1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-06 17:46:07 +01:00
LibrePilot/flight/PiOS/Common/Libraries/msheap/msheap.c
2011-11-02 13:20:39 -05:00

579 lines
18 KiB
C

/* -*- Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
/*-
* MSHEAP
*
* A compact, low-overhead heap implementation with configurable
* integrity checking.
*
* Copyright 2011 Michael Smith. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "msheap.h"
/*
* Integrity checking.
*
* The HEAP_CHECK_LEVEL define determines the level of heap and
* argument integrity checking that will be performed.
*
* Higher checking levels include all the checks from lower levels.
*
* 0 : Pointers passed to msheap_free are checked; this will
* detect overflowing of the freed region and overflows from
* adjacent regions into the freed region.
* msheap_panic() is called if an overflow is detected.
*
* 1 : Heap elements are checked during msheap_alloc(); this will
* detect overflowing of any region that is seen during the
* allocation.
* msheap_panic() is called if an overflow is detected.
*
* 2 : msheap_panic() is called with more informative diagnostics
* including the test that failed.
*
* 3 : The entire heap is checked on every call to msheap_alloc()
* and msheap_free(). This will detect overflowing of any
* region.
* Every argument is checked before use.
* Regions are checked after operations.
*
* -1: No integrity checking of any sort is performed.
*
* HEAP_CHECK_LEVEL defaults to 2 if DEBUG is defined, or 0
* otherwise.
*/
#ifndef HEAP_CHECK_LEVEL
# ifdef DEBUG
# define HEAP_CHECK_LEVEL 2
# else
# define HEAP_CHECK_LEVEL 0
# endif
#endif
/**
* Utility debug/checking macro.
*
* @param _expr Expression to evaluate. Calls msheap_panic if the
* evaluation returns false.
* @param _str String to pass to msheap_panic.
* @return Zero, but only if _expr evaluates true.
*/
#define __ASSERT(_expr, _str) \
({ \
int _a __attribute__((unused)) = 0; \
if (!(_expr)) \
msheap_panic(_str); \
_a; \
})
/** canonical macro weirdness */
#define __STR(_x) # _x
/* at level 2+, add the expression string and line number */
#if HEAP_CHECK_LEVEL >= 2
# define __ASSERT_FMT(_expr, _line, _str) __ASSERT(_expr, "heap assertion failed @" __STR(_line) ": " _str)
#else
# define __ASSERT_FMT(_expr, _line, _str) __ASSERT(_expr, "heap assertion failed")
#endif
/**
* Assert if HEAP_CHECK_LEVEL >= _level and _expr evaluates false
*
* @param _level The lowest HEAP_CHECK_LEVEL at which this assertion should be tested.
* @param _expr The expression to test.
*/
#define ASSERT(_level, _expr) (void)((HEAP_CHECK_LEVEL < _level) || __ASSERT_FMT(_expr, __LINE__, #_expr))
/**
* Assert if HEAP_CHECK_LEVEL >= _level and _expr evaluates false, return test result otherwise.
*
* @param _level The lowest HEAP_CHECK_LEVEL at which to assert.
* @param _expr The expression to test.
* @return 1 if _expr evaluates false, 0 otherwise.
*/
#define ASSERT_TEST(_level, _expr) \
({ \
ASSERT(_level, _expr); \
(_expr) ? 0 : 1; \
})
/*
* The heap consists of ranges (free or allocated) separated and
* bounded by markers.
*
* For maximum space efficiency, the default is to use 4-byte
* 'compact' markers, which limits the heap to a maxium of 128KiB.
* For larger heaps define HEAP_SUPPORT_LARGE, which doubles markers
* to 8 bytes each, but allows heaps up to 2^^33 bytes in size.
*
* Each marker contains two structures, one describing the previous
* region and one describing the next. Thus, markers form a
* doubly-linked list chaining each region together.
*
* Each region is described by two identical structures, providing
* a measure of referential integrity that can be used to detect
* overflows out of the region without the use of separate magic
* numbers.
*
* The region descriptor size includes the size of the marker at its
* head. This means that zero is not a legal marker value.
*
* Free regions are always coalesced, and a pointer is kept to the
* most recently-created free region to accelerate allocation in the
* common case where a large number of free objects are allocated
* early.
*
* The heap is bounded by markers pointing to zero-sized allocated
* ranges, so they can never be merged.
*/
#ifdef HEAP_SUPPORT_LARGE
struct region_descriptor {
uint32_t size:31; /* size of the region (including marker) in multiples of the marker size */
uint32_t free:1; /* if nonzero, region is free */
};
static const uint32_t max_free = 0x7fffffff;
#else /* !HEAP_SUPPORT_LARGE */
struct region_descriptor {
uint16_t size:15; /* size of the region (including marker) in multiples of the marker size */
uint16_t free:1; /* if nonzero, region is free */
};
static const uint32_t max_free = 0x7fff;
#endif /* HEAP_SUPPORT_LARGE */
/**
* The marker placed between regions.
*
* Allocations are aligned and rounded to the size of this structure.
*/
struct marker {
struct region_descriptor prev;
struct region_descriptor next;
};
typedef struct marker *marker_t;
static const uintptr_t marker_size = sizeof(struct marker);
/* heap boundaries */
static marker_t heap_base;
static marker_t heap_limit;
static uint32_t heap_free;
static marker_t free_hint; /* likely free region, or heap_base if no free region hint */
/* rounding macros for powers of 2 */
#define round_down(_val, _boundary) ((_val) & ~(_boundary - 1))
#define round_up(_val, _boundary) round_down((_val) + (_boundary) - 1, _boundary)
/* default panic handler */
void msheap_panic(const char *reason) __attribute__((weak, noreturn));
static int region_check(marker_t marker);
static void split_region(marker_t marker, uint32_t size);
static void merge_region(marker_t marker);
/**
* Initialise the heap.
*
* @param base The lower boundary of the heap.
* @param limit The upper boundary of the heap.
*/
void
msheap_init(void *base, void *limit)
{
heap_base = (marker_t)round_up((uintptr_t)base, marker_size);
heap_limit = (marker_t)round_down((uintptr_t)limit, marker_size) - 1;
ASSERT(3, heap_base); /* must not be NULL */
ASSERT(3, heap_limit); /* must not be NULL */
ASSERT(3, heap_limit > heap_base); /* limit must be above base */
/* Initial size of the free region (includes the heap_base marker) */
heap_free = heap_limit - heap_base;
ASSERT(0, heap_free <= max_free); /* heap must not be too large */
ASSERT(3, heap_free > 1); /* heap must be at least 1 marker in size */
/*
* Initialise the base and limit markers.
*/
heap_base->prev.size = 0;
heap_base->prev.free = 0;
heap_base->next.size = heap_free;
heap_base->next.free = 1;
heap_limit->prev.size = heap_free;
heap_limit->prev.free = 1;
heap_limit->next.size = 0;
heap_limit->next.free = 0;
free_hint = heap_base; /* a good place to start ... */
region_check(heap_base);
region_check(heap_limit);
}
void *
msheap_alloc(uint32_t size)
{
marker_t cursor;
marker_t best;
ASSERT(3, msheap_check());
/* convert the passed-in size to the number of marker-size units we need to allocate */
size += marker_size;
size = round_up(size, marker_size);
size /= marker_size;
/* cannot possibly satisfy this allocation */
if (size > heap_free)
return 0;
/* simple single-pass best-fit search */
restart:
cursor = free_hint;
best = 0;
while (cursor != heap_limit) {
ASSERT(1, region_check(cursor));
/* if the region is free and large enough */
if ((cursor->next.free) && (cursor->next.size >= size)) {
/* if we have no candidate, or the new one is smaller, take it */
if (!best || (cursor->next.size < best->next.size))
best = cursor;
}
cursor += cursor->next.size;
}
if (!best) {
/*
* If we were working from the hint and found nothing, reset
* the hint and try again
*/
if (free_hint != heap_base) {
free_hint = heap_base;
goto restart;
}
/* no space */
return 0;
}
/* split the free region to make space */
split_region(best, size);
/* update free space counter */
heap_free -= size;
/* and return a pointer to the allocated region */
return (void *)(best + 1);
}
void
msheap_free(void *ptr)
{
marker_t marker;
marker = (marker_t)ptr - 1;
ASSERT(0, region_check(marker));
ASSERT(3, msheap_check());
/* this region is free, mark it accordingly */
marker->next.free = 1;
(marker + marker->next.size)->prev.free = 1;
/* account for space we are freeing */
heap_free += marker->next.size;
/* possibly merge this region and the following */
merge_region(marker);
/* possibly merge this region and the preceeding */
if (marker->prev.free) {
marker -= marker->prev.size;
merge_region(marker);
}
/*
* Marker now points to the new free region, so update
* the free hint if this has opened space earlier in the heap.
*/
if (marker < free_hint)
free_hint = marker;
}
int
msheap_check(void)
{
marker_t cursor;
uint32_t free_space = 0;
cursor = heap_base; /* start at the base of the heap */
for (;;) {
if (ASSERT_TEST(2, region_check(cursor))) /* check the current region */
return 0;
if (cursor->next.free) /* if the region is free */
free_space += cursor->next.size; /* count it as free space */
if (cursor == heap_limit) /* if this was the last region, stop */
break;
cursor += cursor->next.size; /* next region */
}
if (ASSERT_TEST(2, region_check(free_hint)))
return 0;
if (ASSERT_TEST(2, free_space == heap_free))
return 0;
return 1;
}
void
msheap_walk(void (* callback)(void *ptr, uint32_t size, int free))
{
marker_t cursor;
cursor = heap_base;
for (;;) {
callback(cursor + 1, cursor->next.size * marker_size, cursor->next.free);
if (cursor == heap_limit)
break;
cursor += cursor->next.size;
}
}
uint32_t
msheap_free_space(void)
{
return heap_free * marker_size;
}
void
msheap_extend(uint32_t size)
{
marker_t new_free;
/* convert to marker-sized units (and implicitly round down) */
size /= marker_size;
if (size < 1)
return;
/*
* We can either extend a free region immediately prior to
* the heap limit, or we can turn the heap limit marker
* into the marker for a free region.
*/
if (heap_limit->prev.free) {
new_free = heap_limit - heap_limit->prev.size;
} else {
new_free = heap_limit;
}
/* update new free region */
new_free->next.size += size;
new_free->next.free = 1;
/* new end marker */
heap_limit = new_free + new_free->next.size;
heap_limit->prev.size = new_free->next.size;
heap_limit->prev.free = 1;
heap_limit->next.size = 0;
heap_limit->next.free = 0;
ASSERT(3, msheap_check());
}
/**
* Local heap panic implementation.
*
* Just sits and spins - should normally be overridden by the wrapper.
*
* @param reason The reason we are panicking.
*/
void
msheap_panic(const char *reason)
{
for (;;)
;
}
/**
* Check that a region is sane.
*
* If HEAP_CHECK_LEVEL is >= 2, assert at the point where the test fails, otherwise
* expect that we are being called from inside an ASSERT wrapper at an appropriate
* but lower level.
*
* @param marker The region to test.
* @return 0 if the region fails checking, 1 otherwise.
*/
static int
region_check(marker_t marker)
{
marker_t other;
if (ASSERT_TEST(2, marker) | /* not NULL */
ASSERT_TEST(2, !((uintptr_t)marker % marker_size)) | /* properly aligned */
ASSERT_TEST(2, marker >= heap_base) | /* within the heap */
ASSERT_TEST(2, marker <= heap_limit))
return 0;
/* validate link to next marker & return link from that marker */
if (marker->next.size > 0) {
other = marker + marker->next.size;
if (ASSERT_TEST(2, other > marker) | /* must be after */
ASSERT_TEST(2, other <= heap_limit) | /* must be inside the heap */
ASSERT_TEST(2, marker->next.size == other->prev.size) | /* sizes must match */
ASSERT_TEST(2, marker->next.free == other->prev.free)) /* free state must match */
return 0;
} else {
if (ASSERT_TEST(2, marker == heap_limit)) /* or it's the end of the heap */
return 0;
}
/* validate link to previous marker & return link from that marker */
if (marker->prev.size > 0) {
other = marker - marker->prev.size;
if (ASSERT_TEST(2, other < marker) | /* must be before */
ASSERT_TEST(2, other >= heap_base) | /* must be inside the heap */
ASSERT_TEST(2, marker->prev.size == other->next.size) | /* sizes must match */
ASSERT_TEST(2, marker->prev.free == other->next.free)) /* free state must match */
return 0;
} else {
if (ASSERT_TEST(2, marker == heap_base)) /* or it's the end of the heap */
return 0;
}
/* must never be two free regions adjacent */
if (ASSERT_TEST(2, !(marker->prev.free && marker->next.free)))
return 0;
return 1;
}
/**
* Split a free region into two and allocate the first portion.
*
* @param marker Marker at the head of the region to be split.
* @param size Size of the portion to be allocated.
*/
static void
split_region(marker_t marker, uint32_t size)
{
marker_t split, tail;
ASSERT(1, marker->next.free); /* must be splitting a free region */
ASSERT(1, !marker->prev.free); /* free region must never follow a free region */
ASSERT(1, marker->next.size >= size); /* size must fit in region */
ASSERT(3, size); /* split result must be at least one marker in size */
tail = marker + marker->next.size;
ASSERT(1, region_check(tail)); /* validate the following region */
/*
* The split marker is at the end of the allocated region; it may actually
* be at the end of the previous free region as well.
*/
split = marker + size;
/* describe the now-allocated region */
split->prev.size = size;
split->prev.free = 0;
/* if there is a real split, then describe the free region */
if (split != tail) {
split->next.size = marker->next.size - size;
split->next.free = 1;
tail->prev.size = split->next.size;
tail->prev.free = 1;
/*
* Update the allocation speedup hint to
* point to the new free region if we just used it.
*/
if (free_hint == marker)
free_hint = split;
} else {
/*
* If we just allocated all of what the free hint
* pointed to, reset it to the base of the heap.
*/
if (free_hint == marker)
free_hint = heap_base;
}
/* and update the allocated region */
marker->next.size = size;
marker->next.free = 0;
ASSERT(3, region_check(marker));
ASSERT(3, region_check(split));
ASSERT(3, region_check(tail));
}
/**
* Merge a free region with the following region, if possible.
*
* @param marker Marker preceeding the region to be merged.
*/
static void
merge_region(marker_t marker)
{
marker_t other;
/*
* note - cannot region_check(marker) here as we are
* actively fixing adjacent free regions.
*/
other = marker + marker->next.size;
/* if this region and the next region are both free, merge */
if (marker->next.free && other->next.free) {
/* update region size */
marker->next.size += other->next.size;
/* update the marker following the end of the merged regions */
other = marker + marker->next.size;
other->prev.size = marker->next.size;
}
}