1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-12 20:08:48 +01:00
LibrePilot/flight/modules/CameraStab/camerastab.c
Corvus Corax 6fdf554d4a Merge branch 'next' into corvuscorax/OP-947_stateestimator-module
Conflicts:
	flight/modules/Attitude/revolution/attitude.c
	ground/openpilotgcs/src/plugins/opmap/opmapgadgetwidget.cpp
	shared/uavobjectdefinition/attitudesettings.xml
2013-06-06 19:25:54 +02:00

350 lines
12 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup CameraStab Camera Stabilization Module
* @brief Camera stabilization module
* Updates accessory outputs with values appropriate for camera stabilization
* @{
*
* @file camerastab.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Stabilize camera against the roll pitch and yaw of aircraft
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Output object: Accessory
*
* This module will periodically calculate the output values for stabilizing the camera
*
* UAVObjects are automatically generated by the UAVObjectGenerator from
* the object definition XML file.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include "openpilot.h"
#include "accessorydesired.h"
#include "attitudestate.h"
#include "camerastabsettings.h"
#include "cameradesired.h"
#include "hwsettings.h"
//
// Configuration
//
#define SAMPLE_PERIOD_MS 10
// Private types
// Private variables
static struct CameraStab_data {
portTickType lastSysTime;
float inputs[CAMERASTABSETTINGS_INPUT_NUMELEM];
#ifdef USE_GIMBAL_LPF
float attitudeFiltered[CAMERASTABSETTINGS_INPUT_NUMELEM];
#endif
#ifdef USE_GIMBAL_FF
float ffLastAttitude[CAMERASTABSETTINGS_INPUT_NUMELEM];
float ffLastAttitudeFiltered[CAMERASTABSETTINGS_INPUT_NUMELEM];
float ffFilterAccumulator[CAMERASTABSETTINGS_INPUT_NUMELEM];
#endif
} *csd;
// Private functions
static void attitudeUpdated(UAVObjEvent *ev);
static float bound(float val, float limit);
#ifdef USE_GIMBAL_FF
static void applyFeedForward(uint8_t index, float dT, float *attitude, CameraStabSettingsData *cameraStab);
#endif
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t CameraStabInitialize(void)
{
bool cameraStabEnabled;
#ifdef MODULE_CAMERASTAB_BUILTIN
cameraStabEnabled = true;
#else
uint8_t optionalModules[HWSETTINGS_OPTIONALMODULES_NUMELEM];
HwSettingsInitialize();
HwSettingsOptionalModulesGet(optionalModules);
if (optionalModules[HWSETTINGS_OPTIONALMODULES_CAMERASTAB] == HWSETTINGS_OPTIONALMODULES_ENABLED) {
cameraStabEnabled = true;
} else {
cameraStabEnabled = false;
}
#endif
if (cameraStabEnabled) {
// allocate and initialize the static data storage only if module is enabled
csd = (struct CameraStab_data *)pvPortMalloc(sizeof(struct CameraStab_data));
if (!csd) {
return -1;
}
// initialize camera state variables
memset(csd, 0, sizeof(struct CameraStab_data));
csd->lastSysTime = xTaskGetTickCount();
AttitudeStateInitialize();
CameraStabSettingsInitialize();
CameraDesiredInitialize();
UAVObjEvent ev = {
.obj = AttitudeStateHandle(),
.instId = 0,
.event = 0,
};
EventPeriodicCallbackCreate(&ev, attitudeUpdated, SAMPLE_PERIOD_MS / portTICK_RATE_MS);
return 0;
}
return -1;
}
/* stub: module has no module thread */
int32_t CameraStabStart(void)
{
return 0;
}
MODULE_INITCALL(CameraStabInitialize, CameraStabStart);
static void attitudeUpdated(UAVObjEvent *ev)
{
if (ev->obj != AttitudeStateHandle()) {
return;
}
AccessoryDesiredData accessory;
CameraStabSettingsData cameraStab;
CameraStabSettingsGet(&cameraStab);
// check how long since last update, time delta between calls in ms
portTickType thisSysTime = xTaskGetTickCount();
float dT_millis = (thisSysTime > csd->lastSysTime) ?
(float)((thisSysTime - csd->lastSysTime) * portTICK_RATE_MS) :
(float)SAMPLE_PERIOD_MS;
csd->lastSysTime = thisSysTime;
// storage for elevon roll component before the pitch component has been generated
// we are guaranteed that the iteration order of i is roll pitch yaw
// that guarnteees this won't be used uninited, but the compiler doesn't know that
// so we init it or turn the warning/error off for each compiler
float elevon_roll = 0.0f;
// process axes
for (uint8_t i = 0; i < CAMERASTABSETTINGS_INPUT_NUMELEM; i++) {
// read and process control input
if (cameraStab.Input[i] != CAMERASTABSETTINGS_INPUT_NONE) {
if (AccessoryDesiredInstGet(cameraStab.Input[i] - CAMERASTABSETTINGS_INPUT_ACCESSORY0, &accessory) == 0) {
float input_rate;
switch (cameraStab.StabilizationMode[i]) {
case CAMERASTABSETTINGS_STABILIZATIONMODE_ATTITUDE:
csd->inputs[i] = accessory.AccessoryVal * cameraStab.InputRange[i];
break;
case CAMERASTABSETTINGS_STABILIZATIONMODE_AXISLOCK:
input_rate = accessory.AccessoryVal * cameraStab.InputRate[i];
if (fabsf(input_rate) > cameraStab.MaxAxisLockRate) {
csd->inputs[i] = bound(csd->inputs[i] + input_rate * 0.001f * dT_millis, cameraStab.InputRange[i]);
}
break;
default:
PIOS_Assert(0);
}
}
}
// calculate servo output
float attitude;
switch (i) {
case CAMERASTABSETTINGS_INPUT_ROLL:
AttitudeStateRollGet(&attitude);
break;
case CAMERASTABSETTINGS_INPUT_PITCH:
AttitudeStatePitchGet(&attitude);
break;
case CAMERASTABSETTINGS_INPUT_YAW:
AttitudeStateYawGet(&attitude);
break;
default:
PIOS_Assert(0);
}
#ifdef USE_GIMBAL_LPF
if (cameraStab.ResponseTime) {
float rt = (float)cameraStab.ResponseTime[i];
attitude = csd->attitudeFiltered[i] = ((rt * csd->attitudeFiltered[i]) + (dT_millis * attitude)) / (rt + dT_millis);
}
#endif
#ifdef USE_GIMBAL_FF
if (cameraStab.FeedForward[i]) {
applyFeedForward(i, dT_millis, &attitude, &cameraStab);
}
#endif
// bounding for elevon mixing occurs on the unmixed output
// to limit the range of the mixed output you must limit the range
// of both the unmixed pitch and unmixed roll
float output = bound((attitude + csd->inputs[i]) / cameraStab.OutputRange[i], 1.0f);
// set output channels
switch (i) {
case CAMERASTABSETTINGS_INPUT_ROLL:
// we are guaranteed that the iteration order of i is roll pitch yaw
// for elevon mixing we simply grab the value for later use
if (cameraStab.GimbalType == CAMERASTABSETTINGS_GIMBALTYPE_ROLLPITCHMIXED) {
elevon_roll = output;
} else {
CameraDesiredRollOrServo1Set(&output);
}
break;
case CAMERASTABSETTINGS_INPUT_PITCH:
// we are guaranteed that the iteration order of i is roll pitch yaw
// for elevon mixing we use the value we previously grabbed and set both s1 and s2
if (cameraStab.GimbalType == CAMERASTABSETTINGS_GIMBALTYPE_ROLLPITCHMIXED) {
float elevon_pitch = output;
// elevon reversing works like this:
// first use the normal reversing facilities to get servo 1 roll working in the correct direction
// then use the normal reversing facilities to get servo 2 roll working in the correct direction
// then use these new reversing switches to reverse servo 1 and/or 2 pitch as needed
// if servo 1 pitch is reversed
if (cameraStab.Servo1PitchReverse == CAMERASTABSETTINGS_SERVO1PITCHREVERSE_TRUE) {
// use (reversed pitch) + roll
output = ((1.0f - elevon_pitch) + elevon_roll) / 2.0f;
} else {
// use pitch + roll
output = (elevon_pitch + elevon_roll) / 2.0f;
}
CameraDesiredRollOrServo1Set(&output);
// if servo 2 pitch is reversed
if (cameraStab.Servo2PitchReverse == CAMERASTABSETTINGS_SERVO2PITCHREVERSE_TRUE) {
// use (reversed pitch) - roll
output = ((1.0f - elevon_pitch) - elevon_roll) / 2.0f;
} else {
// use pitch - roll
output = (elevon_pitch - elevon_roll) / 2.0f;
}
CameraDesiredPitchOrServo2Set(&output);
} else {
CameraDesiredPitchOrServo2Set(&output);
}
break;
case CAMERASTABSETTINGS_INPUT_YAW:
CameraDesiredYawSet(&output);
break;
default:
PIOS_Assert(0);
}
}
}
float bound(float val, float limit)
{
return (val > limit) ? limit :
(val < -limit) ? -limit :
val;
}
#ifdef USE_GIMBAL_FF
void applyFeedForward(uint8_t index, float dT_millis, float *attitude, CameraStabSettingsData *cameraStab)
{
// compensate high feed forward values depending on gimbal type
float gimbalTypeCorrection = 1.0f;
switch (cameraStab->GimbalType) {
case CAMERASTABSETTINGS_GIMBALTYPE_GENERIC:
case CAMERASTABSETTINGS_GIMBALTYPE_ROLLPITCHMIXED:
// no correction
break;
case CAMERASTABSETTINGS_GIMBALTYPE_YAWROLLPITCH:
if (index == CAMERASTABSETTINGS_INPUT_ROLL) {
float pitch;
AttitudeStatePitchGet(&pitch);
gimbalTypeCorrection = (cameraStab->OutputRange[CAMERASTABSETTINGS_OUTPUTRANGE_PITCH] - fabsf(pitch))
/ cameraStab->OutputRange[CAMERASTABSETTINGS_OUTPUTRANGE_PITCH];
}
break;
case CAMERASTABSETTINGS_GIMBALTYPE_YAWPITCHROLL:
if (index == CAMERASTABSETTINGS_INPUT_PITCH) {
float roll;
AttitudeStateRollGet(&roll);
gimbalTypeCorrection = (cameraStab->OutputRange[CAMERASTABSETTINGS_OUTPUTRANGE_ROLL] - fabsf(roll))
/ cameraStab->OutputRange[CAMERASTABSETTINGS_OUTPUTRANGE_ROLL];
}
break;
default:
PIOS_Assert(0);
}
// apply feed forward
float accumulator = csd->ffFilterAccumulator[index];
accumulator += (*attitude - csd->ffLastAttitude[index]) * (float)cameraStab->FeedForward[index] * gimbalTypeCorrection;
csd->ffLastAttitude[index] = *attitude;
*attitude += accumulator;
float filter = (float)((accumulator > 0.0f) ? cameraStab->AccelTime[index] : cameraStab->DecelTime[index]) / dT_millis;
if (filter < 1.0f) {
filter = 1.0f;
}
accumulator -= accumulator / filter;
csd->ffFilterAccumulator[index] = accumulator;
*attitude += accumulator;
// apply acceleration limit
float delta = *attitude - csd->ffLastAttitudeFiltered[index];
float maxDelta = (float)cameraStab->MaxAccel * 0.001f * dT_millis;
if (fabsf(delta) > maxDelta) {
// we are accelerating too hard
*attitude = csd->ffLastAttitudeFiltered[index] + ((delta > 0.0f) ? maxDelta : -maxDelta);
}
csd->ffLastAttitudeFiltered[index] = *attitude;
}
#endif // USE_GIMBAL_FF
/**
* @}
*/
/**
* @}
*/