1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-30 08:24:11 +01:00
LibrePilot/flight/Modules/FixedWingPathFollower/fixedwingpathfollower.c
2012-06-08 11:44:22 -05:00

593 lines
22 KiB
C

/**
******************************************************************************
*
* @file fixedwingpathfollower.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
* and sets @ref AttitudeDesired. It only does this when the FlightMode field
* of @ref ManualControlCommand is Auto.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input object: ActiveWaypoint
* Input object: PositionActual
* Input object: ManualControlCommand
* Output object: AttitudeDesired
*
* This module will periodically update the value of the AttitudeDesired object.
*
* The module executes in its own thread in this example.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include "openpilot.h"
#include "paths.h"
#include "accels.h"
#include "hwsettings.h"
#include "attitudeactual.h"
#include "pathdesired.h" // object that will be updated by the module
#include "positionactual.h"
#include "manualcontrol.h"
#include "flightstatus.h"
#include "baroairspeed.h"
#include "gpsvelocity.h"
#include "gpsposition.h"
#include "fixedwingpathfollowersettings.h"
#include "fixedwingpathfollowerstatus.h"
#include "homelocation.h"
#include "nedposition.h"
#include "stabilizationdesired.h"
#include "stabilizationsettings.h"
#include "systemsettings.h"
#include "velocitydesired.h"
#include "velocityactual.h"
#include "CoordinateConversions.h"
// Private constants
#define MAX_QUEUE_SIZE 4
#define STACK_SIZE_BYTES 1548
#define TASK_PRIORITY (tskIDLE_PRIORITY+2)
#define F_PI 3.14159265358979323846f
#define RAD2DEG (180.0f/F_PI)
#define DEG2RAD (F_PI/180.0f)
#define GEE 9.81f
// Private types
// Private variables
static bool followerEnabled = false;
static xTaskHandle pathfollowerTaskHandle;
static PathDesiredData pathDesired;
static FixedWingPathFollowerSettingsData fixedwingpathfollowerSettings;
// Private functions
static void pathfollowerTask(void *parameters);
static void SettingsUpdatedCb(UAVObjEvent * ev);
static void updatePathVelocity();
static uint8_t updateFixedDesiredAttitude();
static void baroAirspeedUpdatedCb(UAVObjEvent * ev);
static float bound(float val, float min, float max);
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t FixedWingPathFollowerStart()
{
if (followerEnabled) {
// Start main task
xTaskCreate(pathfollowerTask, (signed char *)"PathFollower", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &pathfollowerTaskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_PATHFOLLOWER, pathfollowerTaskHandle);
}
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t FixedWingPathFollowerInitialize()
{
HwSettingsInitialize();
uint8_t optionalModules[HWSETTINGS_OPTIONALMODULES_NUMELEM];
HwSettingsOptionalModulesGet(optionalModules);
if (optionalModules[HWSETTINGS_OPTIONALMODULES_FIXEDWINGPATHFOLLOWER] == HWSETTINGS_OPTIONALMODULES_ENABLED) {
followerEnabled = true;
FixedWingPathFollowerSettingsInitialize();
FixedWingPathFollowerStatusInitialize();
PathDesiredInitialize();
VelocityDesiredInitialize();
BaroAirspeedInitialize();
} else {
followerEnabled = false;
}
return 0;
}
MODULE_INITCALL(FixedWingPathFollowerInitialize, FixedWingPathFollowerStart)
static float northVelIntegral = 0;
static float eastVelIntegral = 0;
static float downVelIntegral = 0;
static float courseIntegral = 0;
static float speedIntegral = 0;
static float accelIntegral = 0;
static float powerIntegral = 0;
// correct speed by measured airspeed
static float baroAirspeedBias = 0;
/**
* Module thread, should not return.
*/
static void pathfollowerTask(void *parameters)
{
SystemSettingsData systemSettings;
FlightStatusData flightStatus;
portTickType lastUpdateTime;
BaroAirspeedConnectCallback(baroAirspeedUpdatedCb);
FixedWingPathFollowerSettingsConnectCallback(SettingsUpdatedCb);
PathDesiredConnectCallback(SettingsUpdatedCb);
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
PathDesiredGet(&pathDesired);
// Main task loop
lastUpdateTime = xTaskGetTickCount();
while (1) {
// Conditions when this runs:
// 1. Must have FixedWing type airframe
// 2. Flight mode is PositionHold and PathDesired.Mode is Endpoint OR
// FlightMode is PathPlanner and PathDesired.Mode is Endpoint or Path
SystemSettingsGet(&systemSettings);
if ( (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWING) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGELEVON) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGVTAIL) )
{
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_WARNING);
vTaskDelay(1000);
continue;
}
// Continue collecting data if not enough time
vTaskDelayUntil(&lastUpdateTime, fixedwingpathfollowerSettings.UpdatePeriod / portTICK_RATE_MS);
FlightStatusGet(&flightStatus);
uint8_t result;
// Check the combinations of flightmode and pathdesired mode
switch(flightStatus.FlightMode) {
case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD:
case FLIGHTSTATUS_FLIGHTMODE_RTH:
if (pathDesired.Mode == PATHDESIRED_MODE_ENDPOINT) {
updatePathVelocity();
result = updateFixedDesiredAttitude();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_OK);
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_WARNING);
}
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_ERROR);
}
break;
case FLIGHTSTATUS_FLIGHTMODE_PATHPLANNER:
switch(pathDesired.Mode) {
case PATHDESIRED_MODE_PATH:
case PATHDESIRED_MODE_ENDPOINT:
updatePathVelocity();
result = updateFixedDesiredAttitude();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_OK);
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_WARNING);
}
break;
default:
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_ERROR);
break;
}
break;
default:
// Be cleaner and get rid of global variables
northVelIntegral = 0;
eastVelIntegral = 0;
downVelIntegral = 0;
courseIntegral = 0;
speedIntegral = 0;
accelIntegral = 0;
powerIntegral = 0;
break;
}
}
}
/**
* Compute desired velocity from the current position and path
*
* Takes in @ref PositionActual and compares it to @ref PathDesired
* and computes @ref VelocityDesired
*/
static void updatePathVelocity()
{
PositionActualData positionActual;
PositionActualGet(&positionActual);
VelocityActualData velocityActual;
VelocityActualGet(&velocityActual);
struct path_status progress;
float groundspeed;
float altitudeSetpoint;
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_PATH:
path_progress(pathDesired.Start, pathDesired.End, &positionActual.North, &progress);
groundspeed = pathDesired.StartingVelocity + (pathDesired.EndingVelocity - pathDesired.StartingVelocity) *
bound(progress.fractional_progress,0,1);
altitudeSetpoint = pathDesired.Start[2] + (pathDesired.End[2] - pathDesired.Start[2]) *
bound(progress.fractional_progress,0,1);
break;
case PATHDESIRED_MODE_ENDPOINT:
path_progress(&positionActual.North, pathDesired.End, &positionActual.North, &progress);
groundspeed = pathDesired.StartingVelocity + (pathDesired.EndingVelocity - pathDesired.StartingVelocity) *
bound(progress.fractional_progress,0,1);
altitudeSetpoint = pathDesired.Start[2] + (pathDesired.End[2] - pathDesired.Start[2]) *
bound(progress.fractional_progress,0,1);
break;
default:
break;
}
// calculate velocity - can be zero if waypoints are too close
VelocityDesiredData velocityDesired;
velocityDesired.North = progress.path_direction[0] * bound(groundspeed,1e-6,groundspeed);
velocityDesired.East = progress.path_direction[1] * bound(groundspeed,1e-6,groundspeed);
float error_speed = progress.error * fixedwingpathfollowerSettings.HorizontalPosP;
// calculate correction - can also be zero if correction vector is 0 or no error present
velocityDesired.North += progress.correction_direction[0] * error_speed;
velocityDesired.East += progress.correction_direction[1] * error_speed;
float downError = altitudeSetpoint - positionActual.Down;
velocityDesired.Down = downError * fixedwingpathfollowerSettings.VerticalPosP;
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude from the desired velocity
*
* Takes in @ref NedActual which has the acceleration in the
* NED frame as the feedback term and then compares the
* @ref VelocityActual against the @ref VelocityDesired
*/
static uint8_t updateFixedDesiredAttitude()
{
uint8_t result = 1;
float dT = fixedwingpathfollowerSettings.UpdatePeriod / 1000.0f;
VelocityDesiredData velocityDesired;
VelocityActualData velocityActual;
StabilizationDesiredData stabDesired;
AttitudeActualData attitudeActual;
AccelsData accels;
FixedWingPathFollowerSettingsData fixedwingpathfollowerSettings;
StabilizationSettingsData stabSettings;
FixedWingPathFollowerStatusData fixedwingpathfollowerStatus;
float groundspeedActual;
float groundspeedDesired;
float airspeedActual;
float airspeedDesired;
float speedError;
float accelActual;
float accelDesired;
float accelError;
float accelCommand;
float pitchCommand;
float climbspeedDesired;
float climbspeedError;
float powerError;
float powerCommand;
float courseError;
float courseCommand;
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
FixedWingPathFollowerStatusGet(&fixedwingpathfollowerStatus);
VelocityActualGet(&velocityActual);
VelocityDesiredGet(&velocityDesired);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeActualGet(&attitudeActual);
AccelsGet(&accels);
StabilizationSettingsGet(&stabSettings);
/**
* Compute speed error (required for throttle and pitch)
*/
// Current ground speed
groundspeedActual = sqrtf( velocityActual.East*velocityActual.East + velocityActual.North*velocityActual.North );
airspeedActual = groundspeedActual + baroAirspeedBias;
// Desired ground speed
groundspeedDesired = sqrtf(velocityDesired.North*velocityDesired.North + velocityDesired.East*velocityDesired.East);
airspeedDesired = bound( groundspeedDesired + baroAirspeedBias,
fixedwingpathfollowerSettings.AirSpeedMin,
fixedwingpathfollowerSettings.AirSpeedMax);
// Airspeed error
speedError = airspeedDesired - airspeedActual;
// Vertical error
climbspeedDesired = bound (
velocityDesired.Down,
-fixedwingpathfollowerSettings.VerticalVelMax,
fixedwingpathfollowerSettings.VerticalVelMax);
climbspeedError = climbspeedDesired - velocityActual.Down;
// Error condition: wind speed is higher than maximum allowed speed. We are forced backwards!
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_WIND] = 0;
if (groundspeedDesired - baroAirspeedBias <= 0 ) {
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_WIND] = 1;
result = 0;
}
// Error condition: plane too slow or too fast
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_HIGHSPEED] = 0;
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_LOWSPEED] = 0;
if ( airspeedActual > fixedwingpathfollowerSettings.AirSpeedMax * 1.2f) {
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_HIGHSPEED] = 1;
result = 0;
}
if (airspeedActual < fixedwingpathfollowerSettings.AirSpeedMin * 0.8f) {
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_LOWSPEED] = 1;
result = 0;
}
if (airspeedActual<1e-6) {
// prevent division by zero, abort without controlling anything. This guidance mode is not suited for takeoff or touchdown, or handling stationary planes
// also we cannot handle planes flying backwards, lets just wait until the nose drops
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_LOWSPEED] = 1;
return 0;
}
/**
* Compute desired throttle command
*/
// compute desired power
powerError = -climbspeedError +
bound (
(speedError/airspeedActual) * fixedwingpathfollowerSettings.AirspeedToVerticalCrossFeed[FIXEDWINGPATHFOLLOWERSETTINGS_AIRSPEEDTOVERTICALCROSSFEED_KP],
-fixedwingpathfollowerSettings.AirspeedToVerticalCrossFeed[FIXEDWINGPATHFOLLOWERSETTINGS_AIRSPEEDTOVERTICALCROSSFEED_MAX],
fixedwingpathfollowerSettings.AirspeedToVerticalCrossFeed[FIXEDWINGPATHFOLLOWERSETTINGS_AIRSPEEDTOVERTICALCROSSFEED_MAX]
);
powerIntegral = bound(powerIntegral + powerError * dT * fixedwingpathfollowerSettings.PowerPI[FIXEDWINGPATHFOLLOWERSETTINGS_POWERPI_KI],
-fixedwingpathfollowerSettings.PowerPI[FIXEDWINGPATHFOLLOWERSETTINGS_POWERPI_ILIMIT],
fixedwingpathfollowerSettings.PowerPI[FIXEDWINGPATHFOLLOWERSETTINGS_POWERPI_ILIMIT]);
powerCommand = (powerError * fixedwingpathfollowerSettings.PowerPI[FIXEDWINGPATHFOLLOWERSETTINGS_POWERPI_KP] +
powerIntegral) + fixedwingpathfollowerSettings.ThrottleLimit[FIXEDWINGPATHFOLLOWERSETTINGS_THROTTLELIMIT_NEUTRAL];
// prevent integral running out of bounds
if ( powerCommand > fixedwingpathfollowerSettings.ThrottleLimit[FIXEDWINGPATHFOLLOWERSETTINGS_THROTTLELIMIT_MAX]) {
powerIntegral = bound(
powerIntegral -
( powerCommand
- fixedwingpathfollowerSettings.ThrottleLimit[FIXEDWINGPATHFOLLOWERSETTINGS_THROTTLELIMIT_MAX]),
-fixedwingpathfollowerSettings.PowerPI[FIXEDWINGPATHFOLLOWERSETTINGS_POWERPI_ILIMIT],
fixedwingpathfollowerSettings.PowerPI[FIXEDWINGPATHFOLLOWERSETTINGS_POWERPI_ILIMIT]);
powerCommand = fixedwingpathfollowerSettings.ThrottleLimit[FIXEDWINGPATHFOLLOWERSETTINGS_THROTTLELIMIT_MAX];
}
if ( powerCommand < fixedwingpathfollowerSettings.ThrottleLimit[FIXEDWINGPATHFOLLOWERSETTINGS_THROTTLELIMIT_MIN]) {
powerIntegral = bound(
powerIntegral -
( powerCommand
- fixedwingpathfollowerSettings.ThrottleLimit[FIXEDWINGPATHFOLLOWERSETTINGS_THROTTLELIMIT_MIN]),
-fixedwingpathfollowerSettings.PowerPI[FIXEDWINGPATHFOLLOWERSETTINGS_POWERPI_ILIMIT],
fixedwingpathfollowerSettings.PowerPI[FIXEDWINGPATHFOLLOWERSETTINGS_POWERPI_ILIMIT]);
powerCommand = fixedwingpathfollowerSettings.ThrottleLimit[FIXEDWINGPATHFOLLOWERSETTINGS_THROTTLELIMIT_MIN];
}
fixedwingpathfollowerStatus.E[FIXEDWINGPATHFOLLOWERSTATUS_E_POWER] = powerError;
fixedwingpathfollowerStatus.A[FIXEDWINGPATHFOLLOWERSTATUS_A_POWER] = powerIntegral;
fixedwingpathfollowerStatus.C[FIXEDWINGPATHFOLLOWERSTATUS_C_POWER] = powerCommand;
// set throttle
stabDesired.Throttle = powerCommand;
// Error condition: plane cannot hold altitude at current speed.
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_LOWPOWER] = 0;
if (
powerCommand == fixedwingpathfollowerSettings.ThrottleLimit[FIXEDWINGPATHFOLLOWERSETTINGS_THROTTLELIMIT_MAX] // throttle at maximum
&& velocityActual.Down > 0 // we ARE going down
&& climbspeedDesired < 0 // we WANT to go up
&& speedError > 0 // we are too slow already
) {
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_LOWPOWER] = 1;
result = 0;
}
// Error condition: plane keeps climbing despite minimum throttle (opposite of above)
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_HIGHPOWER] = 0;
if (
powerCommand == fixedwingpathfollowerSettings.ThrottleLimit[FIXEDWINGPATHFOLLOWERSETTINGS_THROTTLELIMIT_MIN] // throttle at minimum
&& velocityActual.Down < 0 // we ARE going up
&& climbspeedDesired > 0 // we WANT to go down
&& speedError < 0 // we are too fast already
) {
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_HIGHPOWER] = 1;
result = 0;
}
/**
* Compute desired pitch command
*/
// compute desired acceleration
accelDesired = bound( (speedError/airspeedActual) * fixedwingpathfollowerSettings.SpeedP[FIXEDWINGPATHFOLLOWERSETTINGS_SPEEDP_KP],
-fixedwingpathfollowerSettings.SpeedP[FIXEDWINGPATHFOLLOWERSETTINGS_SPEEDP_MAX],
fixedwingpathfollowerSettings.SpeedP[FIXEDWINGPATHFOLLOWERSETTINGS_SPEEDP_MAX]);
fixedwingpathfollowerStatus.E[FIXEDWINGPATHFOLLOWERSTATUS_E_SPEED] = (speedError/airspeedActual);
fixedwingpathfollowerStatus.A[FIXEDWINGPATHFOLLOWERSTATUS_A_SPEED] = 0.0f;
fixedwingpathfollowerStatus.C[FIXEDWINGPATHFOLLOWERSTATUS_C_SPEED] = accelDesired;
// exclude gravity from acceleration. If the aicraft is flying at high pitch, it fights gravity without getting faster
accelActual = accels.x - (sinf( DEG2RAD * attitudeActual.Pitch) * GEE);
accelError = accelDesired - accelActual;
accelIntegral = bound(accelIntegral + accelError * dT * fixedwingpathfollowerSettings.AccelPI[FIXEDWINGPATHFOLLOWERSETTINGS_ACCELPI_KI],
-fixedwingpathfollowerSettings.AccelPI[FIXEDWINGPATHFOLLOWERSETTINGS_ACCELPI_ILIMIT],
fixedwingpathfollowerSettings.AccelPI[FIXEDWINGPATHFOLLOWERSETTINGS_ACCELPI_ILIMIT]);
accelCommand = (accelError * fixedwingpathfollowerSettings.AccelPI[FIXEDWINGPATHFOLLOWERSETTINGS_ACCELPI_KP] +
accelIntegral);
fixedwingpathfollowerStatus.E[FIXEDWINGPATHFOLLOWERSTATUS_E_ACCEL] = accelError;
fixedwingpathfollowerStatus.A[FIXEDWINGPATHFOLLOWERSTATUS_A_ACCEL] = accelIntegral;
fixedwingpathfollowerStatus.C[FIXEDWINGPATHFOLLOWERSTATUS_C_ACCEL] = accelCommand;
// compute desired pitch
pitchCommand= -accelCommand + bound ( (-climbspeedError/airspeedActual) * fixedwingpathfollowerSettings.VerticalToPitchCrossFeed[FIXEDWINGPATHFOLLOWERSETTINGS_VERTICALTOPITCHCROSSFEED_KP],
-fixedwingpathfollowerSettings.VerticalToPitchCrossFeed[FIXEDWINGPATHFOLLOWERSETTINGS_VERTICALTOPITCHCROSSFEED_MAX],
fixedwingpathfollowerSettings.VerticalToPitchCrossFeed[FIXEDWINGPATHFOLLOWERSETTINGS_VERTICALTOPITCHCROSSFEED_MAX]
);
stabDesired.Pitch = bound(fixedwingpathfollowerSettings.PitchLimit[FIXEDWINGPATHFOLLOWERSETTINGS_PITCHLIMIT_NEUTRAL] +
pitchCommand,
fixedwingpathfollowerSettings.PitchLimit[FIXEDWINGPATHFOLLOWERSETTINGS_PITCHLIMIT_MIN],
fixedwingpathfollowerSettings.PitchLimit[FIXEDWINGPATHFOLLOWERSETTINGS_PITCHLIMIT_MAX]);
// Error condition: high speed dive
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_PITCHCONTROL] = 0;
if (
pitchCommand == fixedwingpathfollowerSettings.PitchLimit[FIXEDWINGPATHFOLLOWERSETTINGS_PITCHLIMIT_MAX] // pitch demand is full up
&& velocityActual.Down > 0 // we ARE going down
&& climbspeedDesired < 0 // we WANT to go up
&& speedError < 0 // we are too fast already
) {
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_PITCHCONTROL] = 1;
result = 0;
}
/**
* Compute desired roll command
*/
if (groundspeedDesired> 1e-6) {
courseError = RAD2DEG * (atan2f(velocityDesired.East,velocityDesired.North) - atan2f(velocityActual.East,velocityActual.North));
} else {
// if we are not supposed to move, keep going wherever we are now. Don't make things worse by changing direction.
courseError = 0;
}
if (courseError<-180.0f) courseError+=360.0f;
if (courseError>180.0f) courseError-=360.0f;
courseIntegral = bound(courseIntegral + courseError * dT * fixedwingpathfollowerSettings.CoursePI[FIXEDWINGPATHFOLLOWERSETTINGS_COURSEPI_KI],
-fixedwingpathfollowerSettings.CoursePI[FIXEDWINGPATHFOLLOWERSETTINGS_COURSEPI_ILIMIT],
fixedwingpathfollowerSettings.CoursePI[FIXEDWINGPATHFOLLOWERSETTINGS_COURSEPI_ILIMIT]);
courseCommand = (courseError * fixedwingpathfollowerSettings.CoursePI[FIXEDWINGPATHFOLLOWERSETTINGS_COURSEPI_KP] +
courseIntegral);
fixedwingpathfollowerStatus.E[FIXEDWINGPATHFOLLOWERSTATUS_E_COURSE] = courseError;
fixedwingpathfollowerStatus.A[FIXEDWINGPATHFOLLOWERSTATUS_A_COURSE] = courseIntegral;
fixedwingpathfollowerStatus.C[FIXEDWINGPATHFOLLOWERSTATUS_C_COURSE] = courseCommand;
stabDesired.Roll = bound( fixedwingpathfollowerSettings.RollLimit[FIXEDWINGPATHFOLLOWERSETTINGS_ROLLLIMIT_NEUTRAL] +
courseCommand,
fixedwingpathfollowerSettings.RollLimit[FIXEDWINGPATHFOLLOWERSETTINGS_ROLLLIMIT_MIN],
fixedwingpathfollowerSettings.RollLimit[FIXEDWINGPATHFOLLOWERSETTINGS_ROLLLIMIT_MAX] );
// TODO: find a check to determine loss of directional control. Likely needs some check of derivative
/**
* Compute desired yaw command
*/
// TODO implement raw control mode for yaw and base on Accels.X
stabDesired.Yaw = 0;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_NONE;
StabilizationDesiredSet(&stabDesired);
FixedWingPathFollowerStatusSet(&fixedwingpathfollowerStatus);
return result;
}
/**
* Bound input value between limits
*/
static float bound(float val, float min, float max)
{
if (val < min) {
val = min;
} else if (val > max) {
val = max;
}
return val;
}
static void SettingsUpdatedCb(UAVObjEvent * ev)
{
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
PathDesiredGet(&pathDesired);
}
static void baroAirspeedUpdatedCb(UAVObjEvent * ev)
{
BaroAirspeedData baroAirspeed;
VelocityActualData velocityActual;
BaroAirspeedGet(&baroAirspeed);
if (baroAirspeed.Connected != BAROAIRSPEED_CONNECTED_TRUE) {
baroAirspeedBias = 0;
} else {
VelocityActualGet(&velocityActual);
float groundspeed = sqrtf(velocityActual.East*velocityActual.East + velocityActual.North*velocityActual.North );
baroAirspeedBias = baroAirspeed.Airspeed - groundspeed;
}
}