1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-29 07:24:13 +01:00
LibrePilot/flight/pios/stm32f30x/pios_spi.c
2017-05-25 22:08:34 +02:00

752 lines
23 KiB
C

/**
******************************************************************************
* @addtogroup PIOS PIOS Core hardware abstraction layer
* @{
* @addtogroup PIOS_SPI SPI Functions
* @brief PIOS interface to read and write from SPI ports
* @{
*
* @file pios_spi.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Hardware Abstraction Layer for SPI ports of STM32
* @see The GNU Public License (GPL) Version 3
* @notes
*
* Note that additional chip select lines can be easily added by using
* the remaining free GPIOs of the core module. Shared SPI ports should be
* arbitrated with (FreeRTOS based) Mutexes to avoid collisions!
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <pios.h>
#ifdef PIOS_INCLUDE_SPI
#include <pios_spi_priv.h>
#define SPI_MAX_BLOCK_PIO 12800
static bool PIOS_SPI_validate(__attribute__((unused)) struct pios_spi_dev *com_dev)
{
/* Should check device magic here */
return true;
}
#if defined(PIOS_INCLUDE_FREERTOS)
static struct pios_spi_dev *PIOS_SPI_alloc(void)
{
return pios_malloc(sizeof(struct pios_spi_dev));
}
#else
static struct pios_spi_dev pios_spi_devs[PIOS_SPI_MAX_DEVS];
static uint8_t pios_spi_num_devs;
static struct pios_spi_dev *PIOS_SPI_alloc(void)
{
if (pios_spi_num_devs >= PIOS_SPI_MAX_DEVS) {
return NULL;
}
return &pios_spi_devs[pios_spi_num_devs++];
}
#endif
/**
* Initialises SPI pins
* \param[in] mode currently only mode 0 supported
* \return < 0 if initialisation failed
*/
int32_t PIOS_SPI_Init(uint32_t *spi_id, const struct pios_spi_cfg *cfg)
{
uint32_t init_ssel = 0;
PIOS_Assert(spi_id);
PIOS_Assert(cfg);
struct pios_spi_dev *spi_dev;
spi_dev = (struct pios_spi_dev *)PIOS_SPI_alloc();
if (!spi_dev) {
goto out_fail;
}
/* Bind the configuration to the device instance */
spi_dev->cfg = cfg;
#if defined(PIOS_INCLUDE_FREERTOS)
vSemaphoreCreateBinary(spi_dev->busy);
xSemaphoreGive(spi_dev->busy);
#else
spi_dev->busy = 0;
#endif
/* Disable callback function */
spi_dev->callback = NULL;
/* Set rx/tx dummy bytes to a known value */
spi_dev->rx_dummy_byte = 0xFF;
spi_dev->tx_dummy_byte = 0xFF;
switch (spi_dev->cfg->init.SPI_NSS) {
case SPI_NSS_Soft:
if (spi_dev->cfg->init.SPI_Mode == SPI_Mode_Master) {
/* We're a master in soft NSS mode, make sure we see NSS high at all times. */
SPI_NSSInternalSoftwareConfig(spi_dev->cfg->regs, SPI_NSSInternalSoft_Set);
/* Init as many slave selects as the config advertises. */
init_ssel = spi_dev->cfg->slave_count;
} else {
/* We're a slave in soft NSS mode, make sure we see NSS low at all times. */
SPI_NSSInternalSoftwareConfig(spi_dev->cfg->regs, SPI_NSSInternalSoft_Reset);
}
break;
case SPI_NSS_Hard:
/* only legal for single-slave config */
PIOS_Assert(spi_dev->cfg->slave_count == 1);
init_ssel = 1;
/* FIXME: Should this also call SPI_SSOutputCmd()? */
break;
default:
PIOS_Assert(0);
}
/* Initialize the GPIO pins */
/* note __builtin_ctz() due to the difference between GPIO_PinX and GPIO_PinSourceX */
if (spi_dev->cfg->remap) {
GPIO_PinAFConfig(spi_dev->cfg->sclk.gpio,
__builtin_ctz(spi_dev->cfg->sclk.init.GPIO_Pin),
spi_dev->cfg->remap);
GPIO_PinAFConfig(spi_dev->cfg->mosi.gpio,
__builtin_ctz(spi_dev->cfg->mosi.init.GPIO_Pin),
spi_dev->cfg->remap);
GPIO_PinAFConfig(spi_dev->cfg->miso.gpio,
__builtin_ctz(spi_dev->cfg->miso.init.GPIO_Pin),
spi_dev->cfg->remap);
for (uint32_t i = 0; i < init_ssel; i++) {
GPIO_PinAFConfig(spi_dev->cfg->ssel[i].gpio,
__builtin_ctz(spi_dev->cfg->ssel[i].init.GPIO_Pin),
spi_dev->cfg->remap);
}
}
/* Initialize the GPIO pins */
GPIO_Init(spi_dev->cfg->sclk.gpio, (GPIO_InitTypeDef *)&(spi_dev->cfg->sclk.init));
GPIO_Init(spi_dev->cfg->mosi.gpio, (GPIO_InitTypeDef *)&(spi_dev->cfg->mosi.init));
GPIO_Init(spi_dev->cfg->miso.gpio, (GPIO_InitTypeDef *)&(spi_dev->cfg->miso.init));
for (uint32_t i = 0; i < init_ssel; i++) {
/* Since we're driving the SSEL pin in software, ensure that the slave is deselected */
/* XXX multi-slave support - maybe have another SPI_NSS_ mode? */
GPIO_SetBits(spi_dev->cfg->ssel[i].gpio, spi_dev->cfg->ssel[i].init.GPIO_Pin);
GPIO_Init(spi_dev->cfg->ssel[i].gpio, (GPIO_InitTypeDef *)&(spi_dev->cfg->ssel[i].init));
}
/* Enable the associated peripheral clock */
switch ((uint32_t)spi_dev->cfg->regs) {
case (uint32_t)SPI1:
/* Enable SPI peripheral clock (APB2 == high speed) */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);
break;
case (uint32_t)SPI2:
/* Enable SPI peripheral clock (APB1 == slow speed) */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE);
break;
case (uint32_t)SPI3:
/* Enable SPI peripheral clock (APB1 == slow speed) */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI3, ENABLE);
break;
}
bool use_dma = spi_dev->cfg->dma.rx.channel && spi_dev->cfg->dma.tx.channel;
/* Enable DMA clock */
if (use_dma) {
RCC_AHBPeriphClockCmd(spi_dev->cfg->dma.ahb_clk, ENABLE);
/* Configure DMA for SPI Rx */
DMA_Cmd(spi_dev->cfg->dma.rx.channel, DISABLE);
DMA_Init(spi_dev->cfg->dma.rx.channel, (DMA_InitTypeDef *)&(spi_dev->cfg->dma.rx.init));
/* Configure DMA for SPI Tx */
DMA_Cmd(spi_dev->cfg->dma.tx.channel, DISABLE);
DMA_Init(spi_dev->cfg->dma.tx.channel, (DMA_InitTypeDef *)&(spi_dev->cfg->dma.tx.init));
}
/* Initialize the SPI block */
SPI_I2S_DeInit(spi_dev->cfg->regs);
SPI_Init(spi_dev->cfg->regs, (SPI_InitTypeDef *)&(spi_dev->cfg->init));
/* Configure CRC calculation */
if (spi_dev->cfg->use_crc) {
SPI_CalculateCRC(spi_dev->cfg->regs, ENABLE);
} else {
SPI_CalculateCRC(spi_dev->cfg->regs, DISABLE);
}
/* Configure the RX FIFO Threshold -- 8 bits */
SPI_RxFIFOThresholdConfig(spi_dev->cfg->regs, SPI_RxFIFOThreshold_QF);
/* Enable SPI */
SPI_Cmd(spi_dev->cfg->regs, ENABLE);
/* Enable SPI interrupts to DMA */
if (use_dma) {
SPI_I2S_DMACmd(spi_dev->cfg->regs, SPI_I2S_DMAReq_Tx | SPI_I2S_DMAReq_Rx, ENABLE);
}
/* Configure DMA interrupt */
NVIC_Init((NVIC_InitTypeDef *)&(spi_dev->cfg->dma.irq.init));
*spi_id = (uint32_t)spi_dev;
return 0;
out_fail:
return -1;
}
/**
* (Re-)initialises SPI peripheral clock rate
*
* \param[in] spi SPI number (0 or 1)
* \param[in] spi_prescaler configures the SPI speed:
* <UL>
* <LI>PIOS_SPI_PRESCALER_2: sets clock rate 27.7~ nS @ 72 MHz (36 MBit/s) (only supported for spi==0, spi1 uses 4 instead)
* <LI>PIOS_SPI_PRESCALER_4: sets clock rate 55.5~ nS @ 72 MHz (18 MBit/s)
* <LI>PIOS_SPI_PRESCALER_8: sets clock rate 111.1~ nS @ 72 MHz (9 MBit/s)
* <LI>PIOS_SPI_PRESCALER_16: sets clock rate 222.2~ nS @ 72 MHz (4.5 MBit/s)
* <LI>PIOS_SPI_PRESCALER_32: sets clock rate 444.4~ nS @ 72 MHz (2.25 MBit/s)
* <LI>PIOS_SPI_PRESCALER_64: sets clock rate 888.8~ nS @ 72 MHz (1.125 MBit/s)
* <LI>PIOS_SPI_PRESCALER_128: sets clock rate 1.7~ nS @ 72 MHz (0.562 MBit/s)
* <LI>PIOS_SPI_PRESCALER_256: sets clock rate 3.5~ nS @ 72 MHz (0.281 MBit/s)
* </UL>
* \return 0 if no error
* \return -1 if disabled SPI port selected
* \return -3 if invalid spi_prescaler selected
*/
int32_t PIOS_SPI_SetClockSpeed(uint32_t spi_id, SPIPrescalerTypeDef spi_prescaler)
{
struct pios_spi_dev *spi_dev = (struct pios_spi_dev *)spi_id;
bool valid = PIOS_SPI_validate(spi_dev);
PIOS_Assert(valid)
SPI_InitTypeDef SPI_InitStructure;
if (spi_prescaler >= 8) {
/* Invalid prescaler selected */
return -3;
}
/* Start with a copy of the default configuration for the peripheral */
SPI_InitStructure = spi_dev->cfg->init;
/* Adjust the prescaler for the peripheral's clock */
SPI_InitStructure.SPI_BaudRatePrescaler = ((uint16_t)spi_prescaler & 7) << 3;
/* Write back the new configuration */
SPI_Init(spi_dev->cfg->regs, &SPI_InitStructure);
PIOS_SPI_TransferByte(spi_id, 0xFF);
return 0;
}
/**
* Claim the SPI bus semaphore. Calling the SPI functions does not require this
* \param[in] spi SPI number (0 or 1)
* \return 0 if no error
* \return -1 if timeout before claiming semaphore
*/
int32_t PIOS_SPI_ClaimBus(uint32_t spi_id)
{
#if defined(PIOS_INCLUDE_FREERTOS)
struct pios_spi_dev *spi_dev = (struct pios_spi_dev *)spi_id;
bool valid = PIOS_SPI_validate(spi_dev);
PIOS_Assert(valid)
if (xSemaphoreTake(spi_dev->busy, 0xffff) != pdTRUE) {
return -1;
}
#else
struct pios_spi_dev *spi_dev = (struct pios_spi_dev *)spi_id;
uint32_t timeout = 0xffff;
while ((PIOS_SPI_Busy(spi_id) || spi_dev->busy) && --timeout) {
;
}
if (timeout == 0) { // timed out
return -1;
}
PIOS_IRQ_Disable();
if (spi_dev->busy) {
return -1;
}
spi_dev->busy = 1;
PIOS_IRQ_Enable();
#endif /* if defined(PIOS_INCLUDE_FREERTOS) */
return 0;
}
/**
* Claim the SPI bus semaphore from an ISR. Has no timeout.
* \param[in] spi SPI number (0 or 1)
* \param woken[in,out] If non-NULL, will be set to true if woken was false and a higher priority
* task has is now eligible to run, else unchanged
* \return 0 if no error
* \return -1 if timeout before claiming semaphore
*/
int32_t PIOS_SPI_ClaimBusISR(uint32_t spi_id, bool *woken)
{
#if defined(PIOS_INCLUDE_FREERTOS)
struct pios_spi_dev *spi_dev = (struct pios_spi_dev *)spi_id;
signed portBASE_TYPE higherPriorityTaskWoken = pdFALSE;
bool valid = PIOS_SPI_validate(spi_dev);
PIOS_Assert(valid)
if (xSemaphoreTakeFromISR(spi_dev->busy, &higherPriorityTaskWoken) != pdTRUE) {
return -1;
}
if (woken) {
*woken = *woken || (higherPriorityTaskWoken == pdTRUE);
}
return 0;
#else
if (woken) {
*woken = false;
}
return PIOS_SPI_ClaimBus(spi_id);
#endif
}
/**
* Release the SPI bus semaphore. Calling the SPI functions does not require this
* \param[in] spi SPI number (0 or 1)
* \return 0 if no error
*/
int32_t PIOS_SPI_ReleaseBus(uint32_t spi_id)
{
#if defined(PIOS_INCLUDE_FREERTOS)
struct pios_spi_dev *spi_dev = (struct pios_spi_dev *)spi_id;
bool valid = PIOS_SPI_validate(spi_dev);
PIOS_Assert(valid)
xSemaphoreGive(spi_dev->busy);
#else
struct pios_spi_dev *spi_dev = (struct pios_spi_dev *)spi_id;
PIOS_IRQ_Disable();
spi_dev->busy = 0;
PIOS_IRQ_Enable();
#endif
return 0;
}
/**
* Release the SPI bus semaphore from ISR. Calling the SPI functions does not require this
* \param[in] spi SPI number (0 or 1)
* \param woken[in,out] If non-NULL, will be set to true if woken was false and a higher priority
* task has is now eligible to run, else unchanged
* \return 0 if no error
*/
int32_t PIOS_SPI_ReleaseBusISR(uint32_t spi_id, bool *woken)
{
#if defined(PIOS_INCLUDE_FREERTOS)
struct pios_spi_dev *spi_dev = (struct pios_spi_dev *)spi_id;
signed portBASE_TYPE higherPriorityTaskWoken = pdFALSE;
bool valid = PIOS_SPI_validate(spi_dev);
PIOS_Assert(valid)
xSemaphoreGiveFromISR(spi_dev->busy, &higherPriorityTaskWoken);
if (woken) {
*woken = *woken || (higherPriorityTaskWoken == pdTRUE);
}
return 0;
#else
if (woken) {
*woken = false;
}
return PIOS_SPI_ReleaseBus(spi_id);
#endif
}
/**
* Controls the RC (Register Clock alias Chip Select) pin of a SPI port
* \param[in] spi SPI number (0 or 1)
* \param[in] pin_value 0 or 1
* \return 0 if no error
*/
int32_t PIOS_SPI_RC_PinSet(uint32_t spi_id, uint32_t slave_id, uint8_t pin_value)
{
struct pios_spi_dev *spi_dev = (struct pios_spi_dev *)spi_id;
bool valid = PIOS_SPI_validate(spi_dev);
PIOS_Assert(valid)
PIOS_Assert(slave_id <= spi_dev->cfg->slave_count)
/* XXX multi-slave support? */
if (pin_value) {
GPIO_SetBits(spi_dev->cfg->ssel[slave_id].gpio, spi_dev->cfg->ssel[slave_id].init.GPIO_Pin);
} else {
GPIO_ResetBits(spi_dev->cfg->ssel[slave_id].gpio, spi_dev->cfg->ssel[slave_id].init.GPIO_Pin);
}
return 0;
}
/**
* Transfers a byte to SPI output and reads back the return value from SPI input
* \param[in] spi SPI number (0 or 1)
* \param[in] b the byte which should be transfered
*/
int32_t PIOS_SPI_TransferByte(uint32_t spi_id, uint8_t b)
{
struct pios_spi_dev *spi_dev = (struct pios_spi_dev *)spi_id;
bool valid = PIOS_SPI_validate(spi_dev);
PIOS_Assert(valid)
uint8_t rx_byte;
/* Make sure the RXNE flag is cleared by reading the DR register */
SPI_ReceiveData8(spi_dev->cfg->regs);
/* Wait until the TXE goes high */
while (SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_TXE) == RESET) {
;
}
/* Start the transfer */
SPI_SendData8(spi_dev->cfg->regs, b);
/* Wait until there is a byte to read */
while (SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_RXNE) == RESET) {
;
}
/* Read the rx'd byte */
rx_byte = SPI_ReceiveData8(spi_dev->cfg->regs);
/* Wait until the TXE goes high */
while (!(spi_dev->cfg->regs->SR & SPI_I2S_FLAG_TXE)) {
;
}
/* Wait for SPI transfer to have fully completed */
while (spi_dev->cfg->regs->SR & SPI_I2S_FLAG_BSY) {
;
}
/* Return received byte */
return rx_byte;
}
/**
* Transfers a block of bytes via PIO.
*
* \param[in] spi_id SPI device handle
* \param[in] send_buffer pointer to buffer which should be sent.<BR>
* If NULL, 0xff (all-one) will be sent.
* \param[in] receive_buffer pointer to buffer which should get the received values.<BR>
* If NULL, received bytes will be discarded.
* \param[in] len number of bytes which should be transfered
* \return >= 0 if no error during transfer
* \return -1 if disabled SPI port selected
*/
static int32_t PIOS_SPI_TransferBlock_PIO(struct pios_spi_dev *spi_dev, const uint8_t *send_buffer, uint8_t *receive_buffer, uint16_t len, __attribute__((unused)) void *callback)
{
uint8_t b;
while (len--) {
/* get the byte to send */
b = send_buffer ? *(send_buffer++) : 0xff;
/* Wait until the TXE goes high */
while (SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_TXE) == RESET) {
;
}
/* Start the transfer */
SPI_SendData8(spi_dev->cfg->regs, b);
/* Wait until there is a byte to read */
while (SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_RXNE) == RESET) {
;
}
/* Read the rx'd byte */
b = SPI_ReceiveData8(spi_dev->cfg->regs);
/* save the received byte */
if (receive_buffer) {
*(receive_buffer++) = b;
}
}
/* Wait for SPI transfer to have fully completed */
while (spi_dev->cfg->regs->SR & SPI_I2S_FLAG_BSY) {
;
}
return 0;
}
/**
* Transfers a block of bytes via DMA.
* \param[in] spi SPI number (0 or 1)
* \param[in] send_buffer pointer to buffer which should be sent.<BR>
* If NULL, 0xff (all-one) will be sent.
* \param[in] receive_buffer pointer to buffer which should get the received values.<BR>
* If NULL, received bytes will be discarded.
* \param[in] len number of bytes which should be transfered
* \param[in] callback pointer to callback function which will be executed
* from DMA channel interrupt once the transfer is finished.
* If NULL, no callback function will be used, and PIOS_SPI_TransferBlock() will
* block until the transfer is finished.
* \return >= 0 if no error during transfer
* \return -1 if disabled SPI port selected
* \return -3 if function has been called during an ongoing DMA transfer
*/
static int32_t PIOS_SPI_TransferBlock_DMA(struct pios_spi_dev *spi_dev, const uint8_t *send_buffer, uint8_t *receive_buffer, uint16_t len, void *callback)
{
DMA_InitTypeDef dma_init;
/* Exit if ongoing transfer */
if (DMA_GetCurrDataCounter(spi_dev->cfg->dma.rx.channel)) {
return -3;
}
/* Disable the SPI peripheral */
SPI_Cmd(spi_dev->cfg->regs, DISABLE);
/* Disable the DMA channels */
DMA_Cmd(spi_dev->cfg->dma.rx.channel, DISABLE);
DMA_Cmd(spi_dev->cfg->dma.tx.channel, DISABLE);
/* Set callback function */
spi_dev->callback = callback;
/*
* Configure Rx channel
*/
/* Start with the default configuration for this peripheral */
dma_init = spi_dev->cfg->dma.rx.init;
if (receive_buffer != NULL) {
/* Enable memory addr. increment - bytes written into receive buffer */
dma_init.DMA_MemoryBaseAddr = (uint32_t)receive_buffer;
dma_init.DMA_MemoryInc = DMA_MemoryInc_Enable;
} else {
/* Disable memory addr. increment - bytes written into dummy buffer */
spi_dev->rx_dummy_byte = 0xFF;
dma_init.DMA_MemoryBaseAddr = (uint32_t)&spi_dev->rx_dummy_byte;
dma_init.DMA_MemoryInc = DMA_MemoryInc_Disable;
}
if (spi_dev->cfg->use_crc) {
/* Make sure the CRC error flag is cleared before we start */
SPI_I2S_ClearFlag(spi_dev->cfg->regs, SPI_FLAG_CRCERR);
}
dma_init.DMA_BufferSize = len;
DMA_Init(spi_dev->cfg->dma.rx.channel, &(dma_init));
/*
* Configure Tx channel
*/
/* Start with the default configuration for this peripheral */
dma_init = spi_dev->cfg->dma.tx.init;
if (send_buffer != NULL) {
/* Enable memory addr. increment - bytes written into receive buffer */
dma_init.DMA_MemoryBaseAddr = (uint32_t)send_buffer;
dma_init.DMA_MemoryInc = DMA_MemoryInc_Enable;
} else {
/* Disable memory addr. increment - bytes written into dummy buffer */
spi_dev->tx_dummy_byte = 0xFF;
dma_init.DMA_MemoryBaseAddr = (uint32_t)&spi_dev->tx_dummy_byte;
dma_init.DMA_MemoryInc = DMA_MemoryInc_Disable;
}
if (spi_dev->cfg->use_crc) {
/* The last byte of the payload will be replaced with the CRC8 */
dma_init.DMA_BufferSize = len - 1;
} else {
dma_init.DMA_BufferSize = len;
}
DMA_Init(spi_dev->cfg->dma.tx.channel, &(dma_init));
/* Enable DMA interrupt if callback function active */
DMA_ITConfig(spi_dev->cfg->dma.rx.channel, DMA_IT_TC, (callback != NULL) ? ENABLE : DISABLE);
/* Flush out the CRC registers */
SPI_CalculateCRC(spi_dev->cfg->regs, DISABLE);
(void)SPI_GetCRC(spi_dev->cfg->regs, SPI_CRC_Rx);
SPI_I2S_ClearFlag(spi_dev->cfg->regs, SPI_FLAG_CRCERR);
/* Make sure to flush out the receive buffer */
(void)SPI_I2S_ReceiveData16(spi_dev->cfg->regs);
if (spi_dev->cfg->use_crc) {
/* Need a 0->1 transition to reset the CRC logic */
SPI_CalculateCRC(spi_dev->cfg->regs, ENABLE);
}
/* Start DMA transfers */
DMA_Cmd(spi_dev->cfg->dma.rx.channel, ENABLE);
DMA_Cmd(spi_dev->cfg->dma.tx.channel, ENABLE);
/* Reenable the SPI device */
SPI_Cmd(spi_dev->cfg->regs, ENABLE);
if (callback) {
/* User has requested a callback, don't wait for the transfer to complete. */
return 0;
}
/* Wait until all bytes have been transmitted/received */
while (DMA_GetCurrDataCounter(spi_dev->cfg->dma.rx.channel)) {
;
}
/* Wait for the final bytes of the transfer to complete, including CRC byte(s). */
while (!(SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_TXE))) {
;
}
/* Wait for the final bytes of the transfer to complete, including CRC byte(s). */
while (SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_BSY)) {
;
}
/* Check the CRC on the transfer if enabled. */
if (spi_dev->cfg->use_crc) {
/* Check the SPI CRC error flag */
if (SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_FLAG_CRCERR)) {
return -4;
}
}
/* No error */
return 0;
}
int32_t PIOS_SPI_TransferBlock(uint32_t spi_id, const uint8_t *send_buffer, uint8_t *receive_buffer, uint16_t len, void *callback)
{
struct pios_spi_dev *spi_dev = (struct pios_spi_dev *)spi_id;
bool valid = PIOS_SPI_validate(spi_dev);
PIOS_Assert(valid)
if ((len > SPI_MAX_BLOCK_PIO) && spi_dev->cfg->dma.rx.channel && spi_dev->cfg->dma.tx.channel) {
return PIOS_SPI_TransferBlock_DMA(spi_dev, send_buffer, receive_buffer, len, callback);
}
return PIOS_SPI_TransferBlock_PIO(spi_dev, send_buffer, receive_buffer, len, callback);
}
/**
* Check if a transfer is in progress
* \param[in] spi SPI number (0 or 1)
* \return >= 0 if no transfer is in progress
* \return -1 if disabled SPI port selected
* \return -2 if unsupported SPI port selected
* \return -3 if function has been called during an ongoing DMA transfer
*/
int32_t PIOS_SPI_Busy(uint32_t spi_id)
{
struct pios_spi_dev *spi_dev = (struct pios_spi_dev *)spi_id;
bool valid = PIOS_SPI_validate(spi_dev);
PIOS_Assert(valid)
/* DMA buffer has data or SPI transmit register not empty or SPI is busy*/
if (DMA_GetCurrDataCounter(spi_dev->cfg->dma.rx.channel) ||
!SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_TXE) ||
SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_BSY)) {
return -3;
}
return 0;
}
void PIOS_SPI_SetPrescalar(uint32_t spi_id, uint32_t prescaler)
{
struct pios_spi_dev *spi_dev = (struct pios_spi_dev *)spi_id;
bool valid = PIOS_SPI_validate(spi_dev);
PIOS_Assert(valid);
PIOS_Assert(IS_SPI_BAUDRATE_PRESCALER(prescaler));
spi_dev->cfg->regs->CR1 = (spi_dev->cfg->regs->CR1 & ~0x0038) | prescaler;
}
void PIOS_SPI_IRQ_Handler(uint32_t spi_id)
{
struct pios_spi_dev *spi_dev = (struct pios_spi_dev *)spi_id;
bool valid = PIOS_SPI_validate(spi_dev);
PIOS_Assert(valid)
DMA_ClearFlag(spi_dev->cfg->dma.irq.flags);
/* Wait for the final bytes of the transfer to complete, including CRC byte(s). */
while (!(SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_TXE))) {
;
}
/* Wait for the final bytes of the transfer to complete, including CRC byte(s). */
while (SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_I2S_FLAG_BSY)) {
;
}
if (spi_dev->callback != NULL) {
bool crc_ok = true;
uint8_t crc_val;
if (SPI_I2S_GetFlagStatus(spi_dev->cfg->regs, SPI_FLAG_CRCERR)) {
crc_ok = false;
SPI_I2S_ClearFlag(spi_dev->cfg->regs, SPI_FLAG_CRCERR);
}
crc_val = SPI_GetCRC(spi_dev->cfg->regs, SPI_CRC_Rx);
spi_dev->callback(crc_ok, crc_val);
}
}
#endif /* PIOS_INCLUDE_SPI */
/**
* @}
* @}
*/