1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-19 04:52:12 +01:00
LibrePilot/flight/PiOS/Common/pios_mpu6000.c

563 lines
16 KiB
C

/**
******************************************************************************
* @addtogroup PIOS PIOS Core hardware abstraction layer
* @{
* @addtogroup PIOS_MPU6000 MPU6000 Functions
* @brief Deals with the hardware interface to the 3-axis gyro
* @{
*
* @file pios_mpu000.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief MPU6000 6-axis gyro and accel chip
* @see The GNU Public License (GPL) Version 3
*
******************************************************************************
*/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "pios.h"
#ifdef PIOS_INCLUDE_MPU6000
#include "fifo_buffer.h"
/* Global Variables */
enum pios_mpu6000_dev_magic {
PIOS_MPU6000_DEV_MAGIC = 0x9da9b3ed,
};
#define PIOS_MPU6000_MAX_DOWNSAMPLE 2
struct mpu6000_dev {
uint32_t spi_id;
uint32_t slave_num;
xQueueHandle queue;
const struct pios_mpu6000_cfg * cfg;
enum pios_mpu6000_range gyro_range;
enum pios_mpu6000_accel_range accel_range;
enum pios_mpu6000_filter filter;
enum pios_mpu6000_dev_magic magic;
};
//! Global structure for this device device
static struct mpu6000_dev * dev;
volatile bool mpu6000_configured = false;
//! Private functions
static struct mpu6000_dev * PIOS_MPU6000_alloc(void);
static int32_t PIOS_MPU6000_Validate(struct mpu6000_dev * dev);
static void PIOS_MPU6000_Config(struct pios_mpu6000_cfg const * cfg);
static int32_t PIOS_MPU6000_SetReg(uint8_t address, uint8_t buffer);
static int32_t PIOS_MPU6000_GetReg(uint8_t address);
#define DEG_TO_RAD (M_PI / 180.0)
#define GRAV 9.81f
/**
* @brief Allocate a new device
*/
static struct mpu6000_dev * PIOS_MPU6000_alloc(void)
{
struct mpu6000_dev * mpu6000_dev;
mpu6000_dev = (struct mpu6000_dev *)pvPortMalloc(sizeof(*mpu6000_dev));
if (!mpu6000_dev) return (NULL);
mpu6000_dev->magic = PIOS_MPU6000_DEV_MAGIC;
mpu6000_dev->queue = xQueueCreate(PIOS_MPU6000_MAX_DOWNSAMPLE, sizeof(struct pios_mpu6000_data));
if(mpu6000_dev->queue == NULL) {
vPortFree(mpu6000_dev);
return NULL;
}
return(mpu6000_dev);
}
/**
* @brief Validate the handle to the spi device
* @returns 0 for valid device or -1 otherwise
*/
static int32_t PIOS_MPU6000_Validate(struct mpu6000_dev * dev)
{
if (dev == NULL)
return -1;
if (dev->magic != PIOS_MPU6000_DEV_MAGIC)
return -2;
if (dev->spi_id == 0)
return -3;
return 0;
}
/**
* @brief Initialize the MPU6000 3-axis gyro sensor.
* @return 0 for success, -1 for failure
*/
int32_t PIOS_MPU6000_Init(uint32_t spi_id, uint32_t slave_num, const struct pios_mpu6000_cfg * cfg)
{
dev = PIOS_MPU6000_alloc();
if(dev == NULL)
return -1;
dev->spi_id = spi_id;
dev->slave_num = slave_num;
dev->cfg = cfg;
/* Configure the MPU6000 Sensor */
PIOS_SPI_SetClockSpeed(dev->spi_id, PIOS_SPI_PRESCALER_256);
PIOS_MPU6000_Config(cfg);
PIOS_SPI_SetClockSpeed(dev->spi_id, PIOS_SPI_PRESCALER_16);
/* Set up EXTI line */
PIOS_EXTI_Init(cfg->exti_cfg);
return 0;
}
/**
* @brief Initialize the MPU6000 3-axis gyro sensor
* \return none
* \param[in] PIOS_MPU6000_ConfigTypeDef struct to be used to configure sensor.
*
*/
static void PIOS_MPU6000_Config(struct pios_mpu6000_cfg const * cfg)
{
PIOS_MPU6000_Test();
// Reset chip
while (PIOS_MPU6000_SetReg(PIOS_MPU6000_PWR_MGMT_REG, PIOS_MPU6000_PWRMGMT_IMU_RST) != 0);
PIOS_DELAY_WaitmS(50);
// Reset chip and fifo
while (PIOS_MPU6000_SetReg(PIOS_MPU6000_USER_CTRL_REG,
PIOS_MPU6000_USERCTL_GYRO_RST |
PIOS_MPU6000_USERCTL_SIG_COND |
PIOS_MPU6000_USERCTL_FIFO_RST) != 0);
// Wait for reset to finish
while (PIOS_MPU6000_GetReg(PIOS_MPU6000_USER_CTRL_REG) &
(PIOS_MPU6000_USERCTL_GYRO_RST |
PIOS_MPU6000_USERCTL_SIG_COND |
PIOS_MPU6000_USERCTL_FIFO_RST));
PIOS_DELAY_WaitmS(10);
//Power management configuration
while (PIOS_MPU6000_SetReg(PIOS_MPU6000_PWR_MGMT_REG, cfg->Pwr_mgmt_clk) != 0);
// Interrupt configuration
while (PIOS_MPU6000_SetReg(PIOS_MPU6000_INT_CFG_REG, cfg->interrupt_cfg) != 0);
// Interrupt configuration
while (PIOS_MPU6000_SetReg(PIOS_MPU6000_INT_EN_REG, cfg->interrupt_en) != 0);
// FIFO storage
#if defined(PIOS_MPU6000_ACCEL)
while (PIOS_MPU6000_SetReg(PIOS_MPU6000_FIFO_EN_REG, cfg->Fifo_store | PIOS_MPU6000_ACCEL_OUT) != 0);
#else
while (PIOS_MPU6000_SetReg(PIOS_MPU6000_FIFO_EN_REG, cfg->Fifo_store) != 0);
#endif
PIOS_MPU6000_ConfigureRanges(cfg->gyro_range, cfg->accel_range, cfg->filter);
// Interrupt configuration
while (PIOS_MPU6000_SetReg(PIOS_MPU6000_USER_CTRL_REG, cfg->User_ctl) != 0) ;
// Interrupt configuration
while (PIOS_MPU6000_SetReg(PIOS_MPU6000_PWR_MGMT_REG, cfg->Pwr_mgmt_clk) != 0) ;
// Interrupt configuration
while (PIOS_MPU6000_SetReg(PIOS_MPU6000_INT_CFG_REG, cfg->interrupt_cfg) != 0) ;
// Interrupt configuration
while (PIOS_MPU6000_SetReg(PIOS_MPU6000_INT_EN_REG, cfg->interrupt_en) != 0) ;
if((PIOS_MPU6000_GetReg(PIOS_MPU6000_INT_EN_REG)) != cfg->interrupt_en)
return;
mpu6000_configured = true;
}
/**
* @brief Configures Gyro, accel and Filter ranges/setings
* @return 0 if successful, -1 if device has not been initialized
*/
int32_t PIOS_MPU6000_ConfigureRanges(
enum pios_mpu6000_range gyroRange,
enum pios_mpu6000_accel_range accelRange,
enum pios_mpu6000_filter filterSetting
)
{
if(dev == NULL)
return -1;
PIOS_SPI_SetClockSpeed(dev->spi_id, PIOS_SPI_PRESCALER_256);
// update filter settings
while (PIOS_MPU6000_SetReg(PIOS_MPU6000_DLPF_CFG_REG, filterSetting) != 0);
// Sample rate divider, chosen upon digital filtering settings
while (PIOS_MPU6000_SetReg(PIOS_MPU6000_SMPLRT_DIV_REG,
filterSetting == PIOS_MPU6000_LOWPASS_256_HZ ?
dev->cfg->Smpl_rate_div_no_dlp : dev->cfg->Smpl_rate_div_dlp) != 0);
dev->filter = filterSetting;
// Gyro range
while (PIOS_MPU6000_SetReg(PIOS_MPU6000_GYRO_CFG_REG, gyroRange) != 0);
dev->gyro_range = gyroRange;
#if defined(PIOS_MPU6000_ACCEL)
// Set the accel range
while (PIOS_MPU6000_SetReg(PIOS_MPU6000_ACCEL_CFG_REG, accelRange) != 0);
dev->accel_range = accelRange;
#endif
PIOS_SPI_SetClockSpeed(dev->spi_id, PIOS_SPI_PRESCALER_16);
return 0;
}
/**
* @brief Claim the SPI bus for the accel communications and select this chip
* @return 0 if successful, -1 for invalid device, -2 if unable to claim bus
*/
static int32_t PIOS_MPU6000_ClaimBus(bool fromIsr)
{
if(PIOS_MPU6000_Validate(dev) != 0)
return -1;
if(fromIsr){
if(PIOS_SPI_ClaimBusISR(dev->spi_id) != 0)
return -2;
} else {
if(PIOS_SPI_ClaimBus(dev->spi_id) != 0)
return -2;
}
PIOS_SPI_RC_PinSet(dev->spi_id,dev->slave_num,0);
return 0;
}
/**
* @brief Release the SPI bus for the accel communications and end the transaction
* @return 0 if successful
*/
int32_t PIOS_MPU6000_ReleaseBus()
{
if(PIOS_MPU6000_Validate(dev) != 0)
return -1;
PIOS_SPI_RC_PinSet(dev->spi_id,dev->slave_num,1);
return PIOS_SPI_ReleaseBus(dev->spi_id);
}
/**
* @brief Read a register from MPU6000
* @returns The register value or -1 if failure to get bus
* @param reg[in] Register address to be read
*/
static int32_t PIOS_MPU6000_GetReg(uint8_t reg)
{
uint8_t data;
if(PIOS_MPU6000_ClaimBus(false) != 0)
return -1;
PIOS_SPI_TransferByte(dev->spi_id,(0x80 | reg) ); // request byte
data = PIOS_SPI_TransferByte(dev->spi_id,0 ); // receive response
PIOS_MPU6000_ReleaseBus();
return data;
}
/**
* @brief Writes one byte to the MPU6000
* \param[in] reg Register address
* \param[in] data Byte to write
* \return 0 if operation was successful
* \return -1 if unable to claim SPI bus
* \return -2 if unable to claim i2c device
*/
static int32_t PIOS_MPU6000_SetReg(uint8_t reg, uint8_t data)
{
if(PIOS_MPU6000_ClaimBus(false) != 0)
return -1;
if(PIOS_SPI_TransferByte(dev->spi_id, 0x7f & reg) != 0) {
PIOS_MPU6000_ReleaseBus();
return -2;
}
if(PIOS_SPI_TransferByte(dev->spi_id, data) != 0) {
PIOS_MPU6000_ReleaseBus();
return -3;
}
PIOS_MPU6000_ReleaseBus();
return 0;
}
/**
* @brief Read current X, Z, Y values (in that order)
* \param[out] int16_t array of size 3 to store X, Z, and Y magnetometer readings
* \returns 0 if succesful
*/
int32_t PIOS_MPU6000_ReadGyros(struct pios_mpu6000_data * data)
{
// THIS FUNCTION IS DEPRECATED AND DOES NOT PERFORM A ROTATION
uint8_t buf[7] = {PIOS_MPU6000_GYRO_X_OUT_MSB | 0x80, 0, 0, 0, 0, 0, 0};
uint8_t rec[7];
if(PIOS_MPU6000_ClaimBus(false) != 0)
return -1;
if(PIOS_SPI_TransferBlock(dev->spi_id, &buf[0], &rec[0], sizeof(buf), NULL) < 0)
return -2;
PIOS_MPU6000_ReleaseBus();
data->gyro_x = rec[1] << 8 | rec[2];
data->gyro_y = rec[3] << 8 | rec[4];
data->gyro_z = rec[5] << 8 | rec[6];
return 0;
}
/*
* @brief Read the identification bytes from the MPU6000 sensor
* \return ID read from MPU6000 or -1 if failure
*/
int32_t PIOS_MPU6000_ReadID()
{
int32_t mpu6000_id = PIOS_MPU6000_GetReg(PIOS_MPU6000_WHOAMI);
if(mpu6000_id < 0)
return -1;
return mpu6000_id;
}
/**
* \brief Reads the queue handle
* \return Handle to the queue or null if invalid device
*/
xQueueHandle PIOS_MPU6000_GetQueue()
{
if(PIOS_MPU6000_Validate(dev) != 0)
return (xQueueHandle) NULL;
return dev->queue;
}
float PIOS_MPU6000_GetScale()
{
switch (dev->gyro_range) {
case PIOS_MPU6000_SCALE_250_DEG:
return 1.0f / 131.0f;
case PIOS_MPU6000_SCALE_500_DEG:
return 1.0f / 65.5f;
case PIOS_MPU6000_SCALE_1000_DEG:
return 1.0f / 32.8f;
case PIOS_MPU6000_SCALE_2000_DEG:
return 1.0f / 16.4f;
}
return 0;
}
float PIOS_MPU6000_GetAccelScale()
{
switch (dev->accel_range) {
case PIOS_MPU6000_ACCEL_2G:
return GRAV / 16384.0f;
case PIOS_MPU6000_ACCEL_4G:
return GRAV / 8192.0f;
case PIOS_MPU6000_ACCEL_8G:
return GRAV / 4096.0f;
case PIOS_MPU6000_ACCEL_16G:
return GRAV / 2048.0f;
}
return 0;
}
/**
* @brief Run self-test operation.
* \return 0 if test succeeded
* \return non-zero value if test succeeded
*/
int32_t PIOS_MPU6000_Test(void)
{
/* Verify that ID matches (MPU6000 ID is 0x69) */
int32_t mpu6000_id = PIOS_MPU6000_ReadID();
if(mpu6000_id < 0)
return -1;
if(mpu6000_id != 0x68)
return -2;
return 0;
}
/**
* @brief Run self-test operation.
* \return 0 if test succeeded
* \return non-zero value if test succeeded
*/
static int32_t PIOS_MPU6000_FifoDepth(bool fromIsr)
{
uint8_t mpu6000_send_buf[3] = {PIOS_MPU6000_FIFO_CNT_MSB | 0x80, 0, 0};
uint8_t mpu6000_rec_buf[3];
if(PIOS_MPU6000_ClaimBus(fromIsr) != 0)
return -1;
if(PIOS_SPI_TransferBlock(dev->spi_id, &mpu6000_send_buf[0], &mpu6000_rec_buf[0], sizeof(mpu6000_send_buf), NULL) < 0) {
PIOS_MPU6000_ReleaseBus();
return -1;
}
PIOS_MPU6000_ReleaseBus();
return (mpu6000_rec_buf[1] << 8) | mpu6000_rec_buf[2];
}
/**
* @brief IRQ Handler. Read all the data from onboard buffer
*/
uint32_t mpu6000_irq = 0;
int32_t mpu6000_count;
uint32_t mpu6000_fifo_backup = 0;
uint8_t mpu6000_last_read_count = 0;
uint32_t mpu6000_fails = 0;
uint32_t mpu6000_interval_us;
uint32_t mpu6000_time_us;
uint32_t mpu6000_transfer_size;
bool PIOS_MPU6000_IRQHandler(void)
{
static uint32_t timeval;
mpu6000_interval_us = PIOS_DELAY_DiffuS(timeval);
timeval = PIOS_DELAY_GetRaw();
if (!mpu6000_configured)
return false;
mpu6000_count = PIOS_MPU6000_FifoDepth(true);
if (mpu6000_count < sizeof(struct pios_mpu6000_data))
return false;
if (PIOS_MPU6000_ClaimBus(true) != 0)
return false;
uint8_t mpu6000_send_buf[1 + sizeof(struct pios_mpu6000_data) ] = {PIOS_MPU6000_FIFO_REG | 0x80, 0, 0, 0, 0, 0, 0, 0, 0};
uint8_t mpu6000_rec_buf[1 + sizeof(struct pios_mpu6000_data) ];
if (PIOS_SPI_TransferBlock(dev->spi_id, &mpu6000_send_buf[0], &mpu6000_rec_buf[0], sizeof(mpu6000_send_buf), NULL) < 0) {
PIOS_MPU6000_ReleaseBus();
mpu6000_fails++;
return false;
}
PIOS_MPU6000_ReleaseBus();
struct pios_mpu6000_data data;
// In the case where extras samples backed up grabbed an extra
if (mpu6000_count >= (sizeof(data) * 2)) {
mpu6000_fifo_backup++;
if (PIOS_MPU6000_ClaimBus(true) != 0)
return false;
if (PIOS_SPI_TransferBlock(dev->spi_id, &mpu6000_send_buf[0], &mpu6000_rec_buf[0], sizeof(mpu6000_send_buf), NULL) < 0) {
PIOS_MPU6000_ReleaseBus();
mpu6000_fails++;
return false;
}
PIOS_MPU6000_ReleaseBus();
}
// Rotate the sensor to OP convention. The datasheet defines X as towards the right
// and Y as forward. OP convention transposes this. Also the Z is defined negatively
// to our convention
#if defined(PIOS_MPU6000_ACCEL)
// Currently we only support rotations on top so switch X/Y accordingly
switch (dev->cfg->orientation) {
case PIOS_MPU6000_TOP_0DEG:
data.accel_y = mpu6000_rec_buf[1] << 8 | mpu6000_rec_buf[2]; // chip X
data.accel_x = mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]; // chip Y
data.gyro_y = mpu6000_rec_buf[9] << 8 | mpu6000_rec_buf[10]; // chip X
data.gyro_x = mpu6000_rec_buf[11] << 8 | mpu6000_rec_buf[12]; // chip Y
break;
case PIOS_MPU6000_TOP_90DEG:
// -1 to bring it back to -32768 +32767 range
data.accel_y = -1 - (mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]); // chip Y
data.accel_x = mpu6000_rec_buf[1] << 8 | mpu6000_rec_buf[2]; // chip X
data.gyro_y = -1 - (mpu6000_rec_buf[11] << 8 | mpu6000_rec_buf[12]); // chip Y
data.gyro_x = mpu6000_rec_buf[9] << 8 | mpu6000_rec_buf[10]; // chip X
break;
case PIOS_MPU6000_TOP_180DEG:
data.accel_y = -1 - (mpu6000_rec_buf[1] << 8 | mpu6000_rec_buf[2]); // chip X
data.accel_x = -1 - (mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]); // chip Y
data.gyro_y = -1 - (mpu6000_rec_buf[9] << 8 | mpu6000_rec_buf[10]); // chip X
data.gyro_x = -1 - (mpu6000_rec_buf[11] << 8 | mpu6000_rec_buf[12]); // chip Y
break;
case PIOS_MPU6000_TOP_270DEG:
data.accel_y = mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]; // chip Y
data.accel_x = -1 - (mpu6000_rec_buf[1] << 8 | mpu6000_rec_buf[2]); // chip X
data.gyro_y = mpu6000_rec_buf[11] << 8 | mpu6000_rec_buf[12]; // chip Y
data.gyro_x = -1 - (mpu6000_rec_buf[9] << 8 | mpu6000_rec_buf[10]); // chip X
break;
}
data.gyro_z = -1 - (mpu6000_rec_buf[13] << 8 | mpu6000_rec_buf[14]);
data.accel_z = -1 - (mpu6000_rec_buf[5] << 8 | mpu6000_rec_buf[6]);
data.temperature = mpu6000_rec_buf[7] << 8 | mpu6000_rec_buf[8];
#else
data.gyro_x = mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4];
data.gyro_y = mpu6000_rec_buf[5] << 8 | mpu6000_rec_buf[6];
switch (dev->cfg->orientation) {
case PIOS_MPU6000_TOP_0DEG:
data.gyro_y = mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4];
data.gyro_x = mpu6000_rec_buf[5] << 8 | mpu6000_rec_buf[6];
break;
case PIOS_MPU6000_TOP_90DEG:
data.gyro_y = -1 - (mpu6000_rec_buf[5] << 8 | mpu6000_rec_buf[6]); // chip Y
data.gyro_x = mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]; // chip X
break;
case PIOS_MPU6000_TOP_180DEG:
data.gyro_y = -1 - (mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]);
data.gyro_x = -1 - (mpu6000_rec_buf[5] << 8 | mpu6000_rec_buf[6]);
break;
case PIOS_MPU6000_TOP_270DEG:
data.gyro_y = mpu6000_rec_buf[5] << 8 | mpu6000_rec_buf[6]; // chip Y
data.gyro_x = -1 - (mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]); // chip X
break;
}
data.gyro_z = -1 - (mpu6000_rec_buf[7] << 8 | mpu6000_rec_buf[8]);
data.temperature = mpu6000_rec_buf[1] << 8 | mpu6000_rec_buf[2];
#endif
portBASE_TYPE xHigherPriorityTaskWoken;
xQueueSendToBackFromISR(dev->queue, (void *) &data, &xHigherPriorityTaskWoken);
mpu6000_irq++;
mpu6000_time_us = PIOS_DELAY_DiffuS(timeval);
return xHigherPriorityTaskWoken == pdTRUE;
}
#endif /* PIOS_INCLUDE_MPU6000 */
/**
* @}
* @}
*/