mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2025-01-21 06:52:11 +01:00
585 lines
17 KiB
C
585 lines
17 KiB
C
/**
|
|
******************************************************************************
|
|
* @addtogroup OpenPilotModules OpenPilot Modules
|
|
* @{
|
|
* @addtogroup Attitude Copter Control Attitude Estimation
|
|
* @brief Acquires sensor data and computes attitude estimate
|
|
* Specifically updates the the @ref AttitudeActual "AttitudeActual" and @ref AttitudeRaw "AttitudeRaw" settings objects
|
|
* @{
|
|
*
|
|
* @file attitude.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
|
* @brief Module to handle all comms to the AHRS on a periodic basis.
|
|
*
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
******************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/**
|
|
* Input objects: None, takes sensor data via pios
|
|
* Output objects: @ref AttitudeRaw @ref AttitudeActual
|
|
*
|
|
* This module computes an attitude estimate from the sensor data
|
|
*
|
|
* The module executes in its own thread.
|
|
*
|
|
* UAVObjects are automatically generated by the UAVObjectGenerator from
|
|
* the object definition XML file.
|
|
*
|
|
* Modules have no API, all communication to other modules is done through UAVObjects.
|
|
* However modules may use the API exposed by shared libraries.
|
|
* See the OpenPilot wiki for more details.
|
|
* http://www.openpilot.org/OpenPilot_Application_Architecture
|
|
*
|
|
*/
|
|
|
|
#include "pios.h"
|
|
#include "attitude.h"
|
|
#include "gyros.h"
|
|
#include "accels.h"
|
|
#include "attitudeactual.h"
|
|
#include "attitudesettings.h"
|
|
#include "flightstatus.h"
|
|
#include "manualcontrolcommand.h"
|
|
#include "CoordinateConversions.h"
|
|
#include <pios_board_info.h>
|
|
|
|
// Private constants
|
|
#define STACK_SIZE_BYTES 540
|
|
#define TASK_PRIORITY (tskIDLE_PRIORITY+3)
|
|
|
|
#define SENSOR_PERIOD 4
|
|
#define UPDATE_RATE 25.0f
|
|
#define GYRO_NEUTRAL 1665
|
|
|
|
#define PI_MOD(x) (fmod(x + M_PI, M_PI * 2) - M_PI)
|
|
// Private types
|
|
|
|
// Private variables
|
|
static xTaskHandle taskHandle;
|
|
|
|
// Private functions
|
|
static void AttitudeTask(void *parameters);
|
|
|
|
static float gyro_correct_int[3] = {0,0,0};
|
|
static xQueueHandle gyro_queue;
|
|
|
|
static int32_t updateSensors(AccelsData *, GyrosData *);
|
|
static int32_t updateSensorsCC3D(AccelsData * accelsData, GyrosData * gyrosData);
|
|
static void updateAttitude(AccelsData *, GyrosData *);
|
|
static void settingsUpdatedCb(UAVObjEvent * objEv);
|
|
|
|
static float accelKi = 0;
|
|
static float accelKp = 0;
|
|
static float yawBiasRate = 0;
|
|
static float gyroGain = 0.42;
|
|
static int16_t accelbias[3];
|
|
static float q[4] = {1,0,0,0};
|
|
static float R[3][3];
|
|
static int8_t rotate = 0;
|
|
static bool zero_during_arming = false;
|
|
static bool bias_correct_gyro = true;
|
|
|
|
// For running trim flights
|
|
static volatile bool trim_requested = false;
|
|
static volatile int32_t trim_accels[3];
|
|
static volatile int32_t trim_samples;
|
|
int32_t const MAX_TRIM_FLIGHT_SAMPLES = 65535;
|
|
|
|
#define GRAV 9.81f
|
|
#define ACCEL_SCALE (GRAV * 0.004f)
|
|
/* 0.004f is gravity / LSB */
|
|
|
|
/**
|
|
* Initialise the module, called on startup
|
|
* \returns 0 on success or -1 if initialisation failed
|
|
*/
|
|
int32_t AttitudeStart(void)
|
|
{
|
|
|
|
// Start main task
|
|
xTaskCreate(AttitudeTask, (signed char *)"Attitude", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &taskHandle);
|
|
TaskMonitorAdd(TASKINFO_RUNNING_ATTITUDE, taskHandle);
|
|
PIOS_WDG_RegisterFlag(PIOS_WDG_ATTITUDE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Initialise the module, called on startup
|
|
* \returns 0 on success or -1 if initialisation failed
|
|
*/
|
|
int32_t AttitudeInitialize(void)
|
|
{
|
|
AttitudeActualInitialize();
|
|
AttitudeSettingsInitialize();
|
|
AccelsInitialize();
|
|
GyrosInitialize();
|
|
|
|
// Initialize quaternion
|
|
AttitudeActualData attitude;
|
|
AttitudeActualGet(&attitude);
|
|
attitude.q1 = 1;
|
|
attitude.q2 = 0;
|
|
attitude.q3 = 0;
|
|
attitude.q4 = 0;
|
|
AttitudeActualSet(&attitude);
|
|
|
|
// Cannot trust the values to init right above if BL runs
|
|
gyro_correct_int[0] = 0;
|
|
gyro_correct_int[1] = 0;
|
|
gyro_correct_int[2] = 0;
|
|
|
|
q[0] = 1;
|
|
q[1] = 0;
|
|
q[2] = 0;
|
|
q[3] = 0;
|
|
for(uint8_t i = 0; i < 3; i++)
|
|
for(uint8_t j = 0; j < 3; j++)
|
|
R[i][j] = 0;
|
|
|
|
trim_requested = false;
|
|
|
|
AttitudeSettingsConnectCallback(&settingsUpdatedCb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
MODULE_INITCALL(AttitudeInitialize, AttitudeStart)
|
|
|
|
/**
|
|
* Module thread, should not return.
|
|
*/
|
|
|
|
int32_t accel_test;
|
|
int32_t gyro_test;
|
|
static void AttitudeTask(void *parameters)
|
|
{
|
|
uint8_t init = 0;
|
|
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
|
|
|
|
// Set critical error and wait until the accel is producing data
|
|
while(PIOS_ADXL345_FifoElements() == 0) {
|
|
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL);
|
|
PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);
|
|
}
|
|
|
|
const struct pios_board_info * bdinfo = &pios_board_info_blob;
|
|
|
|
bool cc3d = bdinfo->board_rev == 0x02;
|
|
|
|
if(cc3d) {
|
|
#if defined(PIOS_INCLUDE_MPU6000)
|
|
gyro_test = PIOS_MPU6000_Test();
|
|
#endif
|
|
} else {
|
|
#if defined(PIOS_INCLUDE_ADXL345)
|
|
accel_test = PIOS_ADXL345_Test();
|
|
#endif
|
|
|
|
#if defined(PIOS_INCLUDE_ADC)
|
|
// Create queue for passing gyro data, allow 2 back samples in case
|
|
gyro_queue = xQueueCreate(1, sizeof(float) * 4);
|
|
PIOS_Assert(gyro_queue != NULL);
|
|
PIOS_ADC_SetQueue(gyro_queue);
|
|
PIOS_ADC_Config((PIOS_ADC_RATE / 1000.0f) * UPDATE_RATE);
|
|
#endif
|
|
|
|
}
|
|
// Force settings update to make sure rotation loaded
|
|
settingsUpdatedCb(AttitudeSettingsHandle());
|
|
|
|
// Main task loop
|
|
while (1) {
|
|
|
|
FlightStatusData flightStatus;
|
|
FlightStatusGet(&flightStatus);
|
|
|
|
if((xTaskGetTickCount() < 7000) && (xTaskGetTickCount() > 1000)) {
|
|
// For first 7 seconds use accels to get gyro bias
|
|
accelKp = 1;
|
|
accelKi = 0.9;
|
|
yawBiasRate = 0.23;
|
|
init = 0;
|
|
}
|
|
else if (zero_during_arming && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) {
|
|
accelKp = 1;
|
|
accelKi = 0.9;
|
|
yawBiasRate = 0.23;
|
|
init = 0;
|
|
} else if (init == 0) {
|
|
// Reload settings (all the rates)
|
|
AttitudeSettingsAccelKiGet(&accelKi);
|
|
AttitudeSettingsAccelKpGet(&accelKp);
|
|
AttitudeSettingsYawBiasRateGet(&yawBiasRate);
|
|
init = 1;
|
|
}
|
|
|
|
PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);
|
|
|
|
AccelsData accels;
|
|
GyrosData gyros;
|
|
int32_t retval = 0;
|
|
|
|
if (cc3d)
|
|
retval = updateSensorsCC3D(&accels, &gyros);
|
|
else
|
|
retval = updateSensors(&accels, &gyros);
|
|
|
|
// Only update attitude when sensor data is good
|
|
if (retval != 0)
|
|
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
|
|
else {
|
|
// Do not update attitude data in simulation mode
|
|
if (!AttitudeActualReadOnly())
|
|
updateAttitude(&accels, &gyros);
|
|
|
|
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
|
|
}
|
|
}
|
|
}
|
|
|
|
float gyros_passed[3];
|
|
|
|
/**
|
|
* Get an update from the sensors
|
|
* @param[in] attitudeRaw Populate the UAVO instead of saving right here
|
|
* @return 0 if successfull, -1 if not
|
|
*/
|
|
static int32_t updateSensors(AccelsData * accels, GyrosData * gyros)
|
|
{
|
|
struct pios_adxl345_data accel_data;
|
|
float gyro[4];
|
|
|
|
// Only wait the time for two nominal updates before setting an alarm
|
|
if(xQueueReceive(gyro_queue, (void * const) gyro, UPDATE_RATE * 2) == errQUEUE_EMPTY) {
|
|
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
|
|
return -1;
|
|
}
|
|
|
|
// Do not read raw sensor data in simulation mode
|
|
if (GyrosReadOnly() || AccelsReadOnly())
|
|
return 0;
|
|
|
|
// No accel data available
|
|
if(PIOS_ADXL345_FifoElements() == 0)
|
|
return -1;
|
|
|
|
// First sample is temperature
|
|
gyros->x = -(gyro[1] - GYRO_NEUTRAL) * gyroGain;
|
|
gyros->y = (gyro[2] - GYRO_NEUTRAL) * gyroGain;
|
|
gyros->z = -(gyro[3] - GYRO_NEUTRAL) * gyroGain;
|
|
|
|
int32_t x = 0;
|
|
int32_t y = 0;
|
|
int32_t z = 0;
|
|
uint8_t i = 0;
|
|
uint8_t samples_remaining;
|
|
do {
|
|
i++;
|
|
samples_remaining = PIOS_ADXL345_Read(&accel_data);
|
|
x += accel_data.x;
|
|
y += -accel_data.y;
|
|
z += -accel_data.z;
|
|
} while ( (i < 32) && (samples_remaining > 0) );
|
|
gyros->temperature = samples_remaining;
|
|
|
|
float accel[3] = {(float) x / i, (float) y / i, (float) z / i};
|
|
|
|
if(rotate) {
|
|
// TODO: rotate sensors too so stabilization is well behaved
|
|
float vec_out[3];
|
|
rot_mult(R, accel, vec_out);
|
|
accels->x = vec_out[0];
|
|
accels->y = vec_out[1];
|
|
accels->z = vec_out[2];
|
|
rot_mult(R, &gyros->x, vec_out);
|
|
gyros->x = vec_out[0];
|
|
gyros->y = vec_out[1];
|
|
gyros->z = vec_out[2];
|
|
} else {
|
|
accels->x = accel[0];
|
|
accels->y = accel[1];
|
|
accels->z = accel[2];
|
|
}
|
|
|
|
if (trim_requested) {
|
|
if (trim_samples >= MAX_TRIM_FLIGHT_SAMPLES) {
|
|
trim_requested = false;
|
|
} else {
|
|
uint8_t armed;
|
|
float throttle;
|
|
FlightStatusArmedGet(&armed);
|
|
ManualControlCommandThrottleGet(&throttle); // Until flight status indicates airborne
|
|
if ((armed == FLIGHTSTATUS_ARMED_ARMED) && (throttle > 0)) {
|
|
trim_samples++;
|
|
// Store the digitally scaled version since that is what we use for bias
|
|
trim_accels[0] += accels->x;
|
|
trim_accels[1] += accels->y;
|
|
trim_accels[2] += accels->z;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Scale accels and correct bias
|
|
accels->x = (accels->x - accelbias[0]) * ACCEL_SCALE;
|
|
accels->y = (accels->y - accelbias[1]) * ACCEL_SCALE;
|
|
accels->z = (accels->z - accelbias[2]) * ACCEL_SCALE;
|
|
|
|
if(bias_correct_gyro) {
|
|
// Applying integral component here so it can be seen on the gyros and correct bias
|
|
gyros->x += gyro_correct_int[0];
|
|
gyros->y += gyro_correct_int[1];
|
|
gyros->z += gyro_correct_int[2];
|
|
}
|
|
|
|
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
|
|
// and make it average zero (weakly)
|
|
gyro_correct_int[2] += - gyros->z * yawBiasRate;
|
|
|
|
GyrosSet(gyros);
|
|
AccelsSet(accels);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Get an update from the sensors
|
|
* @param[in] attitudeRaw Populate the UAVO instead of saving right here
|
|
* @return 0 if successfull, -1 if not
|
|
*/
|
|
struct pios_mpu6000_data mpu6000_data;
|
|
static int32_t updateSensorsCC3D(AccelsData * accelsData, GyrosData * gyrosData)
|
|
{
|
|
float accels[3], gyros[3];
|
|
|
|
#if defined(PIOS_INCLUDE_MPU6000)
|
|
|
|
xQueueHandle queue = PIOS_MPU6000_GetQueue();
|
|
|
|
if(xQueueReceive(queue, (void *) &mpu6000_data, SENSOR_PERIOD) == errQUEUE_EMPTY)
|
|
return -1; // Error, no data
|
|
|
|
// Do not read raw sensor data in simulation mode
|
|
if (GyrosReadOnly() || AccelsReadOnly())
|
|
return 0;
|
|
|
|
gyros[0] = -mpu6000_data.gyro_y * PIOS_MPU6000_GetScale();
|
|
gyros[1] = -mpu6000_data.gyro_x * PIOS_MPU6000_GetScale();
|
|
gyros[2] = -mpu6000_data.gyro_z * PIOS_MPU6000_GetScale();
|
|
|
|
accels[0] = -mpu6000_data.accel_y * PIOS_MPU6000_GetAccelScale();
|
|
accels[1] = -mpu6000_data.accel_x * PIOS_MPU6000_GetAccelScale();
|
|
accels[2] = -mpu6000_data.accel_z * PIOS_MPU6000_GetAccelScale();
|
|
|
|
gyrosData->temperature = 35.0f + ((float) mpu6000_data.temperature + 512.0f) / 340.0f;
|
|
accelsData->temperature = 35.0f + ((float) mpu6000_data.temperature + 512.0f) / 340.0f;
|
|
#endif
|
|
|
|
if(rotate) {
|
|
// TODO: rotate sensors too so stabilization is well behaved
|
|
float vec_out[3];
|
|
rot_mult(R, accels, vec_out);
|
|
accels[0] = vec_out[0];
|
|
accels[1] = vec_out[1];
|
|
accels[2] = vec_out[2];
|
|
rot_mult(R, gyros, vec_out);
|
|
gyros[0] = vec_out[0];
|
|
gyros[1] = vec_out[1];
|
|
gyros[2] = vec_out[2];
|
|
}
|
|
|
|
accelsData->x = accels[0] - accelbias[0] * ACCEL_SCALE; // Applying arbitrary scale here to match CC v1
|
|
accelsData->y = accels[1] - accelbias[1] * ACCEL_SCALE;
|
|
accelsData->z = accels[2] - accelbias[2] * ACCEL_SCALE;
|
|
AccelsSet(&accelsData);
|
|
|
|
gyrosData->x = gyros[0];
|
|
gyrosData->y = gyros[1];
|
|
gyrosData->z = gyros[2];
|
|
|
|
if(bias_correct_gyro) {
|
|
// Applying integral component here so it can be seen on the gyros and correct bias
|
|
gyrosData->x += gyro_correct_int[0];
|
|
gyrosData->y += gyro_correct_int[1];
|
|
gyrosData->z += gyro_correct_int[2];
|
|
}
|
|
|
|
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
|
|
// and make it average zero (weakly)
|
|
gyro_correct_int[2] += - gyrosData->z * yawBiasRate;
|
|
|
|
GyrosSet(gyrosData);
|
|
AccelsSet(accelsData);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void updateAttitude(AccelsData * accelsData, GyrosData * gyrosData)
|
|
{
|
|
float dT;
|
|
portTickType thisSysTime = xTaskGetTickCount();
|
|
static portTickType lastSysTime = 0;
|
|
|
|
dT = (thisSysTime == lastSysTime) ? 0.001 : (portMAX_DELAY & (thisSysTime - lastSysTime)) / portTICK_RATE_MS / 1000.0f;
|
|
lastSysTime = thisSysTime;
|
|
|
|
// Bad practice to assume structure order, but saves memory
|
|
float * gyros = &gyrosData->x;
|
|
float * accels = &accelsData->x;
|
|
|
|
float grot[3];
|
|
float accel_err[3];
|
|
|
|
// Rotate gravity to body frame and cross with accels
|
|
grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2]));
|
|
grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1]));
|
|
grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]);
|
|
CrossProduct((const float *) accels, (const float *) grot, accel_err);
|
|
|
|
// Account for accel magnitude
|
|
float accel_mag = sqrtf(accels[0]*accels[0] + accels[1]*accels[1] + accels[2]*accels[2]);
|
|
if(accel_mag < 1.0e-3f)
|
|
return;
|
|
|
|
accel_err[0] /= accel_mag;
|
|
accel_err[1] /= accel_mag;
|
|
accel_err[2] /= accel_mag;
|
|
|
|
// Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s
|
|
gyro_correct_int[0] += accel_err[0] * accelKi;
|
|
gyro_correct_int[1] += accel_err[1] * accelKi;
|
|
|
|
//gyro_correct_int[2] += accel_err[2] * accelKi;
|
|
|
|
// Correct rates based on error, integral component dealt with in updateSensors
|
|
gyros[0] += accel_err[0] * accelKp / dT;
|
|
gyros[1] += accel_err[1] * accelKp / dT;
|
|
gyros[2] += accel_err[2] * accelKp / dT;
|
|
|
|
{ // scoping variables to save memory
|
|
// Work out time derivative from INSAlgo writeup
|
|
// Also accounts for the fact that gyros are in deg/s
|
|
float qdot[4];
|
|
qdot[0] = (-q[1] * gyros[0] - q[2] * gyros[1] - q[3] * gyros[2]) * dT * M_PI / 180 / 2;
|
|
qdot[1] = (q[0] * gyros[0] - q[3] * gyros[1] + q[2] * gyros[2]) * dT * M_PI / 180 / 2;
|
|
qdot[2] = (q[3] * gyros[0] + q[0] * gyros[1] - q[1] * gyros[2]) * dT * M_PI / 180 / 2;
|
|
qdot[3] = (-q[2] * gyros[0] + q[1] * gyros[1] + q[0] * gyros[2]) * dT * M_PI / 180 / 2;
|
|
|
|
// Take a time step
|
|
q[0] = q[0] + qdot[0];
|
|
q[1] = q[1] + qdot[1];
|
|
q[2] = q[2] + qdot[2];
|
|
q[3] = q[3] + qdot[3];
|
|
|
|
if(q[0] < 0) {
|
|
q[0] = -q[0];
|
|
q[1] = -q[1];
|
|
q[2] = -q[2];
|
|
q[3] = -q[3];
|
|
}
|
|
}
|
|
|
|
// Renomalize
|
|
float qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
|
|
q[0] = q[0] / qmag;
|
|
q[1] = q[1] / qmag;
|
|
q[2] = q[2] / qmag;
|
|
q[3] = q[3] / qmag;
|
|
|
|
// If quaternion has become inappropriately short or is nan reinit.
|
|
// THIS SHOULD NEVER ACTUALLY HAPPEN
|
|
if((fabs(qmag) < 1e-3) || (qmag != qmag)) {
|
|
q[0] = 1;
|
|
q[1] = 0;
|
|
q[2] = 0;
|
|
q[3] = 0;
|
|
}
|
|
|
|
AttitudeActualData attitudeActual;
|
|
AttitudeActualGet(&attitudeActual);
|
|
|
|
quat_copy(q, &attitudeActual.q1);
|
|
|
|
// Convert into eueler degrees (makes assumptions about RPY order)
|
|
Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll);
|
|
|
|
AttitudeActualSet(&attitudeActual);
|
|
}
|
|
|
|
static void settingsUpdatedCb(UAVObjEvent * objEv) {
|
|
AttitudeSettingsData attitudeSettings;
|
|
AttitudeSettingsGet(&attitudeSettings);
|
|
|
|
|
|
accelKp = attitudeSettings.AccelKp;
|
|
accelKi = attitudeSettings.AccelKi;
|
|
yawBiasRate = attitudeSettings.YawBiasRate;
|
|
gyroGain = attitudeSettings.GyroGain;
|
|
|
|
zero_during_arming = attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE;
|
|
bias_correct_gyro = attitudeSettings.BiasCorrectGyro == ATTITUDESETTINGS_BIASCORRECTGYRO_TRUE;
|
|
|
|
accelbias[0] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_X];
|
|
accelbias[1] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Y];
|
|
accelbias[2] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Z];
|
|
|
|
gyro_correct_int[0] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_X] / 100.0f;
|
|
gyro_correct_int[1] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Y] / 100.0f;
|
|
gyro_correct_int[2] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Z] / 100.0f;
|
|
|
|
// Indicates not to expend cycles on rotation
|
|
if(attitudeSettings.BoardRotation[0] == 0 && attitudeSettings.BoardRotation[1] == 0 &&
|
|
attitudeSettings.BoardRotation[2] == 0) {
|
|
rotate = 0;
|
|
|
|
// Shouldn't be used but to be safe
|
|
float rotationQuat[4] = {1,0,0,0};
|
|
Quaternion2R(rotationQuat, R);
|
|
} else {
|
|
float rotationQuat[4];
|
|
const float rpy[3] = {attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_ROLL],
|
|
attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_PITCH],
|
|
attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_YAW]};
|
|
RPY2Quaternion(rpy, rotationQuat);
|
|
Quaternion2R(rotationQuat, R);
|
|
rotate = 1;
|
|
}
|
|
|
|
if (attitudeSettings.TrimFlight == ATTITUDESETTINGS_TRIMFLIGHT_START) {
|
|
trim_accels[0] = 0;
|
|
trim_accels[1] = 0;
|
|
trim_accels[2] = 0;
|
|
trim_samples = 0;
|
|
trim_requested = true;
|
|
} else if (attitudeSettings.TrimFlight == ATTITUDESETTINGS_TRIMFLIGHT_LOAD) {
|
|
trim_requested = false;
|
|
attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_X] = trim_accels[0] / trim_samples;
|
|
attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Y] = trim_accels[1] / trim_samples;
|
|
// Z should average -grav
|
|
attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Z] = trim_accels[2] / trim_samples + GRAV / ACCEL_SCALE;
|
|
attitudeSettings.TrimFlight = ATTITUDESETTINGS_TRIMFLIGHT_NORMAL;
|
|
AttitudeSettingsSet(&attitudeSettings);
|
|
} else
|
|
trim_requested = false;
|
|
}
|
|
/**
|
|
* @}
|
|
* @}
|
|
*/
|