mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-11-30 08:24:11 +01:00
b2a538375c
Changes in ahrs.c for new initialization and to fix issues with outdoor algorithm. The changes in ahrs.c are pretty messy, but committed mostly to get the code to Peabody for more extensive restructuring of ahrs.c. git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2150 ebee16cc-31ac-478f-84a7-5cbb03baadba
351 lines
9.7 KiB
C
351 lines
9.7 KiB
C
/**
|
|
******************************************************************************
|
|
*
|
|
* @file CoordinateConversions.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
|
* @brief General conversions with different coordinate systems.
|
|
* - all angles in deg
|
|
* - distances in meters
|
|
* - altitude above WGS-84 elipsoid
|
|
*
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
*****************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include "CoordinateConversions.h"
|
|
|
|
#define RAD2DEG (180.0/M_PI)
|
|
#define DEG2RAD (M_PI/180.0)
|
|
|
|
// ****** convert Lat,Lon,Alt to ECEF ************
|
|
void LLA2ECEF(double LLA[3], double ECEF[3])
|
|
{
|
|
const double a = 6378137.0; // Equatorial Radius
|
|
const double e = 8.1819190842622e-2; // Eccentricity
|
|
double sinLat, sinLon, cosLat, cosLon;
|
|
double N;
|
|
|
|
sinLat = sin(DEG2RAD * LLA[0]);
|
|
sinLon = sin(DEG2RAD * LLA[1]);
|
|
cosLat = cos(DEG2RAD * LLA[0]);
|
|
cosLon = cos(DEG2RAD * LLA[1]);
|
|
|
|
N = a / sqrt(1.0 - e * e * sinLat * sinLat); //prime vertical radius of curvature
|
|
|
|
ECEF[0] = (N + LLA[2]) * cosLat * cosLon;
|
|
ECEF[1] = (N + LLA[2]) * cosLat * sinLon;
|
|
ECEF[2] = ((1 - e * e) * N + LLA[2]) * sinLat;
|
|
}
|
|
|
|
// ****** convert ECEF to Lat,Lon,Alt (ITERATIVE!) *********
|
|
uint16_t ECEF2LLA(double ECEF[3], double LLA[3])
|
|
{
|
|
/**
|
|
* LLA parameter is used to prime the iteration.
|
|
* A position within 1 meter of the specified LLA
|
|
* will be calculated within at most 3 iterations.
|
|
* If unknown: Call with any valid LLA coordinate
|
|
* will compute within at most 5 iterations.
|
|
* Suggestion: [0,0,0]
|
|
**/
|
|
|
|
const double a = 6378137.0; // Equatorial Radius
|
|
const double e = 8.1819190842622e-2; // Eccentricity
|
|
double x = ECEF[0], y = ECEF[1], z = ECEF[2];
|
|
double Lat, N, NplusH, delta, esLat;
|
|
uint16_t iter;
|
|
#define MAX_ITER 10 // should not take more than 5 for valid coordinates
|
|
#define ACCURACY 1.0e-11 // used to be e-14, but we don't need sub micrometer exact calculations
|
|
|
|
LLA[1] = RAD2DEG * atan2(y, x);
|
|
Lat = DEG2RAD * LLA[0];
|
|
esLat = e * sin(Lat);
|
|
N = a / sqrt(1 - esLat * esLat);
|
|
NplusH = N + LLA[2];
|
|
delta = 1;
|
|
iter = 0;
|
|
|
|
while (((delta > ACCURACY) || (delta < -ACCURACY))
|
|
&& (iter < MAX_ITER)) {
|
|
delta = Lat - atan(z / (sqrt(x * x + y * y) * (1 - (N * e * e / NplusH))));
|
|
Lat = Lat - delta;
|
|
esLat = e * sin(Lat);
|
|
N = a / sqrt(1 - esLat * esLat);
|
|
NplusH = sqrt(x * x + y * y) / cos(Lat);
|
|
iter += 1;
|
|
}
|
|
|
|
LLA[0] = RAD2DEG * Lat;
|
|
LLA[2] = NplusH - N;
|
|
|
|
return (iter < MAX_ITER);
|
|
}
|
|
|
|
// ****** find ECEF to NED rotation matrix ********
|
|
void RneFromLLA(double LLA[3], float Rne[3][3])
|
|
{
|
|
float sinLat, sinLon, cosLat, cosLon;
|
|
|
|
sinLat = (float)sin(DEG2RAD * LLA[0]);
|
|
sinLon = (float)sin(DEG2RAD * LLA[1]);
|
|
cosLat = (float)cos(DEG2RAD * LLA[0]);
|
|
cosLon = (float)cos(DEG2RAD * LLA[1]);
|
|
|
|
Rne[0][0] = -sinLat * cosLon;
|
|
Rne[0][1] = -sinLat * sinLon;
|
|
Rne[0][2] = cosLat;
|
|
Rne[1][0] = -sinLon;
|
|
Rne[1][1] = cosLon;
|
|
Rne[1][2] = 0;
|
|
Rne[2][0] = -cosLat * cosLon;
|
|
Rne[2][1] = -cosLat * sinLon;
|
|
Rne[2][2] = -sinLat;
|
|
}
|
|
|
|
// ****** find roll, pitch, yaw from quaternion ********
|
|
void Quaternion2RPY(float q[4], float rpy[3])
|
|
{
|
|
float R13, R11, R12, R23, R33;
|
|
float q0s = q[0] * q[0];
|
|
float q1s = q[1] * q[1];
|
|
float q2s = q[2] * q[2];
|
|
float q3s = q[3] * q[3];
|
|
|
|
R13 = 2 * (q[1] * q[3] - q[0] * q[2]);
|
|
R11 = q0s + q1s - q2s - q3s;
|
|
R12 = 2 * (q[1] * q[2] + q[0] * q[3]);
|
|
R23 = 2 * (q[2] * q[3] + q[0] * q[1]);
|
|
R33 = q0s - q1s - q2s + q3s;
|
|
|
|
rpy[1] = RAD2DEG * asinf(-R13); // pitch always between -pi/2 to pi/2
|
|
rpy[2] = RAD2DEG * atan2f(R12, R11);
|
|
rpy[0] = RAD2DEG * atan2f(R23, R33);
|
|
|
|
//TODO: consider the cases where |R13| ~= 1, |pitch| ~= pi/2
|
|
}
|
|
|
|
// ****** find quaternion from roll, pitch, yaw ********
|
|
void RPY2Quaternion(float rpy[3], float q[4])
|
|
{
|
|
float phi, theta, psi;
|
|
float cphi, sphi, ctheta, stheta, cpsi, spsi;
|
|
|
|
phi = DEG2RAD * rpy[0] / 2;
|
|
theta = DEG2RAD * rpy[1] / 2;
|
|
psi = DEG2RAD * rpy[2] / 2;
|
|
cphi = cosf(phi);
|
|
sphi = sinf(phi);
|
|
ctheta = cosf(theta);
|
|
stheta = sinf(theta);
|
|
cpsi = cosf(psi);
|
|
spsi = sinf(psi);
|
|
|
|
q[0] = cphi * ctheta * cpsi + sphi * stheta * spsi;
|
|
q[1] = sphi * ctheta * cpsi - cphi * stheta * spsi;
|
|
q[2] = cphi * stheta * cpsi + sphi * ctheta * spsi;
|
|
q[3] = cphi * ctheta * spsi - sphi * stheta * cpsi;
|
|
|
|
if (q[0] < 0) { // q0 always positive for uniqueness
|
|
q[0] = -q[0];
|
|
q[1] = -q[1];
|
|
q[2] = -q[2];
|
|
q[3] = -q[3];
|
|
}
|
|
}
|
|
|
|
//** Find Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
|
|
void Quaternion2R(float q[4], float Rbe[3][3])
|
|
{
|
|
|
|
float q0s = q[0] * q[0], q1s = q[1] * q[1], q2s = q[2] * q[2], q3s = q[3] * q[3];
|
|
|
|
Rbe[0][0] = q0s + q1s - q2s - q3s;
|
|
Rbe[0][1] = 2 * (q[1] * q[2] + q[0] * q[3]);
|
|
Rbe[0][2] = 2 * (q[1] * q[3] - q[0] * q[2]);
|
|
Rbe[1][0] = 2 * (q[1] * q[2] - q[0] * q[3]);
|
|
Rbe[1][1] = q0s - q1s + q2s - q3s;
|
|
Rbe[1][2] = 2 * (q[2] * q[3] + q[0] * q[1]);
|
|
Rbe[2][0] = 2 * (q[1] * q[3] + q[0] * q[2]);
|
|
Rbe[2][1] = 2 * (q[2] * q[3] - q[0] * q[1]);
|
|
Rbe[2][2] = q0s - q1s - q2s + q3s;
|
|
}
|
|
|
|
// ****** Express LLA in a local NED Base Frame ********
|
|
void LLA2Base(double LLA[3], double BaseECEF[3], float Rne[3][3], float NED[3])
|
|
{
|
|
double ECEF[3];
|
|
float diff[3];
|
|
|
|
LLA2ECEF(LLA, ECEF);
|
|
|
|
diff[0] = (float)(ECEF[0] - BaseECEF[0]);
|
|
diff[1] = (float)(ECEF[1] - BaseECEF[1]);
|
|
diff[2] = (float)(ECEF[2] - BaseECEF[2]);
|
|
|
|
NED[0] = Rne[0][0] * diff[0] + Rne[0][1] * diff[1] + Rne[0][2] * diff[2];
|
|
NED[1] = Rne[1][0] * diff[0] + Rne[1][1] * diff[1] + Rne[1][2] * diff[2];
|
|
NED[2] = Rne[2][0] * diff[0] + Rne[2][1] * diff[1] + Rne[2][2] * diff[2];
|
|
}
|
|
|
|
// ****** Express ECEF in a local NED Base Frame ********
|
|
void ECEF2Base(double ECEF[3], double BaseECEF[3], float Rne[3][3], float NED[3])
|
|
{
|
|
float diff[3];
|
|
|
|
diff[0] = (float)(ECEF[0] - BaseECEF[0]);
|
|
diff[1] = (float)(ECEF[1] - BaseECEF[1]);
|
|
diff[2] = (float)(ECEF[2] - BaseECEF[2]);
|
|
|
|
NED[0] = Rne[0][0] * diff[0] + Rne[0][1] * diff[1] + Rne[0][2] * diff[2];
|
|
NED[1] = Rne[1][0] * diff[0] + Rne[1][1] * diff[1] + Rne[1][2] * diff[2];
|
|
NED[2] = Rne[2][0] * diff[0] + Rne[2][1] * diff[1] + Rne[2][2] * diff[2];
|
|
}
|
|
|
|
// ****** convert Rotation Matrix to Quaternion ********
|
|
// ****** if R converts from e to b, q is rotation from e to b ****
|
|
void R2Quaternion(float R[3][3], float q[4])
|
|
{
|
|
float m[4], mag;
|
|
uint8_t index,i;
|
|
|
|
m[0] = 1 + R[0][0] + R[1][1] + R[2][2];
|
|
m[1] = 1 + R[0][0] - R[1][1] - R[2][2];
|
|
m[2] = 1 - R[0][0] + R[1][1] - R[2][2];
|
|
m[3] = 1 - R[0][0] - R[1][1] + R[2][2];
|
|
|
|
// find maximum divisor
|
|
index = 0;
|
|
mag = m[0];
|
|
for (i=1;i<4;i++){
|
|
if (m[i] > mag){
|
|
mag = m[i];
|
|
index = i;
|
|
}
|
|
}
|
|
mag = 2*sqrt(mag);
|
|
|
|
if (index == 0) {
|
|
q[0] = mag/4;
|
|
q[1] = (R[1][2]-R[2][1])/mag;
|
|
q[2] = (R[2][0]-R[0][2])/mag;
|
|
q[3] = (R[0][1]-R[1][0])/mag;
|
|
}
|
|
else if (index == 1) {
|
|
q[1] = mag/4;
|
|
q[0] = (R[1][2]-R[2][1])/mag;
|
|
q[2] = (R[0][1]+R[1][0])/mag;
|
|
q[3] = (R[0][2]+R[2][0])/mag;
|
|
}
|
|
else if (index == 2) {
|
|
q[2] = mag/4;
|
|
q[0] = (R[2][0]-R[0][2])/mag;
|
|
q[1] = (R[0][1]+R[1][0])/mag;
|
|
q[3] = (R[1][2]+R[2][1])/mag;
|
|
}
|
|
else {
|
|
q[3] = mag/4;
|
|
q[0] = (R[0][1]-R[1][0])/mag;
|
|
q[1] = (R[0][2]+R[2][0])/mag;
|
|
q[2] = (R[1][2]+R[2][1])/mag;
|
|
}
|
|
|
|
// q0 positive, i.e. angle between pi and -pi
|
|
if (q[0] < 0){
|
|
q[0] = -q[0];
|
|
q[1] = -q[1];
|
|
q[2] = -q[2];
|
|
q[3] = -q[3];
|
|
}
|
|
}
|
|
|
|
// ****** Rotation Matrix from Two Vector Directions ********
|
|
// ****** given two vector directions (v1 and v2) known in two frames (b and e) find Rbe ***
|
|
// ****** solution is approximate if can't be exact ***
|
|
uint8_t RotFrom2Vectors(const float v1b[3], const float v1e[3], const float v2b[3], const float v2e[3], float Rbe[3][3])
|
|
{
|
|
float Rib[3][3], Rie[3][3];
|
|
float mag;
|
|
uint8_t i,j,k;
|
|
|
|
// identity rotation in case of error
|
|
for (i=0;i<3;i++){
|
|
for (j=0;j<3;j++)
|
|
Rbe[i][j]=0;
|
|
Rbe[i][i]=1;
|
|
}
|
|
|
|
// The first rows of rot matrices chosen in direction of v1
|
|
mag = VectorMagnitude(v1b);
|
|
if (fabs(mag) < 1e-30)
|
|
return (-1);
|
|
for (i=0;i<3;i++)
|
|
Rib[0][i]=v1b[i]/mag;
|
|
|
|
mag = VectorMagnitude(v1e);
|
|
if (fabs(mag) < 1e-30)
|
|
return (-1);
|
|
for (i=0;i<3;i++)
|
|
Rie[0][i]=v1e[i]/mag;
|
|
|
|
// The second rows of rot matrices chosen in direction of v1xv2
|
|
CrossProduct(v1b,v2b,&Rib[1][0]);
|
|
mag = VectorMagnitude(&Rib[1][0]);
|
|
if (fabs(mag) < 1e-30)
|
|
return (-1);
|
|
for (i=0;i<3;i++)
|
|
Rib[1][i]=Rib[1][i]/mag;
|
|
|
|
CrossProduct(v1e,v2e,&Rie[1][0]);
|
|
mag = VectorMagnitude(&Rie[1][0]);
|
|
if (fabs(mag) < 1e-30)
|
|
return (-1);
|
|
for (i=0;i<3;i++)
|
|
Rie[1][i]=Rie[1][i]/mag;
|
|
|
|
// The third rows of rot matrices are XxY (Row1xRow2)
|
|
CrossProduct(&Rib[0][0],&Rib[1][0],&Rib[2][0]);
|
|
CrossProduct(&Rie[0][0],&Rie[1][0],&Rie[2][0]);
|
|
|
|
// Rbe = Rbi*Rie = Rib'*Rie
|
|
for (i=0;i<3;i++)
|
|
for(j=0;j<3;j++){
|
|
Rbe[i][j]=0;
|
|
for(k=0;k<3;k++)
|
|
Rbe[i][j] += Rib[k][i]*Rie[k][j];
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
// ****** Vector Cross Product ********
|
|
void CrossProduct(const float v1[3], const float v2[3], float result[3])
|
|
{
|
|
result[0] = v1[1]*v2[2] - v2[1]*v1[2];
|
|
result[1] = v2[0]*v1[2] - v1[0]*v2[2];
|
|
result[2] = v1[0]*v2[1] - v2[0]*v1[1];
|
|
}
|
|
|
|
// ****** Vector Magnitude ********
|
|
float VectorMagnitude(const float v[3])
|
|
{
|
|
return(sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]));
|
|
}
|
|
|