1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-13 20:48:42 +01:00
LibrePilot/ground/openpilotgcs/src/plugins/config/configrevowidget.cpp
2013-09-15 23:37:20 +02:00

1147 lines
46 KiB
C++

/**
******************************************************************************
*
* @file ConfigRevoWidget.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @addtogroup GCSPlugins GCS Plugins
* @{
* @addtogroup ConfigPlugin Config Plugin
* @{
* @brief The Configuration Gadget used to update settings in the firmware
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "configrevowidget.h"
#include "math.h"
#include <QDebug>
#include <QTimer>
#include <QStringList>
#include <QWidget>
#include <QTextEdit>
#include <QVBoxLayout>
#include <QPushButton>
#include <QMessageBox>
#include <QThread>
#include <QErrorMessage>
#include <iostream>
#include <QDesktopServices>
#include <QUrl>
#include <attitudesettings.h>
#include <ekfconfiguration.h>
#include <revocalibration.h>
#include <homelocation.h>
#include <accelstate.h>
#include <gyrostate.h>
#include <magstate.h>
#define GRAVITY 9.81f
#include "assertions.h"
#include "calibration.h"
#define sign(x) ((x < 0) ? -1 : 1)
// Uncomment this to enable 6 point calibration on the accels
#define SIX_POINT_CAL_ACCEL
const double ConfigRevoWidget::maxVarValue = 0.1;
// *****************
class Thread : public QThread {
public:
static void usleep(unsigned long usecs)
{
QThread::usleep(usecs);
}
};
// *****************
ConfigRevoWidget::ConfigRevoWidget(QWidget *parent) :
ConfigTaskWidget(parent),
m_ui(new Ui_RevoSensorsWidget()),
collectingData(false),
position(-1),
isBoardRotationStored(false)
{
m_ui->setupUi(this);
// Initialization of the Paper plane widget
m_ui->sixPointsHelp->setScene(new QGraphicsScene(this));
paperplane = new QGraphicsSvgItem();
paperplane->setSharedRenderer(new QSvgRenderer());
paperplane->renderer()->load(QString(":/configgadget/images/paper-plane.svg"));
paperplane->setElementId("plane-horizontal");
m_ui->sixPointsHelp->scene()->addItem(paperplane);
m_ui->sixPointsHelp->setSceneRect(paperplane->boundingRect());
// Initialization of the Revo sensor noise bargraph graph
m_ui->sensorsBargraph->setScene(new QGraphicsScene(this));
QSvgRenderer *renderer = new QSvgRenderer();
sensorsBargraph = new QGraphicsSvgItem();
renderer->load(QString(":/configgadget/images/ahrs-calib.svg"));
sensorsBargraph->setSharedRenderer(renderer);
sensorsBargraph->setElementId("background");
sensorsBargraph->setObjectName("background");
m_ui->sensorsBargraph->scene()->addItem(sensorsBargraph);
m_ui->sensorsBargraph->setSceneRect(sensorsBargraph->boundingRect());
// Initialize the 9 bargraph values:
QMatrix lineMatrix = renderer->matrixForElement("accel_x");
QRectF rect = lineMatrix.mapRect(renderer->boundsOnElement("accel_x"));
qreal startX = rect.x();
qreal startY = rect.y() + rect.height();
// maxBarHeight will be used for scaling it later.
maxBarHeight = rect.height();
// Then once we have the initial location, we can put it
// into a QGraphicsSvgItem which we will display at the same
// place: we do this so that the heading scale can be clipped to
// the compass dial region.
accel_x = new QGraphicsSvgItem();
accel_x->setSharedRenderer(renderer);
accel_x->setElementId("accel_x");
m_ui->sensorsBargraph->scene()->addItem(accel_x);
accel_x->setPos(startX, startY);
accel_x->setTransform(QTransform::fromScale(1, 0), true);
lineMatrix = renderer->matrixForElement("accel_y");
rect = lineMatrix.mapRect(renderer->boundsOnElement("accel_y"));
startX = rect.x();
startY = rect.y() + rect.height();
accel_y = new QGraphicsSvgItem();
accel_y->setSharedRenderer(renderer);
accel_y->setElementId("accel_y");
m_ui->sensorsBargraph->scene()->addItem(accel_y);
accel_y->setPos(startX, startY);
accel_y->setTransform(QTransform::fromScale(1, 0), true);
lineMatrix = renderer->matrixForElement("accel_z");
rect = lineMatrix.mapRect(renderer->boundsOnElement("accel_z"));
startX = rect.x();
startY = rect.y() + rect.height();
accel_z = new QGraphicsSvgItem();
accel_z->setSharedRenderer(renderer);
accel_z->setElementId("accel_z");
m_ui->sensorsBargraph->scene()->addItem(accel_z);
accel_z->setPos(startX, startY);
accel_z->setTransform(QTransform::fromScale(1, 0), true);
lineMatrix = renderer->matrixForElement("gyro_x");
rect = lineMatrix.mapRect(renderer->boundsOnElement("gyro_x"));
startX = rect.x();
startY = rect.y() + rect.height();
gyro_x = new QGraphicsSvgItem();
gyro_x->setSharedRenderer(renderer);
gyro_x->setElementId("gyro_x");
m_ui->sensorsBargraph->scene()->addItem(gyro_x);
gyro_x->setPos(startX, startY);
gyro_x->setTransform(QTransform::fromScale(1, 0), true);
lineMatrix = renderer->matrixForElement("gyro_y");
rect = lineMatrix.mapRect(renderer->boundsOnElement("gyro_y"));
startX = rect.x();
startY = rect.y() + rect.height();
gyro_y = new QGraphicsSvgItem();
gyro_y->setSharedRenderer(renderer);
gyro_y->setElementId("gyro_y");
m_ui->sensorsBargraph->scene()->addItem(gyro_y);
gyro_y->setPos(startX, startY);
gyro_y->setTransform(QTransform::fromScale(1, 0), true);
lineMatrix = renderer->matrixForElement("gyro_z");
rect = lineMatrix.mapRect(renderer->boundsOnElement("gyro_z"));
startX = rect.x();
startY = rect.y() + rect.height();
gyro_z = new QGraphicsSvgItem();
gyro_z->setSharedRenderer(renderer);
gyro_z->setElementId("gyro_z");
m_ui->sensorsBargraph->scene()->addItem(gyro_z);
gyro_z->setPos(startX, startY);
gyro_z->setTransform(QTransform::fromScale(1, 0), true);
lineMatrix = renderer->matrixForElement("mag_x");
rect = lineMatrix.mapRect(renderer->boundsOnElement("mag_x"));
startX = rect.x();
startY = rect.y() + rect.height();
mag_x = new QGraphicsSvgItem();
mag_x->setSharedRenderer(renderer);
mag_x->setElementId("mag_x");
m_ui->sensorsBargraph->scene()->addItem(mag_x);
mag_x->setPos(startX, startY);
mag_x->setTransform(QTransform::fromScale(1, 0), true);
lineMatrix = renderer->matrixForElement("mag_y");
rect = lineMatrix.mapRect(renderer->boundsOnElement("mag_y"));
startX = rect.x();
startY = rect.y() + rect.height();
mag_y = new QGraphicsSvgItem();
mag_y->setSharedRenderer(renderer);
mag_y->setElementId("mag_y");
m_ui->sensorsBargraph->scene()->addItem(mag_y);
mag_y->setPos(startX, startY);
mag_y->setTransform(QTransform::fromScale(1, 0), true);
lineMatrix = renderer->matrixForElement("mag_z");
rect = lineMatrix.mapRect(renderer->boundsOnElement("mag_z"));
startX = rect.x();
startY = rect.y() + rect.height();
mag_z = new QGraphicsSvgItem();
mag_z->setSharedRenderer(renderer);
mag_z->setElementId("mag_z");
m_ui->sensorsBargraph->scene()->addItem(mag_z);
mag_z->setPos(startX, startY);
mag_z->setTransform(QTransform::fromScale(1, 0), true);
// Must set up the UI (above) before setting up the UAVO mappings or refreshWidgetValues
// will be dealing with some null pointers
addUAVObject("RevoCalibration");
addUAVObject("EKFConfiguration");
addUAVObject("HomeLocation");
addUAVObject("AttitudeSettings");
autoLoadWidgets();
// Connect the signals
connect(m_ui->accelBiasStart, SIGNAL(clicked()), this, SLOT(doStartAccelGyroBiasCalibration()));
connect(m_ui->sixPointsStart, SIGNAL(clicked()), this, SLOT(doStartSixPointCalibration()));
connect(m_ui->sixPointsSave, SIGNAL(clicked()), this, SLOT(savePositionData()));
connect(m_ui->noiseMeasurementStart, SIGNAL(clicked()), this, SLOT(doStartNoiseMeasurement()));
connect(m_ui->hlClearButton, SIGNAL(clicked()), this, SLOT(clearHomeLocation()));
addUAVObjectToWidgetRelation("RevoSettings", "FusionAlgorithm", m_ui->FusionAlgorithm);
addUAVObjectToWidgetRelation("AttitudeSettings", "BoardRotation", m_ui->rollRotation, AttitudeSettings::BOARDROTATION_ROLL);
addUAVObjectToWidgetRelation("AttitudeSettings", "BoardRotation", m_ui->pitchRotation, AttitudeSettings::BOARDROTATION_PITCH);
addUAVObjectToWidgetRelation("AttitudeSettings", "BoardRotation", m_ui->yawRotation, AttitudeSettings::BOARDROTATION_YAW);
addUAVObjectToWidgetRelation("AttitudeSettings", "AccelTau", m_ui->accelTau);
populateWidgets();
refreshWidgetsValues();
m_ui->tabWidget->setCurrentIndex(0);
}
ConfigRevoWidget::~ConfigRevoWidget()
{
// Do nothing
}
void ConfigRevoWidget::showEvent(QShowEvent *event)
{
Q_UNUSED(event)
// Thit fitInView method should only be called now, once the
// widget is shown, otherwise it cannot compute its values and
// the result is usually a sensorsBargraph that is way too small.
m_ui->sensorsBargraph->fitInView(sensorsBargraph, Qt::KeepAspectRatio);
m_ui->sixPointsHelp->fitInView(paperplane, Qt::KeepAspectRatio);
}
void ConfigRevoWidget::resizeEvent(QResizeEvent *event)
{
Q_UNUSED(event)
m_ui->sensorsBargraph->fitInView(sensorsBargraph, Qt::KeepAspectRatio);
m_ui->sixPointsHelp->fitInView(paperplane, Qt::KeepAspectRatio);
}
/**
* Starts an accelerometer bias calibration.
*/
void ConfigRevoWidget::doStartAccelGyroBiasCalibration()
{
// Store and reset board rotation before calibration starts
isBoardRotationStored = false;
storeAndClearBoardRotation();
m_ui->accelBiasStart->setEnabled(false);
m_ui->accelBiasProgress->setValue(0);
RevoCalibration *revoCalibration = RevoCalibration::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData();
revoCalibrationData.BiasCorrectedRaw = RevoCalibration::BIASCORRECTEDRAW_FALSE;
revoCalibration->setData(revoCalibrationData);
revoCalibration->updated();
// Disable gyro bias correction while calibrating
AttitudeSettings *attitudeSettings = AttitudeSettings::GetInstance(getObjectManager());
Q_ASSERT(attitudeSettings);
AttitudeSettings::DataFields attitudeSettingsData = attitudeSettings->getData();
attitudeSettingsData.BiasCorrectGyro = AttitudeSettings::BIASCORRECTGYRO_FALSE;
attitudeSettings->setData(attitudeSettingsData);
attitudeSettings->updated();
accel_accum_x.clear();
accel_accum_y.clear();
accel_accum_z.clear();
gyro_accum_x.clear();
gyro_accum_y.clear();
gyro_accum_z.clear();
UAVObject::Metadata mdata;
/* Need to get as many accel updates as possible */
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
initialAccelStateMdata = accelState->getMetadata();
mdata = initialAccelStateMdata;
UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC);
mdata.flightTelemetryUpdatePeriod = 100;
accelState->setMetadata(mdata);
GyroState *gyroState = GyroState::GetInstance(getObjectManager());
Q_ASSERT(gyroState);
initialGyroStateMdata = gyroState->getMetadata();
mdata = initialGyroStateMdata;
UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC);
mdata.flightTelemetryUpdatePeriod = 100;
gyroState->setMetadata(mdata);
// Now connect to the accels and mag updates, gather for 100 samples
collectingData = true;
connect(accelState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(doGetAccelGyroBiasData(UAVObject *)));
connect(gyroState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(doGetAccelGyroBiasData(UAVObject *)));
}
/**
Updates the accel bias raw values
*/
void ConfigRevoWidget::doGetAccelGyroBiasData(UAVObject *obj)
{
QMutexLocker lock(&sensorsUpdateLock);
Q_UNUSED(lock);
switch (obj->getObjID()) {
case AccelState::OBJID:
{
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
AccelState::DataFields accelStateData = accelState->getData();
accel_accum_x.append(accelStateData.x);
accel_accum_y.append(accelStateData.y);
accel_accum_z.append(accelStateData.z);
break;
}
case GyroState::OBJID:
{
GyroState *gyroState = GyroState::GetInstance(getObjectManager());
Q_ASSERT(gyroState);
GyroState::DataFields gyroStateData = gyroState->getData();
gyro_accum_x.append(gyroStateData.x);
gyro_accum_y.append(gyroStateData.y);
gyro_accum_z.append(gyroStateData.z);
break;
}
default:
Q_ASSERT(0);
}
// Work out the progress based on whichever has less
double p1 = (double)accel_accum_x.size() / (double)NOISE_SAMPLES;
double p2 = (double)accel_accum_y.size() / (double)NOISE_SAMPLES;
m_ui->accelBiasProgress->setValue(((p1 < p2) ? p1 : p2) * 100);
if (accel_accum_x.size() >= NOISE_SAMPLES &&
gyro_accum_y.size() >= NOISE_SAMPLES &&
collectingData == true) {
collectingData = false;
AccelState *accelState = AccelState::GetInstance(getObjectManager());
GyroState *gyroState = GyroState::GetInstance(getObjectManager());
disconnect(accelState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(doGetAccelGyroBiasData(UAVObject *)));
disconnect(gyroState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(doGetAccelGyroBiasData(UAVObject *)));
m_ui->accelBiasStart->setEnabled(true);
RevoCalibration *revoCalibration = RevoCalibration::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData();
revoCalibrationData.BiasCorrectedRaw = RevoCalibration::BIASCORRECTEDRAW_TRUE;
// Update the biases based on collected data
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_X] += listMean(accel_accum_x);
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Y] += listMean(accel_accum_y);
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Z] += (listMean(accel_accum_z) + GRAVITY);
revoCalibrationData.gyro_bias[RevoCalibration::GYRO_BIAS_X] += listMean(gyro_accum_x);
revoCalibrationData.gyro_bias[RevoCalibration::GYRO_BIAS_Y] += listMean(gyro_accum_y);
revoCalibrationData.gyro_bias[RevoCalibration::GYRO_BIAS_Z] += listMean(gyro_accum_z);
revoCalibration->setData(revoCalibrationData);
revoCalibration->updated();
AttitudeSettings *attitudeSettings = AttitudeSettings::GetInstance(getObjectManager());
Q_ASSERT(attitudeSettings);
AttitudeSettings::DataFields attitudeSettingsData = attitudeSettings->getData();
attitudeSettingsData.BiasCorrectGyro = AttitudeSettings::BIASCORRECTGYRO_TRUE;
attitudeSettings->setData(attitudeSettingsData);
attitudeSettings->updated();
accelState->setMetadata(initialAccelStateMdata);
gyroState->setMetadata(initialGyroStateMdata);
// Recall saved board rotation
recallBoardRotation();
}
}
int LinearEquationsSolving(int nDim, double *pfMatr, double *pfVect, double *pfSolution)
{
double fMaxElem;
double fAcc;
int i, j, k, m;
for (k = 0; k < (nDim - 1); k++) { // base row of matrix
// search of line with max element
fMaxElem = fabs(pfMatr[k * nDim + k]);
m = k;
for (i = k + 1; i < nDim; i++) {
if (fMaxElem < fabs(pfMatr[i * nDim + k])) {
fMaxElem = pfMatr[i * nDim + k];
m = i;
}
}
// permutation of base line (index k) and max element line(index m)
if (m != k) {
for (i = k; i < nDim; i++) {
fAcc = pfMatr[k * nDim + i];
pfMatr[k * nDim + i] = pfMatr[m * nDim + i];
pfMatr[m * nDim + i] = fAcc;
}
fAcc = pfVect[k];
pfVect[k] = pfVect[m];
pfVect[m] = fAcc;
}
if (pfMatr[k * nDim + k] == 0.) {
return 0; // needs improvement !!!
}
// triangulation of matrix with coefficients
for (j = (k + 1); j < nDim; j++) { // current row of matrix
fAcc = -pfMatr[j * nDim + k] / pfMatr[k * nDim + k];
for (i = k; i < nDim; i++) {
pfMatr[j * nDim + i] = pfMatr[j * nDim + i] + fAcc * pfMatr[k * nDim + i];
}
pfVect[j] = pfVect[j] + fAcc * pfVect[k]; // free member recalculation
}
}
for (k = (nDim - 1); k >= 0; k--) {
pfSolution[k] = pfVect[k];
for (i = (k + 1); i < nDim; i++) {
pfSolution[k] -= (pfMatr[k * nDim + i] * pfSolution[i]);
}
pfSolution[k] = pfSolution[k] / pfMatr[k * nDim + k];
}
return 1;
}
int SixPointInConstFieldCal(double ConstMag, double x[6], double y[6], double z[6], double S[3], double b[3])
{
int i;
double A[5][5];
double f[5], c[5];
double xp, yp, zp, Sx;
// Fill in matrix A -
// write six difference-in-magnitude equations of the form
// Sx^2(x2^2-x1^2) + 2*Sx*bx*(x2-x1) + Sy^2(y2^2-y1^2) + 2*Sy*by*(y2-y1) + Sz^2(z2^2-z1^2) + 2*Sz*bz*(z2-z1) = 0
// or in other words
// 2*Sx*bx*(x2-x1)/Sx^2 + Sy^2(y2^2-y1^2)/Sx^2 + 2*Sy*by*(y2-y1)/Sx^2 + Sz^2(z2^2-z1^2)/Sx^2 + 2*Sz*bz*(z2-z1)/Sx^2 = (x1^2-x2^2)
for (i = 0; i < 5; i++) {
A[i][0] = 2.0 * (x[i + 1] - x[i]);
A[i][1] = y[i + 1] * y[i + 1] - y[i] * y[i];
A[i][2] = 2.0 * (y[i + 1] - y[i]);
A[i][3] = z[i + 1] * z[i + 1] - z[i] * z[i];
A[i][4] = 2.0 * (z[i + 1] - z[i]);
f[i] = x[i] * x[i] - x[i + 1] * x[i + 1];
}
// solve for c0=bx/Sx, c1=Sy^2/Sx^2; c2=Sy*by/Sx^2, c3=Sz^2/Sx^2, c4=Sz*bz/Sx^2
if (!LinearEquationsSolving(5, (double *)A, f, c)) {
return 0;
}
// use one magnitude equation and c's to find Sx - doesn't matter which - all give the same answer
xp = x[0]; yp = y[0]; zp = z[0];
Sx = sqrt(ConstMag * ConstMag / (xp * xp + 2 * c[0] * xp + c[0] * c[0] + c[1] * yp * yp + 2 * c[2] * yp + c[2] * c[2] / c[1] + c[3] * zp * zp + 2 * c[4] * zp + c[4] * c[4] / c[3]));
S[0] = Sx;
b[0] = Sx * c[0];
S[1] = sqrt(c[1] * Sx * Sx);
b[1] = c[2] * Sx * Sx / S[1];
S[2] = sqrt(c[3] * Sx * Sx);
b[2] = c[4] * Sx * Sx / S[2];
return 1;
}
/********** Functions for six point calibration **************/
/**
* Called by the "Start" button. Sets up the meta data and enables the
* buttons to perform six point calibration of the magnetometer (optionally
* accel) to compute the scale and bias of this sensor based on the current
* home location magnetic strength.
*/
void ConfigRevoWidget::doStartSixPointCalibration()
{
// Store and reset board rotation before calibration starts
isBoardRotationStored = false;
storeAndClearBoardRotation();
RevoCalibration *revoCalibration = RevoCalibration::GetInstance(getObjectManager());
HomeLocation *homeLocation = HomeLocation::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
Q_ASSERT(homeLocation);
RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData();
HomeLocation::DataFields homeLocationData = homeLocation->getData();
// check if Homelocation is set
if (!homeLocationData.Set) {
QMessageBox msgBox;
msgBox.setInformativeText(tr("<p>HomeLocation not SET.</p><p>Please set your HomeLocation and try again. Aborting calibration!</p>"));
msgBox.setStandardButtons(QMessageBox::Ok);
msgBox.setDefaultButton(QMessageBox::Ok);
msgBox.setIcon(QMessageBox::Information);
msgBox.exec();
return;
}
#ifdef SIX_POINT_CAL_ACCEL
// Calibration accel
revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_X] = 1;
revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_Y] = 1;
revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_Z] = 1;
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_X] = 0;
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Y] = 0;
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Z] = 0;
accel_accum_x.clear();
accel_accum_y.clear();
accel_accum_z.clear();
#endif
// Calibration mag
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_X] = 1;
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Y] = 1;
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Z] = 1;
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X] = 0;
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y] = 0;
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z] = 0;
// Disable adaptive mag nulling
initialMagCorrectionRate = revoCalibrationData.MagBiasNullingRate;
revoCalibrationData.MagBiasNullingRate = 0;
revoCalibration->setData(revoCalibrationData);
Thread::usleep(100000);
gyro_accum_x.clear();
gyro_accum_y.clear();
gyro_accum_z.clear();
mag_accum_x.clear();
mag_accum_y.clear();
mag_accum_z.clear();
UAVObject::Metadata mdata;
#ifdef SIX_POINT_CAL_ACCEL
/* Need to get as many accel updates as possible */
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
initialAccelStateMdata = accelState->getMetadata();
mdata = initialAccelStateMdata;
UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC);
mdata.flightTelemetryUpdatePeriod = 100;
accelState->setMetadata(mdata);
#endif
/* Need to get as many mag updates as possible */
MagState *mag = MagState::GetInstance(getObjectManager());
Q_ASSERT(mag);
initialMagStateMdata = mag->getMetadata();
mdata = initialMagStateMdata;
UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC);
mdata.flightTelemetryUpdatePeriod = 100;
mag->setMetadata(mdata);
/* Show instructions and enable controls */
m_ui->sixPointCalibInstructions->clear();
m_ui->sixPointCalibInstructions->append("Place horizontally and click save position...");
displayPlane("plane-horizontal");
m_ui->sixPointsStart->setEnabled(false);
m_ui->sixPointsSave->setEnabled(true);
position = 0;
}
/**
* Saves the data from the aircraft in one of six positions.
* This is called when they click "save position" and starts
* averaging data for this position.
*/
void ConfigRevoWidget::savePositionData()
{
QMutexLocker lock(&sensorsUpdateLock);
m_ui->sixPointsSave->setEnabled(false);
accel_accum_x.clear();
accel_accum_y.clear();
accel_accum_z.clear();
mag_accum_x.clear();
mag_accum_y.clear();
mag_accum_z.clear();
collectingData = true;
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
MagState *mag = MagState::GetInstance(getObjectManager());
Q_ASSERT(mag);
connect(accelState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(doGetSixPointCalibrationMeasurement(UAVObject *)));
connect(mag, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(doGetSixPointCalibrationMeasurement(UAVObject *)));
m_ui->sixPointCalibInstructions->append("Hold...");
}
/**
* Grab a sample of mag (optionally accel) data while in this position and
* store it for averaging. When sufficient points are collected advance
* to the next position (give message to user) or compute the scale and bias
*/
void ConfigRevoWidget::doGetSixPointCalibrationMeasurement(UAVObject *obj)
{
QMutexLocker lock(&sensorsUpdateLock);
// This is necessary to prevent a race condition on disconnect signal and another update
if (collectingData == true) {
if (obj->getObjID() == AccelState::OBJID) {
#ifdef SIX_POINT_CAL_ACCEL
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
AccelState::DataFields accelStateData = accelState->getData();
accel_accum_x.append(accelStateData.x);
accel_accum_y.append(accelStateData.y);
accel_accum_z.append(accelStateData.z);
#endif
} else if (obj->getObjID() == MagState::OBJID) {
MagState *mag = MagState::GetInstance(getObjectManager());
Q_ASSERT(mag);
MagState::DataFields magData = mag->getData();
mag_accum_x.append(magData.x);
mag_accum_y.append(magData.y);
mag_accum_z.append(magData.z);
} else {
Q_ASSERT(0);
}
}
#ifdef SIX_POINT_CAL_ACCEL
if (accel_accum_x.size() >= 20 && mag_accum_x.size() >= 20 && collectingData == true) {
#else
if (mag_accum_x.size() >= 20 && collectingData == true) {
#endif
collectingData = false;
m_ui->sixPointsSave->setEnabled(true);
#ifdef SIX_POINT_CAL_ACCEL
// Store the mean for this position for the accel
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
disconnect(accelState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(doGetSixPointCalibrationMeasurement(UAVObject *)));
accel_data_x[position] = listMean(accel_accum_x);
accel_data_y[position] = listMean(accel_accum_y);
accel_data_z[position] = listMean(accel_accum_z);
#endif
// Store the mean for this position for the mag
MagState *mag = MagState::GetInstance(getObjectManager());
Q_ASSERT(mag);
disconnect(mag, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(doGetSixPointCalibrationMeasurement(UAVObject *)));
mag_data_x[position] = listMean(mag_accum_x);
mag_data_y[position] = listMean(mag_accum_y);
mag_data_z[position] = listMean(mag_accum_z);
position = (position + 1) % 6;
if (position == 1) {
m_ui->sixPointCalibInstructions->append("Place with left side down and click save position...");
displayPlane("plane-left");
}
if (position == 2) {
m_ui->sixPointCalibInstructions->append("Place upside down and click save position...");
displayPlane("plane-flip");
}
if (position == 3) {
m_ui->sixPointCalibInstructions->append("Place with right side down and click save position...");
displayPlane("plane-right");
}
if (position == 4) {
m_ui->sixPointCalibInstructions->append("Place with nose up and click save position...");
displayPlane("plane-up");
}
if (position == 5) {
m_ui->sixPointCalibInstructions->append("Place with nose down and click save position...");
displayPlane("plane-down");
}
if (position == 0) {
computeScaleBias();
m_ui->sixPointsStart->setEnabled(true);
m_ui->sixPointsSave->setEnabled(false);
/* Cleanup original settings */
#ifdef SIX_POINT_CAL_ACCEL
accelState->setMetadata(initialAccelStateMdata);
#endif
mag->setMetadata(initialMagStateMdata);
// Recall saved board rotation
recallBoardRotation();
}
}
}
/**
* Computes the scale and bias for the magnetomer and (compile option)
* for the accel once all the data has been collected in 6 positions.
*/
void ConfigRevoWidget::computeScaleBias()
{
double S[3], b[3];
double Be_length;
RevoCalibration *revoCalibration = RevoCalibration::GetInstance(getObjectManager());
HomeLocation *homeLocation = HomeLocation::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
Q_ASSERT(homeLocation);
RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData();
HomeLocation::DataFields homeLocationData = homeLocation->getData();
#ifdef SIX_POINT_CAL_ACCEL
// Calibration accel
SixPointInConstFieldCal(homeLocationData.g_e, accel_data_x, accel_data_y, accel_data_z, S, b);
revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_X] = fabs(S[0]);
revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_Y] = fabs(S[1]);
revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_Z] = fabs(S[2]);
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_X] = -sign(S[0]) * b[0];
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Y] = -sign(S[1]) * b[1];
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Z] = -sign(S[2]) * b[2];
#endif
// Calibration mag
Be_length = sqrt(pow(homeLocationData.Be[0], 2) + pow(homeLocationData.Be[1], 2) + pow(homeLocationData.Be[2], 2));
SixPointInConstFieldCal(Be_length, mag_data_x, mag_data_y, mag_data_z, S, b);
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_X] = fabs(S[0]);
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Y] = fabs(S[1]);
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Z] = fabs(S[2]);
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X] = -sign(S[0]) * b[0];
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y] = -sign(S[1]) * b[1];
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z] = -sign(S[2]) * b[2];
// Restore the previous setting
revoCalibrationData.MagBiasNullingRate = initialMagCorrectionRate;
#ifdef SIX_POINT_CAL_ACCEL
bool good_calibration = true;
// Check the mag calibration is good
good_calibration &= revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_X] ==
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_X];
good_calibration &= revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Y] ==
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Y];
good_calibration &= revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Z] ==
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Z];
good_calibration &= revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X] ==
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X];
good_calibration &= revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y] ==
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y];
good_calibration &= revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z] ==
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z];
// Check the accel calibration is good
good_calibration &= revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_X] ==
revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_X];
good_calibration &= revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_Y] ==
revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_Y];
good_calibration &= revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_Z] ==
revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_Z];
good_calibration &= revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_X] ==
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_X];
good_calibration &= revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Y] ==
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Y];
good_calibration &= revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Z] ==
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Z];
if (good_calibration) {
revoCalibration->setData(revoCalibrationData);
m_ui->sixPointCalibInstructions->append("Computed accel and mag scale and bias...");
} else {
revoCalibrationData = revoCalibration->getData();
m_ui->sixPointCalibInstructions->append("Bad calibration. Please repeat.");
}
#else // ifdef SIX_POINT_CAL_ACCEL
bool good_calibration = true;
good_calibration &= revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_X] ==
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_X];
good_calibration &= revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Y] ==
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Y];
good_calibration &= revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Z] ==
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Z];
good_calibration &= revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X] ==
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X];
good_calibration &= revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y] ==
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y];
good_calibration &= revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z] ==
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z];
if (good_calibration) {
revoCalibration->setData(revoCalibrationData);
m_ui->sixPointCalibInstructions->append("Computed mag scale and bias...");
} else {
revoCalibrationData = revoCalibration->getData();
m_ui->sixPointCalibInstructions->append("Bad calibration. Please repeat.");
}
#endif // ifdef SIX_POINT_CAL_ACCEL
position = -1; // set to run again
}
void ConfigRevoWidget::storeAndClearBoardRotation()
{
if (!isBoardRotationStored) {
// Store current board rotation
isBoardRotationStored = true;
AttitudeSettings *attitudeSettings = AttitudeSettings::GetInstance(getObjectManager());
Q_ASSERT(attitudeSettings);
AttitudeSettings::DataFields data = attitudeSettings->getData();
storedBoardRotation[AttitudeSettings::BOARDROTATION_YAW] = data.BoardRotation[AttitudeSettings::BOARDROTATION_YAW];
storedBoardRotation[AttitudeSettings::BOARDROTATION_ROLL] = data.BoardRotation[AttitudeSettings::BOARDROTATION_ROLL];
storedBoardRotation[AttitudeSettings::BOARDROTATION_PITCH] = data.BoardRotation[AttitudeSettings::BOARDROTATION_PITCH];
// Set board rotation to no rotation
data.BoardRotation[AttitudeSettings::BOARDROTATION_YAW] = 0;
data.BoardRotation[AttitudeSettings::BOARDROTATION_ROLL] = 0;
data.BoardRotation[AttitudeSettings::BOARDROTATION_PITCH] = 0;
attitudeSettings->setData(data);
}
}
void ConfigRevoWidget::recallBoardRotation()
{
if (isBoardRotationStored) {
// Recall current board rotation
isBoardRotationStored = false;
AttitudeSettings *attitudeSettings = AttitudeSettings::GetInstance(getObjectManager());
Q_ASSERT(attitudeSettings);
AttitudeSettings::DataFields data = attitudeSettings->getData();
data.BoardRotation[AttitudeSettings::BOARDROTATION_YAW] = storedBoardRotation[AttitudeSettings::BOARDROTATION_YAW];
data.BoardRotation[AttitudeSettings::BOARDROTATION_ROLL] = storedBoardRotation[AttitudeSettings::BOARDROTATION_ROLL];
data.BoardRotation[AttitudeSettings::BOARDROTATION_PITCH] = storedBoardRotation[AttitudeSettings::BOARDROTATION_PITCH];
attitudeSettings->setData(data);
}
}
/**
Rotate the paper plane
*/
void ConfigRevoWidget::displayPlane(QString elementID)
{
paperplane->setElementId(elementID);
m_ui->sixPointsHelp->setSceneRect(paperplane->boundingRect());
m_ui->sixPointsHelp->fitInView(paperplane, Qt::KeepAspectRatio);
}
/*********** Noise measurement functions **************/
/**
* Connect sensor updates and timeout for measuring the noise
*/
void ConfigRevoWidget::doStartNoiseMeasurement()
{
QMutexLocker lock(&sensorsUpdateLock);
// Store and reset board rotation before calibration starts
isBoardRotationStored = false;
storeAndClearBoardRotation();
Q_UNUSED(lock);
RevoCalibration *revoCalibration = RevoCalibration::GetInstance(getObjectManager());
HomeLocation *homeLocation = HomeLocation::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
Q_ASSERT(homeLocation);
RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData();
HomeLocation::DataFields homeLocationData = homeLocation->getData();
// check if Homelocation is set
if (!homeLocationData.Set) {
QMessageBox msgBox;
msgBox.setInformativeText(tr("<p>HomeLocation not SET.</p><p>Please set your HomeLocation and try again. Aborting calibration!</p>"));
msgBox.setStandardButtons(QMessageBox::Ok);
msgBox.setDefaultButton(QMessageBox::Ok);
msgBox.setIcon(QMessageBox::Information);
msgBox.exec();
return;
}
accel_accum_x.clear();
accel_accum_y.clear();
accel_accum_z.clear();
gyro_accum_x.clear();
gyro_accum_y.clear();
gyro_accum_z.clear();
mag_accum_x.clear();
mag_accum_y.clear();
mag_accum_z.clear();
/* Need to get as many accel, mag and gyro updates as possible */
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
GyroState *gyroState = GyroState::GetInstance(getObjectManager());
Q_ASSERT(gyroState);
MagState *mag = MagState::GetInstance(getObjectManager());
Q_ASSERT(mag);
UAVObject::Metadata mdata;
initialAccelStateMdata = accelState->getMetadata();
mdata = initialAccelStateMdata;
UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC);
mdata.flightTelemetryUpdatePeriod = 100;
accelState->setMetadata(mdata);
initialGyroStateMdata = gyroState->getMetadata();
mdata = initialGyroStateMdata;
UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC);
mdata.flightTelemetryUpdatePeriod = 100;
gyroState->setMetadata(mdata);
initialMagStateMdata = mag->getMetadata();
mdata = initialMagStateMdata;
UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC);
mdata.flightTelemetryUpdatePeriod = 100;
mag->setMetadata(mdata);
/* Connect for updates */
connect(accelState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(doGetNoiseSample(UAVObject *)));
connect(gyroState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(doGetNoiseSample(UAVObject *)));
connect(mag, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(doGetNoiseSample(UAVObject *)));
}
/**
* Called when any of the sensors are updated. Stores the sample for measuring the
* variance at the end
*/
void ConfigRevoWidget::doGetNoiseSample(UAVObject *obj)
{
QMutexLocker lock(&sensorsUpdateLock);
Q_UNUSED(lock);
Q_ASSERT(obj);
switch (obj->getObjID()) {
case GyroState::OBJID:
{
GyroState *gyroState = GyroState::GetInstance(getObjectManager());
Q_ASSERT(gyroState);
GyroState::DataFields gyroData = gyroState->getData();
gyro_accum_x.append(gyroData.x);
gyro_accum_y.append(gyroData.y);
gyro_accum_z.append(gyroData.z);
break;
}
case AccelState::OBJID:
{
AccelState *accelState = AccelState::GetInstance(getObjectManager());
Q_ASSERT(accelState);
AccelState::DataFields accelStateData = accelState->getData();
accel_accum_x.append(accelStateData.x);
accel_accum_y.append(accelStateData.y);
accel_accum_z.append(accelStateData.z);
break;
}
case MagState::OBJID:
{
MagState *mags = MagState::GetInstance(getObjectManager());
Q_ASSERT(mags);
MagState::DataFields magData = mags->getData();
mag_accum_x.append(magData.x);
mag_accum_y.append(magData.y);
mag_accum_z.append(magData.z);
break;
}
default:
Q_ASSERT(0);
}
float p1 = (float)mag_accum_x.length() / (float)NOISE_SAMPLES;
float p2 = (float)gyro_accum_x.length() / (float)NOISE_SAMPLES;
float p3 = (float)accel_accum_x.length() / (float)NOISE_SAMPLES;
float prog = (p1 < p2) ? p1 : p2;
prog = (prog < p3) ? prog : p3;
m_ui->noiseMeasurementProgress->setValue(prog * 100);
if (mag_accum_x.length() >= NOISE_SAMPLES &&
gyro_accum_x.length() >= NOISE_SAMPLES &&
accel_accum_x.length() >= NOISE_SAMPLES) {
// No need to for more updates
MagState *mags = MagState::GetInstance(getObjectManager());
AccelState *accelState = AccelState::GetInstance(getObjectManager());
GyroState *gyroState = GyroState::GetInstance(getObjectManager());
disconnect(accelState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(doGetNoiseSample(UAVObject *)));
disconnect(gyroState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(doGetNoiseSample(UAVObject *)));
disconnect(mags, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(doGetNoiseSample(UAVObject *)));
EKFConfiguration *ekfConfiguration = EKFConfiguration::GetInstance(getObjectManager());
Q_ASSERT(ekfConfiguration);
if (ekfConfiguration) {
EKFConfiguration::DataFields revoCalData = ekfConfiguration->getData();
revoCalData.Q[EKFConfiguration::Q_ACCELX] = listVar(accel_accum_x);
revoCalData.Q[EKFConfiguration::Q_ACCELY] = listVar(accel_accum_y);
revoCalData.Q[EKFConfiguration::Q_ACCELZ] = listVar(accel_accum_z);
revoCalData.Q[EKFConfiguration::Q_GYROX] = listVar(gyro_accum_x);
revoCalData.Q[EKFConfiguration::Q_GYROY] = listVar(gyro_accum_y);
revoCalData.Q[EKFConfiguration::Q_GYROZ] = listVar(gyro_accum_z);
revoCalData.R[EKFConfiguration::R_MAGX] = listVar(mag_accum_x);
revoCalData.R[EKFConfiguration::R_MAGY] = listVar(mag_accum_y);
revoCalData.R[EKFConfiguration::R_MAGZ] = listVar(mag_accum_z);
ekfConfiguration->setData(revoCalData);
}
// Recall saved board rotation
recallBoardRotation();
}
}
/********** UI Functions *************/
/**
Draws the sensor variances bargraph
*/
void ConfigRevoWidget::drawVariancesGraph()
{
EKFConfiguration *ekfConfiguration = EKFConfiguration::GetInstance(getObjectManager());
Q_ASSERT(ekfConfiguration);
if (!ekfConfiguration) {
return;
}
EKFConfiguration::DataFields ekfConfigurationData = ekfConfiguration->getData();
// The expected range is from 1E-6 to 1E-1
double steps = 6; // 6 bars on the graph
float accel_x_var = -1 / steps * (1 + steps + log10(ekfConfigurationData.Q[EKFConfiguration::Q_ACCELX]));
if (accel_x) {
accel_x->setTransform(QTransform::fromScale(1, accel_x_var), false);
}
float accel_y_var = -1 / steps * (1 + steps + log10(ekfConfigurationData.Q[EKFConfiguration::Q_ACCELY]));
if (accel_y) {
accel_y->setTransform(QTransform::fromScale(1, accel_y_var), false);
}
float accel_z_var = -1 / steps * (1 + steps + log10(ekfConfigurationData.Q[EKFConfiguration::Q_ACCELZ]));
if (accel_z) {
accel_z->setTransform(QTransform::fromScale(1, accel_z_var), false);
}
float gyro_x_var = -1 / steps * (1 + steps + log10(ekfConfigurationData.Q[EKFConfiguration::Q_GYROX]));
if (gyro_x) {
gyro_x->setTransform(QTransform::fromScale(1, gyro_x_var), false);
}
float gyro_y_var = -1 / steps * (1 + steps + log10(ekfConfigurationData.Q[EKFConfiguration::Q_GYROY]));
if (gyro_y) {
gyro_y->setTransform(QTransform::fromScale(1, gyro_y_var), false);
}
float gyro_z_var = -1 / steps * (1 + steps + log10(ekfConfigurationData.Q[EKFConfiguration::Q_GYROZ]));
if (gyro_z) {
gyro_z->setTransform(QTransform::fromScale(1, gyro_z_var), false);
}
// Scale by 1e-3 because mag vars are much higher.
float mag_x_var = -1 / steps * (1 + steps + log10(1e-3 * ekfConfigurationData.R[EKFConfiguration::R_MAGX]));
if (mag_x) {
mag_x->setTransform(QTransform::fromScale(1, mag_x_var), false);
}
float mag_y_var = -1 / steps * (1 + steps + log10(1e-3 * ekfConfigurationData.R[EKFConfiguration::R_MAGY]));
if (mag_y) {
mag_y->setTransform(QTransform::fromScale(1, mag_y_var), false);
}
float mag_z_var = -1 / steps * (1 + steps + log10(1e-3 * ekfConfigurationData.R[EKFConfiguration::R_MAGZ]));
if (mag_z) {
mag_z->setTransform(QTransform::fromScale(1, mag_z_var), false);
}
}
/**
* Called by the ConfigTaskWidget parent when RevoCalibration is updated
* to update the UI
*/
void ConfigRevoWidget::refreshWidgetsValues(UAVObject *object)
{
ConfigTaskWidget::refreshWidgetsValues(object);
drawVariancesGraph();
m_ui->noiseMeasurementStart->setEnabled(true);
m_ui->sixPointsStart->setEnabled(true);
m_ui->accelBiasStart->setEnabled(true);
m_ui->calibInstructions->setText(QString("Press \"Start\" above to calibrate."));
m_ui->isSetCheckBox->setEnabled(false);
HomeLocation *homeLocation = HomeLocation::GetInstance(getObjectManager());
Q_ASSERT(homeLocation);
HomeLocation::DataFields homeLocationData = homeLocation->getData();
QString beStr = QString("%1:%2:%3").arg(QString::number(homeLocationData.Be[0]), QString::number(homeLocationData.Be[1]), QString::number(homeLocationData.Be[2]));
m_ui->beBox->setText(beStr);
}
void ConfigRevoWidget::clearHomeLocation()
{
HomeLocation *homeLocation = HomeLocation::GetInstance(getObjectManager());
Q_ASSERT(homeLocation);
HomeLocation::DataFields homeLocationData;
homeLocationData.Latitude = 0;
homeLocationData.Longitude = 0;
homeLocationData.Altitude = 0;
homeLocationData.Be[0] = 0;
homeLocationData.Be[1] = 0;
homeLocationData.Be[2] = 0;
homeLocationData.g_e = 9.81f;
homeLocationData.Set = HomeLocation::SET_FALSE;
homeLocation->setData(homeLocationData);
}