1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-10 20:52:11 +01:00
LibrePilot/ground/openpilotgcs/src/plugins/config/calibration/sixpointcalibrationmodel.cpp

519 lines
23 KiB
C++

/**
******************************************************************************
*
* @file sixpointcalibrationmodel.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
*
* @brief Six point calibration for Magnetometer and Accelerometer
* @see The GNU Public License (GPL) Version 3
* @defgroup
* @{
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "sixpointcalibrationmodel.h"
#include "extensionsystem/pluginmanager.h"
#include "calibration/calibrationuiutils.h"
#include "math.h"
#include <QMessageBox>
#include <QThread>
#include "QDebug"
#define POINT_SAMPLE_SIZE 50
#define GRAVITY 9.81f
#define sign(x) ((x < 0) ? -1 : 1)
#define FITTING_USING_CONTINOUS_ACQUISITION
namespace OpenPilot {
SixPointCalibrationModel::SixPointCalibrationModel(QObject *parent) :
QObject(parent),
calibrationStepsMag(),
calibrationStepsAccelOnly(),
currentSteps(0),
position(-1),
calibratingMag(false),
calibratingAccel(false),
collectingData(false)
{
calibrationStepsMag.clear();
calibrationStepsMag
<< CalibrationStep(CALIBRATION_HELPER_IMAGE_NED,
tr("Place horizontally, nose pointing north and click Save Position button..."))
<< CalibrationStep(CALIBRATION_HELPER_IMAGE_DWN,
tr("Place with nose down, right side west and click Save Position button..."))
<< CalibrationStep(CALIBRATION_HELPER_IMAGE_WDS,
tr("Place right side down, nose west and click Save Position button..."))
<< CalibrationStep(CALIBRATION_HELPER_IMAGE_ENU,
tr("Place upside down, nose east and click Save Position button..."))
<< CalibrationStep(CALIBRATION_HELPER_IMAGE_USE,
tr("Place with nose up, left side north and click Save Position button..."))
<< CalibrationStep(CALIBRATION_HELPER_IMAGE_SUW,
tr("Place with left side down, nose south and click Save Position button..."));
calibrationStepsAccelOnly.clear();
calibrationStepsAccelOnly << CalibrationStep(CALIBRATION_HELPER_IMAGE_NED,
tr("Place horizontally and click Save Position button..."))
<< CalibrationStep(CALIBRATION_HELPER_IMAGE_DWN,
tr("Place with nose down and click Save Position button..."))
<< CalibrationStep(CALIBRATION_HELPER_IMAGE_WDS,
tr("Place right side down and click Save Position button..."))
<< CalibrationStep(CALIBRATION_HELPER_IMAGE_ENU,
tr("Place upside down and click Save Position button..."))
<< CalibrationStep(CALIBRATION_HELPER_IMAGE_USE,
tr("Place with nose up and click Save Position button..."))
<< CalibrationStep(CALIBRATION_HELPER_IMAGE_SUW,
tr("Place with left side down and click Save Position button..."));
}
/********** Six point calibration **************/
void SixPointCalibrationModel::magStart()
{
start(false, true);
}
void SixPointCalibrationModel::accelStart()
{
start(true, false);
}
/**
* Called by the "Start" button. Sets up the meta data and enables the
* buttons to perform six point calibration of the magnetometer (optionally
* accel) to compute the scale and bias of this sensor based on the current
* home location magnetic strength.
*/
void SixPointCalibrationModel::start(bool calibrateAccel, bool calibrateMag)
{
calibratingAccel = calibrateAccel;
calibratingMag = calibrateMag;
// Store and reset board rotation before calibration starts
storeAndClearBoardRotation();
if (calibrateMag) {
currentSteps = &calibrationStepsMag;
} else {
currentSteps = &calibrationStepsAccelOnly;
}
RevoCalibration *revoCalibration = RevoCalibration::GetInstance(getObjectManager());
HomeLocation *homeLocation = HomeLocation::GetInstance(getObjectManager());
AccelGyroSettings *accelGyroSettings = AccelGyroSettings::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
Q_ASSERT(homeLocation);
RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData();
savedSettings.revoCalibration = revoCalibration->getData();
HomeLocation::DataFields homeLocationData = homeLocation->getData();
AccelGyroSettings::DataFields accelGyroSettingsData = accelGyroSettings->getData();
savedSettings.accelGyroSettings = accelGyroSettings->getData();
// check if Homelocation is set
if (!homeLocationData.Set) {
// TODO
QMessageBox msgBox;
msgBox.setInformativeText(tr("<p>HomeLocation not SET.</p><p>Please set your HomeLocation and try again. Aborting calibration!</p>"));
msgBox.setStandardButtons(QMessageBox::Ok);
msgBox.setDefaultButton(QMessageBox::Ok);
msgBox.setIcon(QMessageBox::Information);
msgBox.exec();
return;
}
// Calibration accel
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_X] = 1;
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Y] = 1;
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Z] = 1;
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_X] = 0;
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Y] = 0;
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Z] = 0;
accel_accum_x.clear();
accel_accum_y.clear();
accel_accum_z.clear();
// Calibration mag
// Reset the transformation matrix to identity
for (int i = 0; i < RevoCalibration::MAG_TRANSFORM_R2C2; i++) {
revoCalibrationData.mag_transform[i] = 0;
}
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C0] = 1;
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C1] = 1;
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C2] = 1;
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X] = 0;
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y] = 0;
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z] = 0;
// Disable adaptive mag nulling
initialMagCorrectionRate = revoCalibrationData.MagBiasNullingRate;
revoCalibrationData.MagBiasNullingRate = 0;
revoCalibration->setData(revoCalibrationData);
accelGyroSettings->setData(accelGyroSettingsData);
QThread::usleep(100000);
mag_accum_x.clear();
mag_accum_y.clear();
mag_accum_z.clear();
UAVObject::Metadata mdata;
/* Need to get as many accel updates as possible */
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
initialAccelStateMdata = accelState->getMetadata();
if (calibrateAccel) {
mdata = initialAccelStateMdata;
UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC);
mdata.flightTelemetryUpdatePeriod = 100;
accelState->setMetadata(mdata);
}
/* Need to get as many mag updates as possible */
MagState *mag = MagState::GetInstance(getObjectManager());
Q_ASSERT(mag);
initialMagStateMdata = mag->getMetadata();
if (calibrateMag) {
mdata = initialMagStateMdata;
UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC);
mdata.flightTelemetryUpdatePeriod = 100;
mag->setMetadata(mdata);
}
started();
// Show instructions and enable controls
displayInstructions((*currentSteps)[0].instructions, WizardModel::Info);
showHelp((*currentSteps)[0].visualHelp);
savePositionEnabledChanged(true);
position = 0;
mag_fit_x.clear();
mag_fit_y.clear();
mag_fit_z.clear();
}
/**
* Saves the data from the aircraft in one of six positions.
* This is called when they click "save position" and starts
* averaging data for this position.
*/
void SixPointCalibrationModel::savePositionData()
{
QMutexLocker lock(&sensorsUpdateLock);
savePositionEnabledChanged(false);
accel_accum_x.clear();
accel_accum_y.clear();
accel_accum_z.clear();
mag_accum_x.clear();
mag_accum_y.clear();
mag_accum_z.clear();
collectingData = true;
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
MagState *mag = MagState::GetInstance(getObjectManager());
Q_ASSERT(mag);
if (calibratingMag) {
#ifdef FITTING_USING_CONTINOUS_ACQUISITION
// Mag samples are acquired during the whole calibration session, to be used for ellipsoid fit.
if (!position) {
connect(mag, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(continouslyGetMagSamples(UAVObject *)));
}
#endif // FITTING_USING_CONTINOUS_ACQUISITION
connect(mag, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *)));
}
if (calibratingAccel) {
connect(accelState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *)));
}
displayInstructions(tr("Hold..."));
}
/**
* Grab a sample of mag (optionally accel) data while in this position and
* store it for averaging. When sufficient points are collected advance
* to the next position (give message to user) or compute the scale and bias
*/
void SixPointCalibrationModel::getSample(UAVObject *obj)
{
QMutexLocker lock(&sensorsUpdateLock);
// This is necessary to prevent a race condition on disconnect signal and another update
if (collectingData == true) {
if (obj->getObjID() == AccelState::OBJID) {
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
AccelState::DataFields accelStateData = accelState->getData();
accel_accum_x.append(accelStateData.x);
accel_accum_y.append(accelStateData.y);
accel_accum_z.append(accelStateData.z);
} else if (obj->getObjID() == MagState::OBJID) {
MagState *mag = MagState::GetInstance(getObjectManager());
Q_ASSERT(mag);
MagState::DataFields magData = mag->getData();
mag_accum_x.append(magData.x);
mag_accum_y.append(magData.y);
mag_accum_z.append(magData.z);
#ifndef FITTING_USING_CONTINOUS_ACQUISITION
mag_fit_x.append(magData.x);
mag_fit_y.append(magData.y);
mag_fit_z.append(magData.z);
#endif // FITTING_USING_CONTINOUS_ACQUISITION
} else {
Q_ASSERT(0);
}
}
if ((!calibratingAccel || (accel_accum_x.size() >= POINT_SAMPLE_SIZE)) &&
(!calibratingMag || (mag_accum_x.size() >= POINT_SAMPLE_SIZE / 10)) &&
(collectingData == true)) {
collectingData = false;
savePositionEnabledChanged(true);
// Store the mean for this position for the accel
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
if (calibratingAccel) {
disconnect(accelState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *)));
accel_data_x[position] = CalibrationUtils::listMean(accel_accum_x);
accel_data_y[position] = CalibrationUtils::listMean(accel_accum_y);
accel_data_z[position] = CalibrationUtils::listMean(accel_accum_z);
}
// Store the mean for this position for the mag
MagState *mag = MagState::GetInstance(getObjectManager());
Q_ASSERT(mag);
if (calibratingMag) {
disconnect(mag, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *)));
mag_data_x[position] = CalibrationUtils::listMean(mag_accum_x);
mag_data_y[position] = CalibrationUtils::listMean(mag_accum_y);
mag_data_z[position] = CalibrationUtils::listMean(mag_accum_z);
}
position = (position + 1) % 6;
if (position != 0) {
displayInstructions((*currentSteps)[position].instructions);
showHelp((*currentSteps)[position].visualHelp);
} else {
#ifdef FITTING_USING_CONTINOUS_ACQUISITION
if (calibratingMag) {
disconnect(mag, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(continouslyGetMagSamples(UAVObject *)));
}
#endif // FITTING_USING_CONTINOUS_ACQUISITION
compute(calibratingMag, calibratingAccel);
savePositionEnabledChanged(false);
stopped();
showHelp(CALIBRATION_HELPER_IMAGE_EMPTY);
/* Cleanup original settings */
accelState->setMetadata(initialAccelStateMdata);
mag->setMetadata(initialMagStateMdata);
// Recall saved board rotation
recallBoardRotation();
}
}
}
void SixPointCalibrationModel::continouslyGetMagSamples(UAVObject *obj)
{
QMutexLocker lock(&sensorsUpdateLock);
if (obj->getObjID() == MagState::OBJID) {
MagState *mag = MagState::GetInstance(getObjectManager());
Q_ASSERT(mag);
MagState::DataFields magData = mag->getData();
mag_fit_x.append(magData.x);
mag_fit_y.append(magData.y);
mag_fit_z.append(magData.z);
}
}
/**
* Computes the scale and bias for the magnetomer and (compile option)
* for the accel once all the data has been collected in 6 positions.
*/
void SixPointCalibrationModel::compute(bool mag, bool accel)
{
double S[3], b[3];
double Be_length;
AccelGyroSettings *accelGyroSettings = AccelGyroSettings::GetInstance(getObjectManager());
RevoCalibration *revoCalibration = RevoCalibration::GetInstance(getObjectManager());
HomeLocation *homeLocation = HomeLocation::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
Q_ASSERT(homeLocation);
AccelGyroSettings::DataFields accelGyroSettingsData = accelGyroSettings->getData();
RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData();
HomeLocation::DataFields homeLocationData = homeLocation->getData();
// Calibration accel
if (accel) {
OpenPilot::CalibrationUtils::SixPointInConstFieldCal(homeLocationData.g_e, accel_data_x, accel_data_y, accel_data_z, S, b);
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_X] = fabs(S[0]);
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Y] = fabs(S[1]);
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Z] = fabs(S[2]);
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_X] = -sign(S[0]) * b[0];
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Y] = -sign(S[1]) * b[1];
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Z] = -sign(S[2]) * b[2];
}
// Calibration mag
if (mag) {
Be_length = sqrt(pow(homeLocationData.Be[0], 2) + pow(homeLocationData.Be[1], 2) + pow(homeLocationData.Be[2], 2));
int vectSize = mag_fit_x.count();
Eigen::VectorXf samples_x(vectSize);
Eigen::VectorXf samples_y(vectSize);
Eigen::VectorXf samples_z(vectSize);
for (int i = 0; i < vectSize; i++) {
samples_x(i) = mag_fit_x[i];
samples_y(i) = mag_fit_y[i];
samples_z(i) = mag_fit_z[i];
}
OpenPilot::CalibrationUtils::EllipsoidCalibrationResult result;
OpenPilot::CalibrationUtils::EllipsoidCalibration(&samples_x, &samples_y, &samples_z, Be_length, &result, true);
qDebug() << "-----------------------------------";
qDebug() << "Mag Calibration results: Fit";
qDebug() << "scale(" << result.Scale.coeff(0) << ", " << result.Scale.coeff(1) << ", " << result.Scale.coeff(2) << ")";
qDebug() << "bias(" << result.Bias.coeff(0) << ", " << result.Bias.coeff(1) << ", " << result.Bias.coeff(2) << ")";
OpenPilot::CalibrationUtils::SixPointInConstFieldCal(Be_length, mag_data_x, mag_data_y, mag_data_z, S, b);
qDebug() << "-----------------------------------";
qDebug() << "Mag Calibration results: Six Point";
qDebug() << "scale(" << S[0] << ", " << S[1] << ", " << S[2] << ")";
qDebug() << "bias(" << -sign(S[0]) * b[0] << ", " << -sign(S[1]) * b[1] << ", " << -sign(S[2]) * b[2] << ")";
qDebug() << "-----------------------------------";
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C0] = result.CalibrationMatrix.coeff(0, 0);
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C1] = result.CalibrationMatrix.coeff(0, 1);
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C2] = result.CalibrationMatrix.coeff(0, 2);
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C0] = result.CalibrationMatrix.coeff(1, 0);
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C1] = result.CalibrationMatrix.coeff(1, 1);
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C2] = result.CalibrationMatrix.coeff(1, 2);
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C0] = result.CalibrationMatrix.coeff(2, 0);
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C1] = result.CalibrationMatrix.coeff(2, 1);
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C2] = result.CalibrationMatrix.coeff(2, 2);
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X] = result.Bias.coeff(0);
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y] = result.Bias.coeff(1);
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z] = result.Bias.coeff(2);
}
// Restore the previous setting
revoCalibrationData.MagBiasNullingRate = initialMagCorrectionRate;
bool good_calibration = true;
// Check the mag calibration is good
if (mag) {
good_calibration &= revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C0] ==
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C0];
good_calibration &= revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C1] ==
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C1];
good_calibration &= revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C2] ==
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C2];
good_calibration &= revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C0] ==
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C0];
good_calibration &= revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C1] ==
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C1];
good_calibration &= revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C2] ==
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C2];
good_calibration &= revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C0] ==
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C0];
good_calibration &= revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C1] ==
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C1];
good_calibration &= revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C2] ==
revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C2];
good_calibration &= revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X] ==
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X];
good_calibration &= revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y] ==
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y];
good_calibration &= revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z] ==
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z];
}
// Check the accel calibration is good
if (accel) {
good_calibration &= accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_X] ==
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_X];
good_calibration &= accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Y] ==
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Y];
good_calibration &= accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Z] ==
accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Z];
good_calibration &= accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_X] ==
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_X];
good_calibration &= accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Y] ==
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Y];
good_calibration &= accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Z] ==
accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Z];
}
if (good_calibration) {
if (mag) {
revoCalibration->setData(revoCalibrationData);
} else {
revoCalibration->setData(savedSettings.revoCalibration);
}
if (accel) {
accelGyroSettings->setData(accelGyroSettingsData);
} else {
accelGyroSettings->setData(savedSettings.accelGyroSettings);
}
displayInstructions(tr("Sensor scale and bias computed succesfully."));
} else {
displayInstructions(tr("Bad calibration. Please review the instructions and repeat."), WizardModel::Error);
}
// set to run again
position = -1;
}
UAVObjectManager *SixPointCalibrationModel::getObjectManager()
{
ExtensionSystem::PluginManager *pm = ExtensionSystem::PluginManager::instance();
UAVObjectManager *objMngr = pm->getObject<UAVObjectManager>();
Q_ASSERT(objMngr);
return objMngr;
}
void SixPointCalibrationModel::showHelp(QString image)
{
if (image == CALIBRATION_HELPER_IMAGE_EMPTY) {
displayVisualHelp(image);
} else {
if (calibratingAccel) {
displayVisualHelp(CALIBRATION_HELPER_BOARD_PREFIX + image);
} else {
displayVisualHelp(CALIBRATION_HELPER_PLANE_PREFIX + image);
}
}
}
}