.fractional_progress = progress.fractional_progress;
|
|
|
|
VelocityDesiredSet(&velocityDesired);
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute desired attitude from a fixed preset
|
|
*
|
|
*/
|
|
static void updateFixedAttitude(float *attitude)
|
|
{
|
|
StabilizationDesiredData stabDesired;
|
|
|
|
StabilizationDesiredGet(&stabDesired);
|
|
stabDesired.Roll = attitude[0];
|
|
stabDesired.Pitch = attitude[1];
|
|
stabDesired.Yaw = attitude[2];
|
|
stabDesired.Thrust = attitude[3];
|
|
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
|
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
|
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
|
|
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
|
|
StabilizationDesiredSet(&stabDesired);
|
|
}
|
|
|
|
/**
|
|
* Compute desired attitude from the desired velocity
|
|
*
|
|
* Takes in @ref NedState which has the acceleration in the
|
|
* NED frame as the feedback term and then compares the
|
|
* @ref VelocityState against the @ref VelocityDesired
|
|
*/
|
|
static uint8_t updateFixedDesiredAttitude()
|
|
{
|
|
uint8_t result = 1;
|
|
|
|
float dT = fixedwingpathfollowerSettings.UpdatePeriod / 1000.0f; // Convert from [ms] to [s]
|
|
|
|
VelocityDesiredData velocityDesired;
|
|
VelocityStateData velocityState;
|
|
StabilizationDesiredData stabDesired;
|
|
AttitudeStateData attitudeState;
|
|
StabilizationSettingsData stabSettings;
|
|
FixedWingPathFollowerStatusData fixedwingpathfollowerStatus;
|
|
AirspeedStateData airspeedState;
|
|
SystemSettingsData systemSettings;
|
|
|
|
float groundspeedProjection;
|
|
float indicatedAirspeedState;
|
|
float indicatedAirspeedDesired;
|
|
float airspeedError;
|
|
|
|
float pitchCommand;
|
|
|
|
float descentspeedDesired;
|
|
float descentspeedError;
|
|
float powerCommand;
|
|
|
|
float airspeedVector[2];
|
|
float fluidMovement[2];
|
|
float courseComponent[2];
|
|
float courseError;
|
|
float courseCommand;
|
|
|
|
FixedWingPathFollowerStatusGet(&fixedwingpathfollowerStatus);
|
|
|
|
VelocityStateGet(&velocityState);
|
|
StabilizationDesiredGet(&stabDesired);
|
|
VelocityDesiredGet(&velocityDesired);
|
|
AttitudeStateGet(&attitudeState);
|
|
StabilizationSettingsGet(&stabSettings);
|
|
AirspeedStateGet(&airspeedState);
|
|
SystemSettingsGet(&systemSettings);
|
|
|
|
/**
|
|
* Compute speed error and course
|
|
*/
|
|
|
|
// missing sensors for airspeed-direction we have to assume within reasonable error
|
|
// that measured airspeed is always the component in forward pointing direction
|
|
// this vector is normalized
|
|
airspeedVector[0] = cos_lookup_deg(attitudeState.Yaw);
|
|
airspeedVector[1] = sin_lookup_deg(attitudeState.Yaw);
|
|
|
|
// Current ground speed projected in forward direction
|
|
groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
|
|
|
|
// note that airspeedStateBias is ( calibratedAirspeed - groundspeedProjection ) at the time of measurement,
|
|
// but thanks to accelerometers, groundspeedProjection reacts faster to changes in direction
|
|
// than airspeed and gps sensors alone
|
|
indicatedAirspeedState = groundspeedProjection + indicatedAirspeedStateBias;
|
|
|
|
// fluidMovement is a vector describing the aproximate movement vector in surrounding fluid (2d)
|
|
fluidMovement[0] = velocityState.North - (indicatedAirspeedState * airspeedVector[0]);
|
|
fluidMovement[1] = velocityState.East - (indicatedAirspeedState * airspeedVector[1]);
|
|
|
|
courseComponent[0] = velocityDesired.North - fluidMovement[0];
|
|
courseComponent[1] = velocityDesired.East - fluidMovement[1];
|
|
|
|
indicatedAirspeedDesired = boundf(sqrtf(courseComponent[0] * courseComponent[0] + courseComponent[1] * courseComponent[1]),
|
|
fixedwingpathfollowerSettings.HorizontalVelMin,
|
|
fixedwingpathfollowerSettings.HorizontalVelMax);
|
|
|
|
// if we could fly at arbitrary speeds, we'd just have to move into courseComponent and we'd be fine
|
|
// unfortunately we bound by min and max speed, so we need to calculate the correct course to meet
|
|
// at least the velocityDesired vector direction at our current speed
|
|
|
|
bool valid = correctCourse(courseComponent, (float *)&velocityDesired.North, fluidMovement, indicatedAirspeedDesired);
|
|
// Error condition: wind speed too high, we can't go where we want anymore
|
|
fixedwingpathfollowerStatus.Errors.Wind = 0;
|
|
if ((!valid) &&
|
|
fixedwingpathfollowerSettings.Safetymargins.Wind > 0.5f) { // alarm switched on
|
|
fixedwingpathfollowerStatus.Errors.Wind = 1;
|
|
result = 0;
|
|
}
|
|
|
|
// Airspeed error
|
|
airspeedError = indicatedAirspeedDesired - indicatedAirspeedState;
|
|
|
|
// Vertical speed error
|
|
descentspeedDesired = boundf(
|
|
velocityDesired.Down,
|
|
-fixedwingpathfollowerSettings.VerticalVelMax,
|
|
fixedwingpathfollowerSettings.VerticalVelMax);
|
|
descentspeedError = descentspeedDesired - velocityState.Down;
|
|
|
|
// Error condition: plane too slow or too fast
|
|
fixedwingpathfollowerStatus.Errors.Highspeed = 0;
|
|
fixedwingpathfollowerStatus.Errors.Lowspeed = 0;
|
|
if (indicatedAirspeedState > systemSettings.AirSpeedMax * fixedwingpathfollowerSettings.Safetymargins.Overspeed) {
|
|
fixedwingpathfollowerStatus.Errors.Overspeed = 1;
|
|
result = 0;
|
|
}
|
|
if (indicatedAirspeedState > fixedwingpathfollowerSettings.HorizontalVelMax * fixedwingpathfollowerSettings.Safetymargins.Highspeed) {
|
|
fixedwingpathfollowerStatus.Errors.Highspeed = 1;
|
|
result = 0;
|
|
}
|
|
if (indicatedAirspeedState < fixedwingpathfollowerSettings.HorizontalVelMin * fixedwingpathfollowerSettings.Safetymargins.Lowspeed) {
|
|
fixedwingpathfollowerStatus.Errors.Lowspeed = 1;
|
|
result = 0;
|
|
}
|
|
if (indicatedAirspeedState < systemSettings.AirSpeedMin * fixedwingpathfollowerSettings.Safetymargins.Stallspeed) {
|
|
fixedwingpathfollowerStatus.Errors.Stallspeed = 1;
|
|
result = 0;
|
|
}
|
|
|
|
/**
|
|
* Compute desired thrust command
|
|
*/
|
|
|
|
// compute saturated integral error thrust response. Make integral leaky for better performance. Approximately 30s time constant.
|
|
if (fixedwingpathfollowerSettings.PowerPI.Ki > 0) {
|
|
powerIntegral = boundf(powerIntegral + -descentspeedError * dT,
|
|
-fixedwingpathfollowerSettings.PowerPI.ILimit / fixedwingpathfollowerSettings.PowerPI.Ki,
|
|
fixedwingpathfollowerSettings.PowerPI.ILimit / fixedwingpathfollowerSettings.PowerPI.Ki
|
|
) * (1.0f - 1.0f / (1.0f + 30.0f / dT));
|
|
} else { powerIntegral = 0; }
|
|
|
|
// Compute the cross feed from vertical speed to pitch, with saturation
|
|
float speedErrorToPowerCommandComponent = boundf(
|
|
(airspeedError / fixedwingpathfollowerSettings.HorizontalVelMin) * fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed.Kp,
|
|
-fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed.Max,
|
|
fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed.Max
|
|
);
|
|
|
|
// Compute final thrust response
|
|
powerCommand = -descentspeedError * fixedwingpathfollowerSettings.PowerPI.Kp +
|
|
powerIntegral * fixedwingpathfollowerSettings.PowerPI.Ki +
|
|
speedErrorToPowerCommandComponent;
|
|
|
|
// Output internal state to telemetry
|
|
fixedwingpathfollowerStatus.Error.Power = descentspeedError;
|
|
fixedwingpathfollowerStatus.ErrorInt.Power = powerIntegral;
|
|
fixedwingpathfollowerStatus.Command.Power = powerCommand;
|
|
|
|
// set thrust
|
|
stabDesired.Thrust = boundf(fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand,
|
|
fixedwingpathfollowerSettings.ThrustLimit.Min,
|
|
fixedwingpathfollowerSettings.ThrustLimit.Max);
|
|
|
|
// Error condition: plane cannot hold altitude at current speed.
|
|
fixedwingpathfollowerStatus.Errors.Lowpower = 0;
|
|
if (fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand >= fixedwingpathfollowerSettings.ThrustLimit.Max && // thrust at maximum
|
|
velocityState.Down > 0 && // we ARE going down
|
|
descentspeedDesired < 0 && // we WANT to go up
|
|
airspeedError > 0 && // we are too slow already
|
|
fixedwingpathfollowerSettings.Safetymargins.Lowpower > 0.5f) { // alarm switched on
|
|
fixedwingpathfollowerStatus.Errors.Lowpower = 1;
|
|
result = 0;
|
|
}
|
|
// Error condition: plane keeps climbing despite minimum thrust (opposite of above)
|
|
fixedwingpathfollowerStatus.Errors.Highpower = 0;
|
|
if (fixedwingpathfollowerSettings.ThrustLimit.Neutral + powerCommand <= fixedwingpathfollowerSettings.ThrustLimit.Min && // thrust at minimum
|
|
velocityState.Down < 0 && // we ARE going up
|
|
descentspeedDesired > 0 && // we WANT to go down
|
|
airspeedError < 0 && // we are too fast already
|
|
fixedwingpathfollowerSettings.Safetymargins.Highpower > 0.5f) { // alarm switched on
|
|
fixedwingpathfollowerStatus.Errors.Highpower = 1;
|
|
result = 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute desired pitch command
|
|
*/
|
|
|
|
if (fixedwingpathfollowerSettings.SpeedPI.Ki > 0) {
|
|
// Integrate with saturation
|
|
airspeedErrorInt = boundf(airspeedErrorInt + airspeedError * dT,
|
|
-fixedwingpathfollowerSettings.SpeedPI.ILimit / fixedwingpathfollowerSettings.SpeedPI.Ki,
|
|
fixedwingpathfollowerSettings.SpeedPI.ILimit / fixedwingpathfollowerSettings.SpeedPI.Ki);
|
|
}
|
|
|
|
// Compute the cross feed from vertical speed to pitch, with saturation
|
|
float verticalSpeedToPitchCommandComponent = boundf(-descentspeedError * fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Kp,
|
|
-fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Max,
|
|
fixedwingpathfollowerSettings.VerticalToPitchCrossFeed.Max
|
|
);
|
|
|
|
// Compute the pitch command as err*Kp + errInt*Ki + X_feed.
|
|
pitchCommand = -(airspeedError * fixedwingpathfollowerSettings.SpeedPI.Kp
|
|
+ airspeedErrorInt * fixedwingpathfollowerSettings.SpeedPI.Ki
|
|
) + verticalSpeedToPitchCommandComponent;
|
|
|
|
fixedwingpathfollowerStatus.Error.Speed = airspeedError;
|
|
fixedwingpathfollowerStatus.ErrorInt.Speed = airspeedErrorInt;
|
|
fixedwingpathfollowerStatus.Command.Speed = pitchCommand;
|
|
|
|
stabDesired.Pitch = boundf(fixedwingpathfollowerSettings.PitchLimit.Neutral + pitchCommand,
|
|
fixedwingpathfollowerSettings.PitchLimit.Min,
|
|
fixedwingpathfollowerSettings.PitchLimit.Max);
|
|
|
|
// Error condition: high speed dive
|
|
fixedwingpathfollowerStatus.Errors.Pitchcontrol = 0;
|
|
if (fixedwingpathfollowerSettings.PitchLimit.Neutral + pitchCommand >= fixedwingpathfollowerSettings.PitchLimit.Max && // pitch demand is full up
|
|
velocityState.Down > 0 && // we ARE going down
|
|
descentspeedDesired < 0 && // we WANT to go up
|
|
airspeedError < 0 && // we are too fast already
|
|
fixedwingpathfollowerSettings.Safetymargins.Pitchcontrol > 0.5f) { // alarm switched on
|
|
fixedwingpathfollowerStatus.Errors.Pitchcontrol = 1;
|
|
result = 0;
|
|
}
|
|
|
|
/**
|
|
* Compute desired roll command
|
|
*/
|
|
courseError = RAD2DEG(atan2f(courseComponent[1], courseComponent[0])) - attitudeState.Yaw;
|
|
|
|
if (courseError < -180.0f) {
|
|
courseError += 360;
|
|
}
|
|
if (courseError > 180.0f) {
|
|
courseError -= 360;
|
|
}
|
|
|
|
// overlap calculation. Theres a dead zone behind the craft where the
|
|
// counter-yawing of some craft while rolling could render a desired right
|
|
// turn into a desired left turn. Making the turn direction based on
|
|
// current roll angle keeps the plane committed to a direction once chosen
|
|
if (courseError < -180.0f + (fixedwingpathfollowerSettings.ReverseCourseOverlap * 0.5f)
|
|
&& attitudeState.Roll > 0.0f) {
|
|
courseError += 360.0f;
|
|
}
|
|
if (courseError > 180.0f - (fixedwingpathfollowerSettings.ReverseCourseOverlap * 0.5f)
|
|
&& attitudeState.Roll < 0.0f) {
|
|
courseError -= 360.0f;
|
|
}
|
|
|
|
courseIntegral = boundf(courseIntegral + courseError * dT * fixedwingpathfollowerSettings.CoursePI.Ki,
|
|
-fixedwingpathfollowerSettings.CoursePI.ILimit,
|
|
fixedwingpathfollowerSettings.CoursePI.ILimit);
|
|
courseCommand = (courseError * fixedwingpathfollowerSettings.CoursePI.Kp +
|
|
courseIntegral);
|
|
|
|
fixedwingpathfollowerStatus.Error.Course = courseError;
|
|
fixedwingpathfollowerStatus.ErrorInt.Course = courseIntegral;
|
|
fixedwingpathfollowerStatus.Command.Course = courseCommand;
|
|
|
|
stabDesired.Roll = boundf(fixedwingpathfollowerSettings.RollLimit.Neutral +
|
|
courseCommand,
|
|
fixedwingpathfollowerSettings.RollLimit.Min,
|
|
fixedwingpathfollowerSettings.RollLimit.Max);
|
|
|
|
// TODO: find a check to determine loss of directional control. Likely needs some check of derivative
|
|
|
|
|
|
/**
|
|
* Compute desired yaw command
|
|
*/
|
|
// TODO implement raw control mode for yaw and base on Accels.Y
|
|
stabDesired.Yaw = 0;
|
|
|
|
|
|
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
|
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
|
|
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
|
|
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
|
|
|
|
StabilizationDesiredSet(&stabDesired);
|
|
|
|
FixedWingPathFollowerStatusSet(&fixedwingpathfollowerStatus);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
|
|
{
|
|
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
|
|
PathDesiredGet(&pathDesired);
|
|
}
|
|
|
|
static void airspeedStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
|
|
{
|
|
AirspeedStateData airspeedState;
|
|
VelocityStateData velocityState;
|
|
|
|
AirspeedStateGet(&airspeedState);
|
|
VelocityStateGet(&velocityState);
|
|
float airspeedVector[2];
|
|
float yaw;
|
|
AttitudeStateYawGet(&yaw);
|
|
airspeedVector[0] = cos_lookup_deg(yaw);
|
|
airspeedVector[1] = sin_lookup_deg(yaw);
|
|
// vector projection of groundspeed on airspeed vector to handle both forward and backwards movement
|
|
float groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
|
|
|
|
// warning - deliberately messed up airspeed sensor value to see if course calculation is coping with crappy sensor
|
|
// do not let this pass the review ;)
|
|
indicatedAirspeedStateBias = airspeedState.CalibratedAirspeed - groundspeedProjection;
|
|
// note - we do fly by Indicated Airspeed (== calibrated airspeed) however
|
|
// since airspeed is updated less often than groundspeed, we use sudden
|
|
// changes to groundspeed to offset the airspeed by the same measurement.
|
|
// This has a side effect that in the absence of any airspeed updates, the
|
|
// pathfollower will fly using groundspeed.
|
|
}
|
|
|
|
|
|
/**
|
|
* Function to correct course C based on airspeed s, fluid movement F and desired movement vector V
|
|
*/
|
|
static bool correctCourse(float *C, float *V, float *F, float s)
|
|
{
|
|
// approach:
|
|
// let Sc be a circle around origin marking possible movement vectors
|
|
// of the craft with airspeed s
|
|
// let Vl be a line through the origin along movement vector V
|
|
// let Wl be a line parallel to Vl where for any point v on line Vl
|
|
// there is a point w on WL with w = v - F
|
|
// then any intersecting point between Sc and Wl is a course which
|
|
// results in a movement vector k*V
|
|
// if there is no intersection point, S is insufficient to compensate
|
|
// for F and we better fly in direction of V (thus having wind drift
|
|
// but at least making progress orthogonal to wind)
|
|
|
|
s = fabsf(s);
|
|
float f = sqrtf(F[0] * F[0] + F[1] * F[1]);
|
|
|
|
// normalize V
|
|
float v = sqrtf(V[0] * V[0] + V[1] * V[1]);
|
|
if (v < 1e-6f) {
|
|
// if we aren't supposed to move, turn into the wind (this allows hovering)
|
|
C[0] = -F[0];
|
|
C[1] = -F[1];
|
|
return fabsf(f - s) < 1e-3f; // returns true if a hover is actually intended
|
|
}
|
|
float Vn[2] = { V[0] / v, V[1] / v };
|
|
|
|
// project F on V
|
|
float fp = F[0] * Vn[0] + F[1] * Vn[1];
|
|
|
|
// find component of F orthogonal to V (distance between V and W)
|
|
float Fo[2] = { F[0] - (fp * Vn[0]), F[1] - (fp * Vn[1]) };
|
|
float fo2 = Fo[0] * Fo[0] + Fo[1] * Fo[1];
|
|
|
|
// find k where k * Vn = C - Fo
|
|
// S is the hypothenuse in any rectangular triangle formed by k * Vn and Fo
|
|
// so k^2 + fo^2 = s^2 (since |Vn|=1)
|
|
float k2 = s * s - fo2;
|
|
if (k2 <= -1e-3f) {
|
|
// there is no solution, we will be drifted off either way
|
|
// fallback: fly stupidly towards V and hope for the best
|
|
C[0] = V[0];
|
|
C[1] = V[1];
|
|
return false;
|
|
} else if (k2 <= 1e-3f) {
|
|
// there is one solution: -Fo
|
|
C[0] = -Fo[0];
|
|
C[1] = -Fo[1];
|
|
return true;
|
|
}
|
|
|
|
// now we have two possible solutions k positive and k negative
|
|
// which one is better?
|
|
// two criteria:
|
|
// 1. we MUST move in the right direction, if k leads to -v its invalid
|
|
// 2. we should minimize the speed error
|
|
float k = sqrt(k2);
|
|
float C1[2] = { -k * Vn[0] - Fo[0], -k * Vn[1] - Fo[1] };
|
|
float C2[2] = { k *Vn[0] - Fo[0], k * Vn[1] - Fo[1] };
|
|
// project each solution on Vn to find length
|
|
float vp1 = (C1[0] + F[0]) * Vn[0] + (C1[1] + F[1]) * Vn[1];
|
|
float vp2 = (C2[0] + F[0]) * Vn[0] + (C2[1] + F[1]) * Vn[1];
|
|
if (vp1 >= 0.0f && fabsf(v - vp1) < fabsf(v - vp2)) {
|
|
C[0] = C1[0];
|
|
C[1] = C1[1];
|
|
return true;
|
|
}
|
|
C[0] = C2[0];
|
|
C[1] = C2[1];
|
|
if (vp2 >= 0.0f) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|