1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-30 08:24:11 +01:00
LibrePilot/flight/PiOS/Common/pios_rfm22b.c

1896 lines
59 KiB
C
Raw Blame History

/**
******************************************************************************
* @addtogroup PIOS PIOS Core hardware abstraction layer
* @{
* @addtogroup PIOS_RFM22B Radio Functions
* @brief PIOS interface for for the RFM22B radio
* @{
*
* @file pios_rfm22b.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Implements a driver the the RFM22B driver
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
// *****************************************************************
// RFM22B hardware layer
//
// This module uses the RFM22B's internal packet handling hardware to
// encapsulate our own packet data.
//
// The RFM22B internal hardware packet handler configuration is as follows ..
//
// 4-byte (32-bit) preamble .. alternating 0's & 1's
// 4-byte (32-bit) sync
// 1-byte packet length (number of data bytes to follow)
// 0 to 255 user data bytes
//
// Our own packet data will also contain it's own header and 32-bit CRC
// as a single 16-bit CRC is not sufficient for wireless comms.
//
// *****************************************************************
/* Project Includes */
#include "pios.h"
#if defined(PIOS_INCLUDE_RFM22B)
#include <pios_spi_priv.h>
#include <packet_handler.h>
#include <pios_rfm22b_priv.h>
/* Local Defines */
#define STACK_SIZE_BYTES 200
#define TASK_PRIORITY (tskIDLE_PRIORITY + 2)
#define ISR_TIMEOUT 5 // ms
// RTC timer is running at 625Hz (1.6ms or 5 ticks == 8ms).
// A 256 byte message at 56kbps should take less than 40ms
// Note: This timeout should be rate dependent.
#define PIOS_RFM22B_SUPERVISOR_TIMEOUT 100 // ms
// this is too adjust the RF module so that it is on frequency
#define OSC_LOAD_CAP 0x7F // cap = 12.5pf .. default
#define OSC_LOAD_CAP_1 0x7D // board 1
#define OSC_LOAD_CAP_2 0x7B // board 2
#define OSC_LOAD_CAP_3 0x7E // board 3
#define OSC_LOAD_CAP_4 0x7F // board 4
// ************************************
#define TX_TEST_MODE_TIMELIMIT_MS 30000 // TX test modes time limit (in ms)
#define TX_PREAMBLE_NIBBLES 12 // 7 to 511 (number of nibbles)
#define RX_PREAMBLE_NIBBLES 6 // 5 to 31 (number of nibbles)
// the size of the rf modules internal transmit buffers.
#define TX_BUFFER_SIZE 256
// the size of the rf modules internal FIFO buffers
#define FIFO_SIZE 64
#define TX_FIFO_HI_WATERMARK 62 // 0-63
#define TX_FIFO_LO_WATERMARK 32 // 0-63
#define RX_FIFO_HI_WATERMARK 32 // 0-63
#define PREAMBLE_BYTE 0x55 // preamble byte (preceeds SYNC_BYTE's)
#define SYNC_BYTE_1 0x2D // RF sync bytes (32-bit in all)
#define SYNC_BYTE_2 0xD4 //
#define SYNC_BYTE_3 0x4B //
#define SYNC_BYTE_4 0x59 //
// ************************************
// the default RF datarate
//#define RFM22_DEFAULT_RF_DATARATE 500 // 500 bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 1000 // 1k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 2000 // 2k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 4000 // 4k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 8000 // 8k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 9600 // 9.6k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 16000 // 16k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 19200 // 19k2 bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 24000 // 24k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 32000 // 32k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 64000 // 64k bits per sec
#define RFM22_DEFAULT_RF_DATARATE 128000 // 128k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 192000 // 192k bits per sec
//#define RFM22_DEFAULT_RF_DATARATE 256000 // 256k bits per sec .. NOT YET WORKING
// ************************************
#define RFM22_DEFAULT_SS_RF_DATARATE 125 // 128bps
#ifndef RX_LED_ON
#define RX_LED_ON
#define RX_LED_OFF
#define TX_LED_ON
#define TX_LED_OFF
#define LINK_LED_ON
#define LINK_LED_OFF
#define USB_LED_ON
#define USB_LED_OFF
#endif
// ************************************
// Normal data streaming
// GFSK modulation
// no manchester encoding
// data whitening
// FIFO mode
// 5-nibble rx preamble length detection
// 10-nibble tx preamble length
// AFC enabled
/* Local type definitions */
enum pios_rfm22b_dev_magic {
PIOS_RFM22B_DEV_MAGIC = 0x68e971b6,
};
enum pios_rfm22b_state {
RFM22B_STATE_INITIALIZING,
RFM22B_STATE_RESETTING,
RFM22B_STATE_ERROR,
RFM22B_STATE_RX_WAIT_PREAMBLE,
RFM22B_STATE_RX_WAIT_SYNC,
RFM22B_STATE_RX_DATA,
RFM22B_STATE_RX_COMPLETE,
RFM22B_STATE_TX_START,
RFM22B_STATE_TX_DATA,
RFM22B_STATE_TX_COMPLETE
};
enum pios_rfm22b_event {
RFM22B_EVENT_NONE,
RFM22B_EVENT_INT_RECEIVED
};
struct pios_rfm22b_dev {
enum pios_rfm22b_dev_magic magic;
struct pios_rfm22b_cfg cfg;
uint32_t spi_id;
uint32_t slave_num;
uint32_t deviceID;
// The task handle
xTaskHandle taskHandle;
// ISR pending
xSemaphoreHandle isrPending;
// The COM callback functions.
pios_com_callback rx_in_cb;
uint32_t rx_in_context;
pios_com_callback tx_out_cb;
uint32_t tx_out_context;
// the transmit power to use for data transmissions
uint8_t tx_power;
// The state machine state and the current event
enum pios_rfm22b_state state;
enum pios_rfm22b_event event;
// Stats
uint16_t resets;
uint32_t errors;
uint32_t irqs_processed;
};
// Must ensure these prefilled arrays match the define sizes
static const uint8_t FULL_PREAMBLE[FIFO_SIZE] =
{PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,
PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE}; // 64 bytes
static const uint8_t HEADER[(TX_PREAMBLE_NIBBLES + 1)/2 + 2] = {PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE, SYNC_BYTE_1, SYNC_BYTE_2};
static const uint8_t OUT_FF[64] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
/* Local function forwared declarations */
static void PIOS_RFM22B_Task(void *parameters);
static void PIOS_RFM22B_SetRxMode(enum pios_rfm22b_event state);
static void PIOS_RFM22B_InjectEvent(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event, bool inISR);
static void rfm22_processInt(struct pios_rfm22b_dev *rfm22b_dev);
// SPI read/write functions
static void rfm22_write(uint8_t addr, uint8_t data);
static uint8_t rfm22_read(uint8_t addr);
uint8_t rfm22_txStart();
/* Provide a COM driver */
static void PIOS_RFM22B_ChangeBaud(uint32_t rfm22b_id, uint32_t baud);
static void PIOS_RFM22B_RegisterRxCallback(uint32_t rfm22b_id, pios_com_callback rx_in_cb, uint32_t context);
static void PIOS_RFM22B_RegisterTxCallback(uint32_t rfm22b_id, pios_com_callback tx_out_cb, uint32_t context);
static void PIOS_RFM22B_TxStart(uint32_t rfm22b_id, uint16_t tx_bytes_avail);
static void PIOS_RFM22B_RxStart(uint32_t rfm22b_id, uint16_t rx_bytes_avail);
/* Local variables */
const struct pios_com_driver pios_rfm22b_com_driver = {
.set_baud = PIOS_RFM22B_ChangeBaud,
.tx_start = PIOS_RFM22B_TxStart,
.rx_start = PIOS_RFM22B_RxStart,
.bind_tx_cb = PIOS_RFM22B_RegisterTxCallback,
.bind_rx_cb = PIOS_RFM22B_RegisterRxCallback,
};
// xtal 10 ppm, 434MHz
#define LOOKUP_SIZE 14
const uint32_t data_rate[] = { 500, 1000, 2000, 4000, 8000, 9600, 16000, 19200, 24000, 32000, 64000, 128000, 192000, 256000};
const uint8_t modulation_index[] = { 16, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
const uint32_t freq_deviation[] = { 4000, 4000, 4000, 4000, 4000, 4800, 8000, 9600, 12000, 16000, 32000, 64000, 96000, 128000};
const uint32_t rx_bandwidth[] = { 17500, 17500, 17500, 17500, 17500, 19400, 32200, 38600, 51200, 64100, 137900, 269300, 420200, 518800};
const int8_t est_rx_sens_dBm[] = { -118, -118, -117, -116, -115, -115, -112, -112, -110, -109, -106, -103, -101, -100}; // estimated receiver sensitivity for BER = 1E-3
const uint8_t reg_1C[] = { 0x37, 0x37, 0x37, 0x37, 0x3A, 0x3B, 0x26, 0x28, 0x2E, 0x16, 0x07, 0x83, 0x8A, 0x8C}; // rfm22_if_filter_bandwidth
const uint8_t reg_1D[] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44}; // rfm22_afc_loop_gearshift_override
const uint8_t reg_1E[] = { 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x02}; // rfm22_afc_timing_control
const uint8_t reg_1F[] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; // rfm22_clk_recovery_gearshift_override
const uint8_t reg_20[] = { 0xE8, 0xF4, 0xFA, 0x70, 0x3F, 0x34, 0x3F, 0x34, 0x2A, 0x3F, 0x3F, 0x5E, 0x3F, 0x2F}; // rfm22_clk_recovery_oversampling_ratio
const uint8_t reg_21[] = { 0x60, 0x20, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x02, 0x02, 0x01, 0x02, 0x02}; // rfm22_clk_recovery_offset2
const uint8_t reg_22[] = { 0x20, 0x41, 0x83, 0x06, 0x0C, 0x75, 0x0C, 0x75, 0x12, 0x0C, 0x0C, 0x5D, 0x0C, 0xBB}; // rfm22_clk_recovery_offset1
const uint8_t reg_23[] = { 0xC5, 0x89, 0x12, 0x25, 0x4A, 0x25, 0x4A, 0x25, 0x6F, 0x4A, 0x4A, 0x86, 0x4A, 0x0D}; // rfm22_clk_recovery_offset0
const uint8_t reg_24[] = { 0x00, 0x00, 0x00, 0x02, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x05, 0x07, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
const uint8_t reg_25[] = { 0x0A, 0x23, 0x85, 0x0E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x74, 0xFF, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
const uint8_t reg_2A[] = { 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0E, 0x12, 0x17, 0x31, 0x50, 0x50, 0x50}; // rfm22_afc_limiter .. AFC_pull_in_range = <20>AFCLimiter[7:0] x (hbsel+1) x 625 Hz
const uint8_t reg_6E[] = { 0x04, 0x08, 0x10, 0x20, 0x41, 0x4E, 0x83, 0x9D, 0xC4, 0x08, 0x10, 0x20, 0x31, 0x41}; // rfm22_tx_data_rate1
const uint8_t reg_6F[] = { 0x19, 0x31, 0x62, 0xC5, 0x89, 0xA5, 0x12, 0x49, 0x9C, 0x31, 0x62, 0xC5, 0x27, 0x89}; // rfm22_tx_data_rate0
const uint8_t reg_70[] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D}; // rfm22_modulation_mode_control1
const uint8_t reg_71[] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23}; // rfm22_modulation_mode_control2
const uint8_t reg_72[] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x08, 0x0D, 0x0F, 0x13, 0x1A, 0x33, 0x66, 0x9A, 0xCD}; // rfm22_frequency_deviation
// ************************************
// Scan Spectrum settings
// GFSK modulation
// no manchester encoding
// data whitening
// FIFO mode
// 5-nibble rx preamble length detection
// 10-nibble tx preamble length
#define SS_LOOKUP_SIZE 2
// xtal 1 ppm, 434MHz
const uint32_t ss_rx_bandwidth[] = { 2600, 10600};
const uint8_t ss_reg_1C[] = { 0x51, 0x32}; // rfm22_if_filter_bandwidth
const uint8_t ss_reg_1D[] = { 0x00, 0x00}; // rfm22_afc_loop_gearshift_override
const uint8_t ss_reg_20[] = { 0xE8, 0x38}; // rfm22_clk_recovery_oversampling_ratio
const uint8_t ss_reg_21[] = { 0x60, 0x02}; // rfm22_clk_recovery_offset2
const uint8_t ss_reg_22[] = { 0x20, 0x4D}; // rfm22_clk_recovery_offset1
const uint8_t ss_reg_23[] = { 0xC5, 0xD3}; // rfm22_clk_recovery_offset0
const uint8_t ss_reg_24[] = { 0x00, 0x07}; // rfm22_clk_recovery_timing_loop_gain1
const uint8_t ss_reg_25[] = { 0x0F, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0
const uint8_t ss_reg_2A[] = { 0xFF, 0xFF}; // rfm22_afc_limiter .. AFC_pull_in_range = <20>AFCLimiter[7:0] x (hbsel+1) x 625 Hz
const uint8_t ss_reg_70[] = { 0x24, 0x2D}; // rfm22_modulation_mode_control1
const uint8_t ss_reg_71[] = { 0x2B, 0x23}; // rfm22_modulation_mode_control2
// ************************************
volatile bool initialized = false;
#if defined(RFM22_EXT_INT_USE)
volatile bool exec_using_spi; // set this if you want to access the SPI bus outside of the interrupt
#endif
uint8_t device_type; // the RF chips device ID number
uint8_t device_version; // the RF chips revision number
uint32_t lower_carrier_frequency_limit_Hz; // the minimum RF frequency we can use
uint32_t upper_carrier_frequency_limit_Hz; // the maximum RF frequency we can use
uint32_t carrier_frequency_hz; // the current RF frequency we are on
uint32_t carrier_datarate_bps; // the RF data rate we are using
uint32_t rf_bandwidth_used; // the RF bandwidth currently used
uint32_t ss_rf_bandwidth_used; // the RF bandwidth currently used
uint8_t hbsel; // holds the hbsel (1 or 2)
float frequency_step_size; // holds the minimum frequency step size
uint8_t frequency_hop_channel; // current frequency hop channel
uint8_t frequency_hop_step_size_reg; //
uint8_t adc_config; // holds the adc config reg value
volatile uint8_t device_status; // device status register
volatile uint8_t int_status1; // interrupt status register 1
volatile uint8_t int_status2; // interrupt status register 2
volatile uint8_t ezmac_status; // ezmac status register
volatile int16_t afc_correction; // afc correction reading
volatile int32_t afc_correction_Hz; // afc correction reading (in Hz)
volatile int16_t temperature_reg; // the temperature sensor reading
volatile uint8_t osc_load_cap; // xtal frequency calibration value
volatile uint8_t rssi; // the current RSSI (register value)
volatile int8_t rssi_dBm; // dBm value
// the tx power register read back
volatile uint8_t tx_pwr;
// The transmit buffer. Holds data that is being transmitted.
uint8_t tx_buffer[TX_BUFFER_SIZE] __attribute__ ((aligned(4)));
// The transmit buffer. Hosts data that is wating to be transmitted.
uint8_t tx_pre_buffer[TX_BUFFER_SIZE] __attribute__ ((aligned(4)));
// The tx pre-buffer write index.
uint16_t tx_pre_buffer_size;
// the tx data read index
volatile uint16_t tx_data_rd;
// the tx data write index
volatile uint16_t tx_data_wr;
// the current receive buffer in use (double buffer)
volatile uint8_t rx_buffer_current;
// the receive buffer .. received packet data is saved here
volatile uint8_t rx_buffer[258] __attribute__ ((aligned(4)));
// the receive buffer write index
volatile uint16_t rx_buffer_wr;
// the received packet
volatile int8_t rx_packet_start_rssi_dBm; //
volatile int8_t rx_packet_start_afc_Hz; //
volatile int8_t rx_packet_rssi_dBm; // the received packet signal strength
volatile int8_t rx_packet_afc_Hz; // the receive packet frequency offset
int lookup_index;
int ss_lookup_index;
volatile uint16_t rfm22_int_timer; // used to detect if the RF module stops responding. thus act accordingly if it does stop responding.
volatile uint16_t rfm22_int_time_outs; // counter
volatile uint16_t prev_rfm22_int_time_outs; //
uint16_t timeout_ms = 20000; //
uint16_t timeout_sync_ms = 3; //
uint16_t timeout_data_ms = 20; //
static bool PIOS_RFM22B_validate(struct pios_rfm22b_dev * rfm22b_dev)
{
return (rfm22b_dev != NULL && rfm22b_dev->magic == PIOS_RFM22B_DEV_MAGIC);
}
#if defined(PIOS_INCLUDE_FREERTOS)
static struct pios_rfm22b_dev * PIOS_RFM22B_alloc(void)
{
struct pios_rfm22b_dev * rfm22b_dev;
rfm22b_dev = (struct pios_rfm22b_dev *)pvPortMalloc(sizeof(*rfm22b_dev));
rfm22b_dev->spi_id = 0;
if (!rfm22b_dev) return(NULL);
rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC;
return(rfm22b_dev);
}
#else
static struct pios_rfm22b_dev pios_rfm22b_devs[PIOS_RFM22B_MAX_DEVS];
static uint8_t pios_rfm22b_num_devs;
static struct pios_rfm22b_dev * PIOS_RFM22B_alloc(void)
{
struct pios_rfm22b_dev * rfm22b_dev;
if (pios_rfm22b_num_devs >= PIOS_RFM22B_MAX_DEVS)
return NULL;
rfm22b_dev = &pios_rfm22b_devs[pios_rfm22b_num_devs++];
rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC;
return (rfm22b_dev);
}
#endif
static struct pios_rfm22b_dev * g_rfm22b_dev = NULL;
/**
* Initialise an RFM22B device
*/
int32_t PIOS_RFM22B_Init(uint32_t *rfm22b_id, uint32_t spi_id, uint32_t slave_num, const struct pios_rfm22b_cfg *cfg)
{
PIOS_DEBUG_Assert(rfm22b_id);
PIOS_DEBUG_Assert(cfg);
// Allocate the device structure.
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *) PIOS_RFM22B_alloc();
if (!rfm22b_dev)
return(-1);
// Store the SPI handle
rfm22b_dev->slave_num = slave_num;
rfm22b_dev->spi_id = spi_id;
// Set the state to initializing.
rfm22b_dev->state = RFM22B_STATE_INITIALIZING;
rfm22b_dev->event = RFM22B_EVENT_NONE;
// Initialize the stats.
rfm22b_dev->resets = 0;
rfm22b_dev->errors = 0;
rfm22b_dev->irqs_processed = 0;
// Bind the configuration to the device instance
rfm22b_dev->cfg = *cfg;
*rfm22b_id = (uint32_t)rfm22b_dev;
g_rfm22b_dev = rfm22b_dev;
// Create a semaphore to know if an ISR needs responding to
vSemaphoreCreateBinary( rfm22b_dev->isrPending );
// Initialize the TX pre-buffer pointer.
tx_pre_buffer_size = 0;
// Initialize the max tx power level.
PIOS_RFM22B_SetTxPower(*rfm22b_id, cfg->maxTxPower);
// Create our (hopefully) unique 32 bit id from the processor serial number.
uint8_t crcs[] = { 0, 0, 0, 0 };
{
char serial_no_str[33];
PIOS_SYS_SerialNumberGet(serial_no_str);
// Create a 32 bit value using 4 8 bit CRC values.
for (uint8_t i = 0; serial_no_str[i] != 0; ++i)
crcs[i % 4] = PIOS_CRC_updateByte(crcs[i % 4], serial_no_str[i]);
}
rfm22b_dev->deviceID = crcs[0] | crcs[1] << 8 | crcs[2] << 16 | crcs[3] << 24;
DEBUG_PRINTF(2, "RF device ID: %x\n\r", rfm22b_dev->deviceID);
// Initialize the external interrupt.
PIOS_EXTI_Init(cfg->exti_cfg);
// Initialize the radio device.
int initval = rfm22_init_normal(rfm22b_dev->deviceID, cfg->minFrequencyHz, cfg->maxFrequencyHz, 50000);
if (initval < 0)
{
// RF module error .. flash the LED's
#if defined(PIOS_COM_DEBUG)
DEBUG_PRINTF(2, "RF ERROR res: %d\n\r\n\r", initval);
#endif
for(unsigned int j = 0; j < 16; j++)
{
USB_LED_ON;
LINK_LED_ON;
RX_LED_OFF;
TX_LED_OFF;
PIOS_DELAY_WaitmS(200);
USB_LED_OFF;
LINK_LED_OFF;
RX_LED_ON;
TX_LED_ON;
PIOS_DELAY_WaitmS(200);
}
PIOS_DELAY_WaitmS(1000);
return initval;
}
rfm22_setFreqCalibration(cfg->RFXtalCap);
rfm22_setNominalCarrierFrequency(cfg->frequencyHz);
rfm22_setDatarate(cfg->maxRFBandwidth, true);
DEBUG_PRINTF(2, "\n\r");
DEBUG_PRINTF(2, "RF device ID: %x\n\r", rfm22b_dev->deviceID);
DEBUG_PRINTF(2, "RF datarate: %dbps\n\r", rfm22_getDatarate());
DEBUG_PRINTF(2, "RF frequency: %dHz\n\r", rfm22_getNominalCarrierFrequency());
DEBUG_PRINTF(2, "RF TX power: %d\n\r", rfm22b_dev->tx_power);
// Register the watchdog timer for the radio driver task
#ifdef PIOS_WDG_RFM22B
PIOS_WDG_RegisterFlag(PIOS_WDG_RFM22B);
#endif /* PIOS_WDG_RFM22B */
// Start the driver task. This task controls the radio state machine and removed all of the IO from the IRQ handler.
xTaskCreate(PIOS_RFM22B_Task, (signed char *)"PIOS_RFM22B_Task", STACK_SIZE_BYTES, (void*)rfm22b_dev, TASK_PRIORITY, &(rfm22b_dev->taskHandle));
return(0);
}
/**
* The RFM22B external interrupt routine.
*/
void PIOS_RFM22_EXT_Int(void)
{
if (!PIOS_RFM22B_validate(g_rfm22b_dev))
return;
// Inject an interrupt event into the state machine.
PIOS_RFM22B_InjectEvent(g_rfm22b_dev, RFM22B_EVENT_INT_RECEIVED, true);
}
/**
* Inject an event into the RFM22B state machine.
* \param[in] rfm22b_dev The device structure
* \param[in] event The event to inject
* \param[in] inISR Is this being called from an interrrup service routine?
*/
static void PIOS_RFM22B_InjectEvent(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event, bool inISR)
{
// Store the event.
rfm22b_dev->event = event;
// Signal the semaphore to wake up the handler thread.
if (inISR) {
portBASE_TYPE pxHigherPriorityTaskWoken;
if (xSemaphoreGiveFromISR(rfm22b_dev->isrPending, &pxHigherPriorityTaskWoken) != pdTRUE) {
// Something went fairly seriously wrong
rfm22b_dev->errors++;
}
portEND_SWITCHING_ISR(pxHigherPriorityTaskWoken);
}
else
{
if (xSemaphoreGive(rfm22b_dev->isrPending) != pdTRUE) {
// Something went fairly seriously wrong
rfm22b_dev->errors++;
}
}
}
/**
* Returns the unique device ID for th RFM22B device.
* \param[in] rfm22b_id The RFM22B device index.
* \return The unique device ID
*/
uint32_t PIOS_RFM22B_DeviceID(uint32_t rfm22b_id)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if(PIOS_RFM22B_validate(rfm22b_dev))
return rfm22b_dev->deviceID;
else
return 0;
}
void PIOS_RFM22B_SetTxPower(uint32_t rfm22b_id, uint8_t tx_pwr)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
if(!PIOS_RFM22B_validate(rfm22b_dev))
return;
switch (tx_pwr)
{
case 0: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_0; break; // +1dBm ... 1.25mW
case 1: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_1; break; // +2dBm ... 1.6mW
case 2: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_2; break; // +5dBm ... 3.16mW
case 3: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_3; break; // +8dBm ... 6.3mW
case 4: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_4; break; // +11dBm .. 12.6mW
case 5: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_5; break; // +14dBm .. 25mW
case 6: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_6; break; // +17dBm .. 50mW
case 7: rfm22b_dev->tx_power = RFM22_tx_pwr_txpow_7; break; // +20dBm .. 100mW
default: break;
}
}
int8_t PIOS_RFM22B_RSSI(uint32_t rfm22b_id)
{
return rfm22_receivedRSSI();
}
int16_t PIOS_RFM22B_Resets(uint32_t rfm22b_id)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
return rfm22b_dev->resets;
}
static void PIOS_RFM22B_RxStart(uint32_t rfm22b_id, uint16_t rx_bytes_avail)
{
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
PIOS_Assert(valid);
}
/**
* The task that controls the radio state machine.
*/
static void PIOS_RFM22B_Task(void *parameters)
{
struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)parameters;
if (!PIOS_RFM22B_validate(rfm22b_dev))
return;
static portTickType lastEventTime;
while(1)
{
#ifdef PIOS_WDG_RFM22B
// Update the watchdog timer
PIOS_WDG_UpdateFlag(PIOS_WDG_RFM22B);
#endif /* PIOS_WDG_RFM22B */
// Wait for a signal indicating an external interrupt or a pending send/receive request.
if ( xSemaphoreTake(g_rfm22b_dev->isrPending, ISR_TIMEOUT / portTICK_RATE_MS) == pdTRUE ) {
rfm22b_dev->irqs_processed++;
lastEventTime = xTaskGetTickCount();
rfm22_processInt(rfm22b_dev);
}
else
{
// Has it been too long since the last event?
portTickType timeSinceEvent = xTaskGetTickCount() - lastEventTime;
if ((timeSinceEvent / portTICK_RATE_MS) > PIOS_RFM22B_SUPERVISOR_TIMEOUT)
{
rfm22b_dev->resets++;
TX_LED_OFF;
TX_LED_OFF;
/* Clear the TX buffer in case we locked up in a transmit */
tx_data_wr = 0;
rfm22_init_normal(rfm22b_dev->deviceID, rfm22b_dev->cfg.minFrequencyHz, rfm22b_dev->cfg.maxFrequencyHz, 50000);
/* Start a packet transfer if one is available. */
rfm22b_dev->state = RFM22B_STATE_RX_WAIT_PREAMBLE;
if(rfm22b_dev->state == RFM22B_STATE_RX_WAIT_PREAMBLE)
{
/* Switch to RX mode */
PIOS_RFM22B_SetRxMode(RFM22B_STATE_RX_WAIT_PREAMBLE);
}
}
}
}
}
static void PIOS_RFM22B_TxStart(uint32_t rfm22b_id, uint16_t tx_bytes_avail)
{
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
PIOS_Assert(valid);
// Get some data to send
bool need_yield = false;
if(tx_pre_buffer_size == 0)
tx_pre_buffer_size = (rfm22b_dev->tx_out_cb)(rfm22b_dev->tx_out_context, tx_pre_buffer,
TX_BUFFER_SIZE, NULL, &need_yield);
if(tx_pre_buffer_size > 0)
{
// already have data to be sent
if (tx_data_wr > 0)
return;
// we are currently transmitting?
if (rfm22b_dev->state == RFM22B_STATE_TX_DATA)
return;
// is the channel clear to transmit on?
if (!rfm22_channelIsClear())
return;
// Start the transmit
rfm22_txStart();
}
}
/**
* Changes the baud rate of the RFM22B peripheral without re-initialising.
* \param[in] rfm22b_id RFM22B name (GPS, TELEM, AUX)
* \param[in] baud Requested baud rate
*/
static void PIOS_RFM22B_ChangeBaud(uint32_t rfm22b_id, uint32_t baud)
{
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
PIOS_Assert(valid);
}
static void PIOS_RFM22B_RegisterRxCallback(uint32_t rfm22b_id, pios_com_callback rx_in_cb, uint32_t context)
{
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
PIOS_Assert(valid);
/*
* Order is important in these assignments since ISR uses _cb
* field to determine if it's ok to dereference _cb and _context
*/
rfm22b_dev->rx_in_context = context;
rfm22b_dev->rx_in_cb = rx_in_cb;
}
static void PIOS_RFM22B_RegisterTxCallback(uint32_t rfm22b_id, pios_com_callback tx_out_cb, uint32_t context)
{
struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id;
bool valid = PIOS_RFM22B_validate(rfm22b_dev);
PIOS_Assert(valid);
/*
* Order is important in these assignments since ISR uses _cb
* field to determine if it's ok to dereference _cb and _context
*/
rfm22b_dev->tx_out_context = context;
rfm22b_dev->tx_out_cb = tx_out_cb;
}
// ************************************
// SPI read/write
//! Assert the CS line
static void rfm22_assertCs()
{
PIOS_DELAY_WaituS(1);
if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0)
PIOS_SPI_RC_PinSet(g_rfm22b_dev->spi_id, g_rfm22b_dev->slave_num, 0);
}
//! Deassert the CS line
static void rfm22_deassertCs()
{
if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0)
PIOS_SPI_RC_PinSet(g_rfm22b_dev->spi_id, g_rfm22b_dev->slave_num, 1);
}
//! Claim the SPI bus semaphore
static void rfm22_claimBus()
{
if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0)
PIOS_SPI_ClaimBus(g_rfm22b_dev->spi_id);
}
//! Release the SPI bus semaphore
static void rfm22_releaseBus()
{
if(PIOS_RFM22B_validate(g_rfm22b_dev) && g_rfm22b_dev->spi_id != 0)
PIOS_SPI_ReleaseBus(g_rfm22b_dev->spi_id);
}
/**
* Claim the semaphore and write a byte to a register
* @param[in] addr The address to write to
* @param[in] data The datat to write to that address
*/
static void rfm22_write(uint8_t addr, uint8_t data)
{
if(PIOS_RFM22B_validate(g_rfm22b_dev)) {
rfm22_claimBus();
rfm22_assertCs();
uint8_t buf[2] = {addr | 0x80, data};
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, buf, NULL, sizeof(buf), NULL);
rfm22_deassertCs();
rfm22_releaseBus();
}
}
/**
* Write a byte to a register without claiming the bus. Also
* toggle the NSS line
* @param[in] addr The address of the RFM22b register to write
* @param[in] data The data to write to that register
static void rfm22_write_noclaim(uint8_t addr, uint8_t data)
{
uint8_t buf[2] = {addr | 0x80, data};
if(PIOS_RFM22B_validate(g_rfm22b_dev)) {
rfm22_assertCs();
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, buf, NULL, sizeof(buf), NULL);
rfm22_deassertCs();
}
}
*/
/**
* Read a byte from an RFM22b register
* @param[in] addr The address to read from
* @return Returns the result of the register read
*/
static uint8_t rfm22_read(uint8_t addr)
{
uint8_t in[2];
uint8_t out[2] = {addr & 0x7f, 0xFF};
if(PIOS_RFM22B_validate(g_rfm22b_dev)) {
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, out, in, sizeof(out), NULL);
rfm22_deassertCs();
rfm22_releaseBus();
}
return in[1];
}
/**
* Read a byte from an RFM22b register without claiming the bus
* @param[in] addr The address to read from
* @return Returns the result of the register read
*/
static uint8_t rfm22_read_noclaim(uint8_t addr)
{
uint8_t out[2] = {addr & 0x7F, 0xFF};
uint8_t in[2];
if (PIOS_RFM22B_validate(g_rfm22b_dev)) {
rfm22_assertCs();
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, out, in, sizeof(out), NULL);
rfm22_deassertCs();
}
return in[1];
}
// ************************************
uint32_t rfm22_minFrequency(void)
{
return lower_carrier_frequency_limit_Hz;
}
uint32_t rfm22_maxFrequency(void)
{
return upper_carrier_frequency_limit_Hz;
}
void rfm22_setNominalCarrierFrequency(uint32_t frequency_hz)
{
exec_using_spi = true;
// *******
if (frequency_hz < lower_carrier_frequency_limit_Hz)
frequency_hz = lower_carrier_frequency_limit_Hz;
else if (frequency_hz > upper_carrier_frequency_limit_Hz)
frequency_hz = upper_carrier_frequency_limit_Hz;
if (frequency_hz < 480000000)
hbsel = 1;
else
hbsel = 2;
uint8_t fb = (uint8_t)(frequency_hz / (10000000 * hbsel));
uint32_t fc = (uint32_t)(frequency_hz - (10000000 * hbsel * fb));
fc = (fc * 64u) / (10000ul * hbsel);
fb -= 24;
// carrier_frequency_hz = frequency_hz;
carrier_frequency_hz = ((uint32_t)fb + 24 + ((float)fc / 64000)) * 10000000 * hbsel;
if (hbsel > 1)
fb |= RFM22_fbs_hbsel;
fb |= RFM22_fbs_sbse; // is this the RX LO polarity?
frequency_step_size = 156.25f * hbsel;
rfm22_write(RFM22_frequency_hopping_channel_select, frequency_hop_channel); // frequency hopping channel (0-255)
rfm22_write(RFM22_frequency_offset1, 0); // no frequency offset
rfm22_write(RFM22_frequency_offset2, 0); // no frequency offset
rfm22_write(RFM22_frequency_band_select, fb); // set the carrier frequency
rfm22_write(RFM22_nominal_carrier_frequency1, fc >> 8); // " "
rfm22_write(RFM22_nominal_carrier_frequency0, fc & 0xff); // " "
// *******
#if defined(RFM22_DEBUG)
//DEBUG_PRINTF(2, "rf setFreq: %u\n\r", carrier_frequency_hz);
// DEBUG_PRINTF(2, "rf setFreq frequency_step_size: %0.2f\n\r", frequency_step_size);
#endif
exec_using_spi = false;
}
uint32_t rfm22_getNominalCarrierFrequency(void)
{
return carrier_frequency_hz;
}
float rfm22_getFrequencyStepSize(void)
{
return frequency_step_size;
}
void rfm22_setFreqHopChannel(uint8_t channel)
{ // set the frequency hopping channel
frequency_hop_channel = channel;
rfm22_write(RFM22_frequency_hopping_channel_select, frequency_hop_channel);
}
uint8_t rfm22_freqHopChannel(void)
{ // return the current frequency hopping channel
return frequency_hop_channel;
}
uint32_t rfm22_freqHopSize(void)
{ // return the frequency hopping step size
return ((uint32_t)frequency_hop_step_size_reg * 10000);
}
// ************************************
// radio datarate about 19200 Baud
// radio frequency deviation 45kHz
// radio receiver bandwidth 67kHz.
//
// Carson's rule:
// The signal bandwidth is about 2(Delta-f + fm) ..
//
// Delta-f = frequency deviation
// fm = maximum frequency of the signal
//
// This gives 2(45 + 9.6) = 109.2kHz.
void rfm22_setDatarate(uint32_t datarate_bps, bool data_whitening)
{
exec_using_spi = true;
lookup_index = 0;
while (lookup_index < (LOOKUP_SIZE - 1) && data_rate[lookup_index] < datarate_bps)
lookup_index++;
carrier_datarate_bps = datarate_bps = data_rate[lookup_index];
rf_bandwidth_used = rx_bandwidth[lookup_index];
// rfm22_if_filter_bandwidth
rfm22_write(0x1C, reg_1C[lookup_index]);
// rfm22_afc_loop_gearshift_override
rfm22_write(0x1D, reg_1D[lookup_index]);
// RFM22_afc_timing_control
rfm22_write(0x1E, reg_1E[lookup_index]);
// RFM22_clk_recovery_gearshift_override
rfm22_write(0x1F, reg_1F[lookup_index]);
// rfm22_clk_recovery_oversampling_ratio
rfm22_write(0x20, reg_20[lookup_index]);
// rfm22_clk_recovery_offset2
rfm22_write(0x21, reg_21[lookup_index]);
// rfm22_clk_recovery_offset1
rfm22_write(0x22, reg_22[lookup_index]);
// rfm22_clk_recovery_offset0
rfm22_write(0x23, reg_23[lookup_index]);
// rfm22_clk_recovery_timing_loop_gain1
rfm22_write(0x24, reg_24[lookup_index]);
// rfm22_clk_recovery_timing_loop_gain0
rfm22_write(0x25, reg_25[lookup_index]);
// rfm22_afc_limiter
rfm22_write(0x2A, reg_2A[lookup_index]);
if (carrier_datarate_bps < 100000)
// rfm22_chargepump_current_trimming_override
rfm22_write(0x58, 0x80);
else
// rfm22_chargepump_current_trimming_override
rfm22_write(0x58, 0xC0);
// rfm22_tx_data_rate1
rfm22_write(0x6E, reg_6E[lookup_index]);
// rfm22_tx_data_rate0
rfm22_write(0x6F, reg_6F[lookup_index]);
// Enable data whitening
// uint8_t txdtrtscale_bit = rfm22_read(RFM22_modulation_mode_control1) & RFM22_mmc1_txdtrtscale;
// rfm22_write(RFM22_modulation_mode_control1, txdtrtscale_bit | RFM22_mmc1_enwhite);
if (!data_whitening)
// rfm22_modulation_mode_control1
rfm22_write(0x70, reg_70[lookup_index] & ~RFM22_mmc1_enwhite);
else
// rfm22_modulation_mode_control1
rfm22_write(0x70, reg_70[lookup_index] | RFM22_mmc1_enwhite);
// rfm22_modulation_mode_control2
rfm22_write(0x71, reg_71[lookup_index]);
// rfm22_frequency_deviation
rfm22_write(0x72, reg_72[lookup_index]);
rfm22_write(RFM22_ook_counter_value1, 0x00);
rfm22_write(RFM22_ook_counter_value2, 0x00);
// ********************************
// calculate the TX register values
/*
uint16_t fd = frequency_deviation / 625;
uint8_t mmc1 = RFM22_mmc1_enphpwdn | RFM22_mmc1_manppol;
uint16_t txdr;
if (datarate_bps < 30000)
{
txdr = (datarate_bps * 20972) / 10000;
mmc1 |= RFM22_mmc1_txdtrtscale;
}
else
txdr = (datarate_bps * 6553) / 100000;
uint8_t mmc2 = RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk; // FIFO mode, GFSK
// uint8_t mmc2 = RFM22_mmc2_dtmod_pn9 | RFM22_mmc2_modtyp_gfsk; // PN9 mode, GFSK .. TX TEST MODE
if (fd & 0x100) mmc2 |= RFM22_mmc2_fd;
rfm22_write(RFM22_frequency_deviation, fd); // set the TX peak frequency deviation
rfm22_write(RFM22_modulation_mode_control1, mmc1);
rfm22_write(RFM22_modulation_mode_control2, mmc2);
rfm22_write(RFM22_tx_data_rate1, txdr >> 8); // set the TX data rate
rfm22_write(RFM22_tx_data_rate0, txdr); // " "
*/
// ********************************
// determine a clear channel time
// initialise the stopwatch with a suitable resolution for the datarate
//STOPWATCH_init(4000000ul / carrier_datarate_bps); // set resolution to the time for 1 nibble (4-bits) at rf datarate
// ********************************
// determine suitable time-out periods
// milliseconds
timeout_sync_ms = (8000ul * 16) / carrier_datarate_bps;
if (timeout_sync_ms < 3)
// because out timer resolution is only 1ms
timeout_sync_ms = 3;
// milliseconds
timeout_data_ms = (8000ul * 100) / carrier_datarate_bps;
if (timeout_data_ms < 3)
// because out timer resolution is only 1ms
timeout_data_ms = 3;
// ********************************
#if defined(RFM22_DEBUG)
/*
DEBUG_PRINTF(2, "rf datarate_bps: %d\n\r", datarate_bps);
DEBUG_PRINTF(2, "rf frequency_deviation: %d\n\r", frequency_deviation);
uint32_t frequency_deviation = freq_deviation[lookup_index]; // Hz
uint32_t modulation_bandwidth = datarate_bps + (2 * frequency_deviation);
DEBUG_PRINTF(2, "rf modulation_bandwidth: %u\n\r", modulation_bandwidth);
DEBUG_PRINTF(2, "rf_rx_bandwidth[%u]: %u\n\r", lookup_index, rx_bandwidth[lookup_index]);
DEBUG_PRINTF(2, "rf est rx sensitivity[%u]: %ddBm\n\r", lookup_index, est_rx_sens_dBm[lookup_index]);
*/
#endif
// *******
exec_using_spi = false;
}
uint32_t rfm22_getDatarate(void)
{
return carrier_datarate_bps;
}
// ************************************
static void PIOS_RFM22B_SetRxMode(enum pios_rfm22b_event state)
{
exec_using_spi = true;
// disable interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
rfm22_write(RFM22_interrupt_enable2, 0x00);
// Switch to TUNE mode
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon);
RX_LED_OFF;
TX_LED_OFF;
// empty the rx buffer
rx_buffer_wr = 0;
// reset the timer
rfm22_int_timer = 0;
g_rfm22b_dev->state = state;
// Clear the TX buffer.
tx_data_rd = tx_data_wr = 0;
// clear FIFOs
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
// enable RX interrupts
rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_encrcerror | RFM22_ie1_enpkvalid |
RFM22_ie1_enrxffafull | RFM22_ie1_enfferr);
rfm22_write(RFM22_interrupt_enable2, RFM22_ie2_enpreainval | RFM22_ie2_enpreaval |
RFM22_ie2_enswdet);
// enable the receiver
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_rxon);
exec_using_spi = false;
}
// ************************************
uint8_t rfm22_txStart()
{
if((tx_pre_buffer_size == 0) || (exec_using_spi == true))
{
// Clear the TX buffer.
tx_data_rd = tx_data_wr = 0;
return 0;
}
exec_using_spi = true;
// disable interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
rfm22_write(RFM22_interrupt_enable2, 0x00);
// TUNE mode
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon);
// Queue the data up for sending
memcpy(tx_buffer, tx_pre_buffer, tx_pre_buffer_size);
tx_data_rd = 0;
tx_data_wr = tx_pre_buffer_size;
tx_pre_buffer_size = 0;
RX_LED_OFF;
// Set the destination address in the transmit header.
// The destination address is the first 4 bytes of the message.
rfm22_write(RFM22_transmit_header0, tx_buffer[0]);
rfm22_write(RFM22_transmit_header1, tx_buffer[1]);
rfm22_write(RFM22_transmit_header2, tx_buffer[2]);
rfm22_write(RFM22_transmit_header3, tx_buffer[3]);
// FIFO mode, GFSK modulation
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
rfm22_write(RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo |
RFM22_mmc2_modtyp_gfsk);
// set the tx power
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_1 |
RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | g_rfm22b_dev->tx_power);
// clear FIFOs
rfm22_write(RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx);
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
// *******************
// add some data to the chips TX FIFO before enabling the transmitter
// set the total number of data bytes we are going to transmit
rfm22_write(RFM22_transmit_packet_length, tx_data_wr);
// add some data
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(g_rfm22b_dev->spi_id, RFM22_fifo_access | 0x80);
int bytes_to_write = (tx_data_wr - tx_data_rd);
bytes_to_write = (bytes_to_write > FIFO_SIZE) ? FIFO_SIZE: bytes_to_write;
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[tx_data_rd], NULL, bytes_to_write, NULL);
tx_data_rd += bytes_to_write;
rfm22_deassertCs();
rfm22_releaseBus();
// *******************
// reset the timer
rfm22_int_timer = 0;
g_rfm22b_dev->state = RFM22B_STATE_TX_DATA;
// enable TX interrupts
rfm22_write(RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem);
// enable the transmitter
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_txon);
TX_LED_ON;
exec_using_spi = false;
return 1;
}
// ************************************
// external interrupt line triggered (or polled) from the rf chip
void rfm22_processRxInt(struct pios_rfm22b_dev *rfm22b_dev)
{
register uint8_t int_stat1 = int_status1;
register uint8_t int_stat2 = int_status2;
// FIFO under/over flow error. Restart RX mode.
if (device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
{
PIOS_RFM22B_SetRxMode(RFM22B_STATE_RX_WAIT_PREAMBLE);
return;
}
// Valid preamble detected
if (int_stat2 & RFM22_is2_ipreaval && (rfm22b_dev->state == RFM22B_STATE_RX_WAIT_PREAMBLE))
{
rfm22b_dev->state = RFM22B_STATE_RX_WAIT_SYNC;
RX_LED_ON;
}
// Sync word detected
if (int_stat2 & RFM22_is2_iswdet && ((rfm22b_dev->state == RFM22B_STATE_RX_WAIT_PREAMBLE || rfm22b_dev->state == RFM22B_STATE_RX_WAIT_SYNC)))
{
rfm22b_dev->state = RFM22B_STATE_RX_DATA;
RX_LED_ON;
// read the 10-bit signed afc correction value
// bits 9 to 2
afc_correction = (uint16_t)rfm22_read(RFM22_afc_correction_read) << 8;
// bits 1 & 0
afc_correction |= (uint16_t)rfm22_read(RFM22_ook_counter_value1) & 0x00c0;
afc_correction >>= 6;
// convert the afc value to Hz
afc_correction_Hz = (int32_t)(frequency_step_size * afc_correction + 0.5f);
// remember the rssi for this packet
rx_packet_start_rssi_dBm = rssi_dBm;
// remember the afc value for this packet
rx_packet_start_afc_Hz = afc_correction_Hz;
}
// RX FIFO almost full, it needs emptying
if (int_stat1 & RFM22_is1_irxffafull)
{
if (rfm22b_dev->state == RFM22B_STATE_RX_DATA)
{
// read data from the rf chips FIFO buffer
// read the total length of the packet data
uint16_t len = rfm22_read(RFM22_received_packet_length);
// The received packet is going to be larger than the specified length
if ((rx_buffer_wr + RX_FIFO_HI_WATERMARK) > len)
{
PIOS_RFM22B_SetRxMode(RFM22B_STATE_RX_WAIT_PREAMBLE);
return;
}
// Another packet length error.
if (((rx_buffer_wr + RX_FIFO_HI_WATERMARK) >= len) && !(int_stat1 & RFM22_is1_ipkvalid))
{
PIOS_RFM22B_SetRxMode(RFM22B_STATE_RX_WAIT_PREAMBLE);
return;
}
// Fetch the data from the RX FIFO
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(rfm22b_dev->spi_id,RFM22_fifo_access & 0x7F);
rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev->spi_id,OUT_FF,
(uint8_t *) &rx_buffer[rx_buffer_wr],RX_FIFO_HI_WATERMARK,NULL) == 0) ?
RX_FIFO_HI_WATERMARK : 0;
rfm22_deassertCs();
rfm22_releaseBus();
} else {
// Clear the RX FIFO
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(rfm22b_dev->spi_id,RFM22_fifo_access & 0x7F);
PIOS_SPI_TransferBlock(rfm22b_dev->spi_id,OUT_FF,NULL,RX_FIFO_HI_WATERMARK,NULL);
rfm22_deassertCs();
rfm22_releaseBus();
}
}
// CRC error .. discard the received data
if (int_stat1 & RFM22_is1_icrerror)
{
rfm22_int_timer = 0; // reset the timer
PIOS_RFM22B_SetRxMode(RFM22B_STATE_RX_WAIT_PREAMBLE);
return;
}
// Valid packet received
if (int_stat1 & RFM22_is1_ipkvalid)
{
// read the total length of the packet data
uint32_t len = rfm22_read(RFM22_received_packet_length);
// their must still be data in the RX FIFO we need to get
if (rx_buffer_wr < len)
{
int32_t bytes_to_read = len - rx_buffer_wr;
// Fetch the data from the RX FIFO
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(rfm22b_dev->spi_id,RFM22_fifo_access & 0x7F);
rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev->spi_id,OUT_FF,
(uint8_t *) &rx_buffer[rx_buffer_wr],bytes_to_read,NULL) == 0) ?
bytes_to_read : 0;
rfm22_deassertCs();
rfm22_releaseBus();
}
if (rx_buffer_wr != len)
{
// we have a packet length error .. discard the packet
PIOS_RFM22B_SetRxMode(RFM22B_STATE_RX_WAIT_PREAMBLE);
return;
}
// we have a valid received packet
if (rx_buffer_wr > 0)
{
// remember the rssi for this packet
rx_packet_rssi_dBm = rx_packet_start_rssi_dBm;
// remember the afc offset for this packet
rx_packet_afc_Hz = rx_packet_start_afc_Hz;
// Add the rssi and afc to the end of the packet.
rx_buffer[rx_buffer_wr++] = rx_packet_start_rssi_dBm;
rx_buffer[rx_buffer_wr++] = rx_packet_start_afc_Hz;
// Pass this packet on
bool need_yield = false;
if (rfm22b_dev->rx_in_cb)
(rfm22b_dev->rx_in_cb)(rfm22b_dev->rx_in_context, (uint8_t*)rx_buffer,
rx_buffer_wr, NULL, &need_yield);
rx_buffer_wr = 0;
}
// Send a packet if it's available.
if(!rfm22_txStart())
{
// Switch to RX mode
PIOS_RFM22B_SetRxMode(RFM22B_STATE_RX_WAIT_PREAMBLE);
}
}
}
void rfm22_processTxInt(struct pios_rfm22b_dev *rfm22b_dev)
{
register uint8_t int_stat1 = int_status1;
// reset the timer
rfm22_int_timer = 0;
// FIFO under/over flow error. Back to RX mode.
if (device_status & (RFM22_ds_ffunfl | RFM22_ds_ffovfl))
{
PIOS_RFM22B_SetRxMode(RFM22B_STATE_RX_WAIT_PREAMBLE);
return;
}
// Transmit timeout. Abort the transmit.
if (rfm22_int_timer >= timeout_data_ms)
{
rfm22_int_time_outs++;
PIOS_RFM22B_SetRxMode(RFM22B_STATE_RX_WAIT_PREAMBLE);
return;
}
// the rf module is not in tx mode
if ((device_status & RFM22_ds_cps_mask) != RFM22_ds_cps_tx)
{
if (rfm22_int_timer >= 100)
{
rfm22_int_time_outs++;
PIOS_RFM22B_SetRxMode(RFM22B_STATE_RX_WAIT_PREAMBLE); // back to rx mode
return;
}
}
// TX FIFO almost empty, it needs filling up
if (int_stat1 & RFM22_is1_ixtffaem)
{
// top-up the rf chips TX FIFO buffer
uint16_t max_bytes = FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1;
rfm22_claimBus();
rfm22_assertCs();
PIOS_SPI_TransferByte(g_rfm22b_dev->spi_id, RFM22_fifo_access | 0x80);
int bytes_to_write = (tx_data_wr - tx_data_rd);
bytes_to_write = (bytes_to_write > max_bytes) ? max_bytes: bytes_to_write;
PIOS_SPI_TransferBlock(g_rfm22b_dev->spi_id, &tx_buffer[tx_data_rd], NULL, bytes_to_write, NULL);
tx_data_rd += bytes_to_write;
rfm22_deassertCs();
rfm22_releaseBus();
}
// Packet has been sent
if (int_stat1 & RFM22_is1_ipksent)
{
// Send another packet if it's available.
if(!rfm22_txStart())
{
// Switch to RX mode
PIOS_RFM22B_SetRxMode(RFM22B_STATE_RX_WAIT_PREAMBLE);
return;
}
}
}
static void rfm22_processInt(struct pios_rfm22b_dev *rfm22b_dev)
{
// we haven't yet been initialized
if (!PIOS_RFM22B_validate(rfm22b_dev))
return;
exec_using_spi = true;
// 1. Read the interrupt statuses with burst read
rfm22_claimBus(); // Set RC and the semaphore
uint8_t write_buf[3] = {RFM22_interrupt_status1 & 0x7f, 0xFF, 0xFF};
uint8_t read_buf[3];
rfm22_assertCs();
PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, write_buf, read_buf, sizeof(write_buf), NULL);
rfm22_deassertCs();
int_status1 = read_buf[1];
int_status2 = read_buf[2];
// Device status
device_status = rfm22_read_noclaim(RFM22_device_status);
// EzMAC status
ezmac_status = rfm22_read_noclaim(RFM22_ezmac_status);
// Release the bus
rfm22_releaseBus();
// Read the RSSI if we're in RX mode
if (rfm22b_dev->state != RFM22B_STATE_TX_DATA)
{
// read rx signal strength .. 45 = -100dBm, 205 = -20dBm
rssi = rfm22_read(RFM22_rssi);
// convert to dBm
rssi_dBm = (int8_t)(rssi >> 1) - 122;
}
else
// read the tx power register
tx_pwr = rfm22_read(RFM22_tx_power);
// the RF module has gone and done a reset - we need to re-initialize the rf module
if (int_status2 & RFM22_is2_ipor)
{
rfm22b_dev->state = RFM22B_STATE_RESETTING;
// Need to do something here!
return;
}
switch (rfm22b_dev->state)
{
case RFM22B_STATE_RX_WAIT_PREAMBLE:
case RFM22B_STATE_RX_WAIT_SYNC:
case RFM22B_STATE_RX_DATA:
rfm22_processRxInt(rfm22b_dev);
break;
case RFM22B_STATE_TX_DATA:
rfm22_processTxInt(rfm22b_dev);
break;
default: // unknown mode - this should NEVER happen, maybe we should do a complete CPU reset here
// to rx mode
PIOS_RFM22B_SetRxMode(RFM22B_STATE_RX_WAIT_PREAMBLE);
break;
}
exec_using_spi = false;
}
// ************************************
int8_t rfm22_getRSSI(void)
{
exec_using_spi = true;
rssi = rfm22_read(RFM22_rssi); // read rx signal strength .. 45 = -100dBm, 205 = -20dBm
rssi_dBm = (int8_t)(rssi >> 1) - 122; // convert to dBm
exec_using_spi = false;
return rssi_dBm;
}
int8_t rfm22_receivedRSSI(void)
{ // return the packets signal strength
if (!initialized)
return -127;
else
return rx_packet_rssi_dBm;
}
int32_t rfm22_receivedAFCHz(void)
{ // return the packets offset frequency
if (!initialized)
return 0;
else
return rx_packet_afc_Hz;
}
// ************************************
// return the current mode
int8_t rfm22_currentMode(void)
{
return g_rfm22b_dev->state;
}
// return true if we are transmitting
bool rfm22_transmitting(void)
{
return (g_rfm22b_dev->state == RFM22B_STATE_TX_DATA);
}
// return true if the channel is clear to transmit on
bool rfm22_channelIsClear(void)
{
if (!initialized)
// we haven't yet been initialized
return false;
if (g_rfm22b_dev->state != RFM22B_STATE_RX_WAIT_PREAMBLE && g_rfm22b_dev->state != RFM22B_STATE_RX_WAIT_SYNC)
// we are receiving something or we are transmitting or we are scanning the spectrum
return false;
return true;
}
// return true if the transmiter is ready for use
bool rfm22_txReady(void)
{
return (tx_data_rd == 0 && tx_data_wr == 0 && g_rfm22b_dev->state != RFM22B_STATE_TX_DATA);
}
// ************************************
// set/get the frequency calibration value
void rfm22_setFreqCalibration(uint8_t value)
{
osc_load_cap = value;
exec_using_spi = true;
rfm22_write(RFM22_xtal_osc_load_cap, osc_load_cap);
exec_using_spi = false;
}
uint8_t rfm22_getFreqCalibration(void)
{
return osc_load_cap;
}
// ************************************
// reset the RF module
int rfm22_resetModule(uint8_t mode, uint32_t min_frequency_hz, uint32_t max_frequency_hz)
{
initialized = false;
// ****************
exec_using_spi = true;
// ****************
// software reset the RF chip .. following procedure according to Si4x3x Errata (rev. B)
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_swres); // software reset the radio
// wait 26ms
PIOS_DELAY_WaitmS(26);
for (int i = 50; i > 0; i--)
{
// wait 1ms
PIOS_DELAY_WaitmS(1);
// read the status registers
int_status1 = rfm22_read(RFM22_interrupt_status1);
int_status2 = rfm22_read(RFM22_interrupt_status2);
if (int_status2 & RFM22_is2_ichiprdy) break;
}
// ****************
// read status - clears interrupt
device_status = rfm22_read(RFM22_device_status);
int_status1 = rfm22_read(RFM22_interrupt_status1);
int_status2 = rfm22_read(RFM22_interrupt_status2);
ezmac_status = rfm22_read(RFM22_ezmac_status);
// disable all interrupts
rfm22_write(RFM22_interrupt_enable1, 0x00);
rfm22_write(RFM22_interrupt_enable2, 0x00);
// ****************
exec_using_spi = false;
// ****************
g_rfm22b_dev->state = mode;
device_status = int_status1 = int_status2 = ezmac_status = 0;
rssi = 0;
rssi_dBm = -127;
rx_buffer_current = 0;
rx_buffer_wr = 0;
rx_packet_rssi_dBm = -127;
rx_packet_afc_Hz = 0;
tx_data_rd = tx_data_wr = 0;
lookup_index = 0;
ss_lookup_index = 0;
rf_bandwidth_used = 0;
ss_rf_bandwidth_used = 0;
rfm22_int_timer = 0;
rfm22_int_time_outs = 0;
prev_rfm22_int_time_outs = 0;
hbsel = 0;
frequency_step_size = 0.0f;
frequency_hop_channel = 0;
afc_correction = 0;
afc_correction_Hz = 0;
temperature_reg = 0;
tx_pwr = 0;
// ****************
// read the RF chip ID bytes
device_type = rfm22_read(RFM22_DEVICE_TYPE) & RFM22_DT_MASK; // read the device type
device_version = rfm22_read(RFM22_DEVICE_VERSION) & RFM22_DV_MASK; // read the device version
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, "rf device type: %d\n\r", device_type);
DEBUG_PRINTF(2, "rf device version: %d\n\r", device_version);
#endif
if (device_type != 0x08)
{
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, "rf device type: INCORRECT - should be 0x08\n\r");
#endif
return -1; // incorrect RF module type
}
// if (device_version != RFM22_DEVICE_VERSION_V2) // V2
// return -2; // incorrect RF module version
// if (device_version != RFM22_DEVICE_VERSION_A0) // A0
// return -2; // incorrect RF module version
if (device_version != RFM22_DEVICE_VERSION_B1) // B1
{
#if defined(RFM22_DEBUG)
DEBUG_PRINTF(2, "rf device version: INCORRECT\n\r");
#endif
return -2; // incorrect RF module version
}
// ****************
// set the minimum and maximum carrier frequency allowed
if (min_frequency_hz < RFM22_MIN_CARRIER_FREQUENCY_HZ) min_frequency_hz = RFM22_MIN_CARRIER_FREQUENCY_HZ;
else
if (min_frequency_hz > RFM22_MAX_CARRIER_FREQUENCY_HZ) min_frequency_hz = RFM22_MAX_CARRIER_FREQUENCY_HZ;
if (max_frequency_hz < RFM22_MIN_CARRIER_FREQUENCY_HZ) max_frequency_hz = RFM22_MIN_CARRIER_FREQUENCY_HZ;
else
if (max_frequency_hz > RFM22_MAX_CARRIER_FREQUENCY_HZ) max_frequency_hz = RFM22_MAX_CARRIER_FREQUENCY_HZ;
if (min_frequency_hz > max_frequency_hz)
{ // swap them over
uint32_t tmp = min_frequency_hz;
min_frequency_hz = max_frequency_hz;
max_frequency_hz = tmp;
}
lower_carrier_frequency_limit_Hz = min_frequency_hz;
upper_carrier_frequency_limit_Hz = max_frequency_hz;
// ****************
// calibrate our RF module to be exactly on frequency .. different for every module
osc_load_cap = OSC_LOAD_CAP; // default
rfm22_write(RFM22_xtal_osc_load_cap, osc_load_cap);
// ****************
// disable Low Duty Cycle Mode
rfm22_write(RFM22_op_and_func_ctrl2, 0x00);
rfm22_write(RFM22_cpu_output_clk, RFM22_coc_1MHz); // 1MHz clock output
rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_xton); // READY mode
// rfm22_write(RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); // TUNE mode
// choose the 3 GPIO pin functions
rfm22_write(RFM22_io_port_config, RFM22_io_port_default); // GPIO port use default value
if (g_rfm22b_dev->cfg.gpio_direction == GPIO0_TX_GPIO1_RX) {
rfm22_write(RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_txstate); // GPIO0 = TX State (to control RF Switch)
rfm22_write(RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_rxstate); // GPIO1 = RX State (to control RF Switch)
} else {
rfm22_write(RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_rxstate); // GPIO0 = TX State (to control RF Switch)
rfm22_write(RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_txstate); // GPIO1 = RX State (to control RF Switch)
}
rfm22_write(RFM22_gpio2_config, RFM22_gpio2_config_drv3 | RFM22_gpio2_config_cca); // GPIO2 = Clear Channel Assessment
// ****************
return 0; // OK
}
// ************************************
// Initialise this hardware layer module and the rf module
int rfm22_init_normal(uint32_t id, uint32_t min_frequency_hz, uint32_t max_frequency_hz, uint32_t freq_hop_step_size)
{
int res = rfm22_resetModule(RFM22B_STATE_RX_WAIT_PREAMBLE, min_frequency_hz, max_frequency_hz);
if (res < 0)
return res;
// initialize the frequency hopping step size
freq_hop_step_size /= 10000; // in 10kHz increments
if (freq_hop_step_size > 255) freq_hop_step_size = 255;
frequency_hop_step_size_reg = freq_hop_step_size;
// set the RF datarate
rfm22_setDatarate(RFM22_DEFAULT_RF_DATARATE, true);
// FIFO mode, GFSK modulation
uint8_t fd_bit = rfm22_read(RFM22_modulation_mode_control2) & RFM22_mmc2_fd;
rfm22_write(RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk);
// setup to read the internal temperature sensor
// ADC used to sample the temperature sensor
adc_config = RFM22_ac_adcsel_temp_sensor | RFM22_ac_adcref_bg;
rfm22_write(RFM22_adc_config, adc_config);
// adc offset
rfm22_write(RFM22_adc_sensor_amp_offset, 0);
// temp sensor calibration .. <20>40C to +64C 0.5C resolution
rfm22_write(RFM22_temp_sensor_calib, RFM22_tsc_tsrange0 | RFM22_tsc_entsoffs);
// temp sensor offset
rfm22_write(RFM22_temp_value_offset, 0);
// start an ADC conversion
rfm22_write(RFM22_adc_config, adc_config | RFM22_ac_adcstartbusy);
// set the RSSI threshold interrupt to about -90dBm
rfm22_write(RFM22_rssi_threshold_clear_chan_indicator, (-90 + 122) * 2);
// enable the internal Tx & Rx packet handlers (without CRC)
rfm22_write(RFM22_data_access_control, RFM22_dac_enpacrx | RFM22_dac_enpactx);
// x-nibbles tx preamble
rfm22_write(RFM22_preamble_length, TX_PREAMBLE_NIBBLES);
// x-nibbles rx preamble detection
rfm22_write(RFM22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3);
#ifdef PIOS_RFM22_NO_HEADER
// header control - we are not using the header
rfm22_write(RFM22_header_control1, RFM22_header_cntl1_bcen_none | RFM22_header_cntl1_hdch_none);
// no header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header.
rfm22_write(RFM22_header_control2, RFM22_header_cntl2_hdlen_none |
RFM22_header_cntl2_synclen_3210 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01));
#else
// header control - using a 4 by header with broadcast of 0xffffffff
rfm22_write(RFM22_header_control1,
RFM22_header_cntl1_bcen_0 |
RFM22_header_cntl1_bcen_1 |
RFM22_header_cntl1_bcen_2 |
RFM22_header_cntl1_bcen_3 |
RFM22_header_cntl1_hdch_0 |
RFM22_header_cntl1_hdch_1 |
RFM22_header_cntl1_hdch_2 |
RFM22_header_cntl1_hdch_3);
// Check all bit of all bytes of the header
rfm22_write(RFM22_header_enable0, 0xff);
rfm22_write(RFM22_header_enable1, 0xff);
rfm22_write(RFM22_header_enable2, 0xff);
rfm22_write(RFM22_header_enable3, 0xff);
// Set the ID to be checked
rfm22_write(RFM22_check_header0, id & 0xff);
rfm22_write(RFM22_check_header1, (id >> 8) & 0xff);
rfm22_write(RFM22_check_header2, (id >> 16) & 0xff);
rfm22_write(RFM22_check_header3, (id >> 24) & 0xff);
// 4 header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header.
rfm22_write(RFM22_header_control2,
RFM22_header_cntl2_hdlen_3210 |
RFM22_header_cntl2_synclen_3210 |
((TX_PREAMBLE_NIBBLES >> 8) & 0x01));
#endif
// sync word
rfm22_write(RFM22_sync_word3, SYNC_BYTE_1);
rfm22_write(RFM22_sync_word2, SYNC_BYTE_2);
rfm22_write(RFM22_sync_word1, SYNC_BYTE_3);
rfm22_write(RFM22_sync_word0, SYNC_BYTE_4);
rfm22_write(RFM22_agc_override1, RFM22_agc_ovr1_agcen);
// set frequency hopping channel step size (multiples of 10kHz)
rfm22_write(RFM22_frequency_hopping_step_size, frequency_hop_step_size_reg);
// set our nominal carrier frequency
rfm22_setNominalCarrierFrequency((min_frequency_hz + max_frequency_hz) / 2);
// set the tx power
rfm22_write(RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 |
RFM22_tx_pwr_lna_sw | g_rfm22b_dev->tx_power);
// TX FIFO Almost Full Threshold (0 - 63)
rfm22_write(RFM22_tx_fifo_control1, TX_FIFO_HI_WATERMARK);
// TX FIFO Almost Empty Threshold (0 - 63)
rfm22_write(RFM22_tx_fifo_control2, TX_FIFO_LO_WATERMARK);
// RX FIFO Almost Full Threshold (0 - 63)
rfm22_write(RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK);
PIOS_RFM22B_SetRxMode(RFM22B_STATE_RX_WAIT_PREAMBLE);
initialized = true;
return 0; // ok
}
// ************************************
#endif
/**
* @}
* @}
*/