1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-29 07:24:13 +01:00
LibrePilot/flight/libraries/plans.c
2014-06-04 16:52:39 +02:00

431 lines
15 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotLibraries OpenPilot Libraries
* @{
* @addtogroup Navigation
* @brief setups RTH/PH and other pathfollower/pathplanner status
* @{
*
* @file plan.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
*
* @see The GNU Public License (GPL) Version 3
*
******************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <plans.h>
#include <openpilot.h>
#include <attitudesettings.h>
#include <takeofflocation.h>
#include <pathdesired.h>
#include <positionstate.h>
#include <flightmodesettings.h>
#include <manualcontrolcommand.h>
#include <attitudestate.h>
#include <sin_lookup.h>
#define UPDATE_EXPECTED 0.02f
#define UPDATE_MIN 1.0e-6f
#define UPDATE_MAX 1.0f
#define UPDATE_ALPHA 1.0e-2f
/**
* @brief initialize UAVOs and structs used by this library
*/
void plan_initialize()
{
TakeOffLocationInitialize();
PositionStateInitialize();
PathDesiredInitialize();
FlightModeSettingsInitialize();
AttitudeStateInitialize();
ManualControlCommandInitialize();
}
/**
* @brief setup pathplanner/pathfollower for positionhold
*/
void plan_setup_positionHold()
{
PositionStateData positionState;
PositionStateGet(&positionState);
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
FlightModeSettingsPositionHoldMaxGradientData maxGradient;
FlightModeSettingsPositionHoldMaxGradientGet(&maxGradient);
pathDesired.Start.North = positionState.North + maxGradient.Distance; // in FlyEndPoint the direction of this vector does not matter
pathDesired.Start.East = positionState.East;
pathDesired.Start.Down = positionState.Down;
pathDesired.End.North = positionState.North;
pathDesired.End.East = positionState.East;
pathDesired.End.Down = positionState.Down;
pathDesired.StartingVelocity = maxGradient.Speed;
pathDesired.EndingVelocity = 0;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
PathDesiredSet(&pathDesired);
}
/**
* @brief setup pathplanner/pathfollower for return to base
*/
void plan_setup_returnToBase()
{
// Simple Return To Base mode - keep altitude the same applying configured delta, fly to takeoff position
float positionStateDown;
PositionStateDownGet(&positionStateDown);
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
TakeOffLocationData takeoffLocation;
TakeOffLocationGet(&takeoffLocation);
// TODO: right now VTOLPF does fly straight to destination altitude.
// For a safer RTB destination altitude will be the higher between takeofflocation and current position (corrected with safety margin)
float destDown;
FlightModeSettingsReturnToBaseAltitudeOffsetGet(&destDown);
destDown = MIN(positionStateDown, takeoffLocation.Down) - destDown;
FlightModeSettingsPositionHoldMaxGradientData maxGradient;
FlightModeSettingsPositionHoldMaxGradientGet(&maxGradient);
pathDesired.Start.North = takeoffLocation.North + maxGradient.Distance; // in FlyEndPoint the direction of this vector does not matter
pathDesired.Start.East = takeoffLocation.East;
pathDesired.Start.Down = destDown;
pathDesired.End.North = takeoffLocation.North;
pathDesired.End.East = takeoffLocation.East;
pathDesired.End.Down = destDown;
pathDesired.StartingVelocity = maxGradient.Speed;
pathDesired.EndingVelocity = 0;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
PathDesiredSet(&pathDesired);
}
void plan_setup_land()
{
plan_setup_positionHold();
}
/**
* @brief execute land
*/
void plan_run_land()
{
PathDesiredEndData pathDesiredEnd;
PathDesiredEndGet(&pathDesiredEnd);
PositionStateDownGet(&pathDesiredEnd.Down);
pathDesiredEnd.Down += 5;
PathDesiredEndSet(&pathDesiredEnd);
}
/**
* @brief positionvario functionality
*/
static bool vario_hold = true;
static void plan_setup_PositionVario()
{
vario_hold = true;
plan_setup_positionHold();
}
void plan_setup_PositionVarioFPV()
{
plan_setup_PositionVario();
}
void plan_setup_PositionVarioLOS()
{
plan_setup_PositionVario();
}
void plan_setup_PositionVarioNSEW()
{
plan_setup_PositionVario();
}
static bool normalizeDeadband(float controlVector[4])
{
bool moving = false;
// roll, pitch, yaw between -1 and +1
int t;
for (t = 0; t < 3; t++) {
controlVector[t] = boundf(controlVector[t], -1.0f, 1.0f);
if (fabsf(controlVector[t]) > 0.1f) {
moving = true;
} else {
controlVector[t] = 0.0f;
}
}
// thrust between 0 and +1
controlVector[3] = boundf(controlVector[3], 0.0f, 1.0f);
controlVector[3] = (2.0f * controlVector[3]) - 1.0f;
if (fabsf(controlVector[3]) > 0.2f) { // bigger deadband on thrust due to 2.0f factor above
moving = true;
} else {
controlVector[3] = 0.0f;
}
return moving;
}
typedef enum { FPV, LOS, NSEW } vario_type;
static void getVector(float controlVector[5], vario_type type)
{
float length = sqrtf(controlVector[0] * controlVector[0] + controlVector[1] * controlVector[1] + controlVector[3] * controlVector[3]);
if (length <= 1e-9f) {
length = 1.0f; // should never happen as getVector is not called if control within deadband
}
{
float direction[3] = {
controlVector[1] / length, // pitch is north
controlVector[0] / length, // roll is east
controlVector[3] / length // thrust is down
};
controlVector[0] = direction[0];
controlVector[1] = direction[1];
controlVector[2] = direction[2];
}
FlightModeSettingsPositionHoldMaxGradientData maxGradient;
FlightModeSettingsPositionHoldMaxGradientGet(&maxGradient);
controlVector[3] = length * maxGradient.Distance;
controlVector[4] = length * maxGradient.Speed;
// rotate north and east - rotation angle based on type
float angle;
switch (type) {
case NSEW:
angle = 0.0f;
// NSEW no rotation takes place
break;
case FPV:
// local rotation, using current yaw
AttitudeStateYawGet(&angle);
break;
case LOS:
// determine location based on vector from takeoff to current location
{
PositionStateData positionState;
PositionStateGet(&positionState);
TakeOffLocationData takeoffLocation;
TakeOffLocationGet(&takeoffLocation);
angle = RAD2DEG(atan2f(positionState.East - takeoffLocation.East, positionState.North - takeoffLocation.North));
}
break;
}
// rotate horizontally by angle
{
float rotated[2] = {
controlVector[0] * cos_lookup_deg(angle) - controlVector[1] * sin_lookup_deg(angle),
controlVector[0] * sin_lookup_deg(angle) + controlVector[1] * cos_lookup_deg(angle)
};
controlVector[0] = rotated[0];
controlVector[1] = rotated[1];
}
}
static void plan_run_PositionVario(vario_type type)
{
float controlVector[5];
ManualControlCommandRollGet(&controlVector[0]);
ManualControlCommandPitchGet(&controlVector[1]);
ManualControlCommandYawGet(&controlVector[2]);
ManualControlCommandThrustGet(&controlVector[3]);
controlVector[4] = 0;
// check if movement is desired
if (normalizeDeadband(controlVector) == false) {
// no movement desired, re-enter positionHold at current position
if (!vario_hold) {
vario_hold = true;
plan_setup_positionHold();
}
} else {
PositionStateData positionState;
PositionStateGet(&positionState);
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
getVector(controlVector, type);
// layout of control Vector : unitVector in movement direction {0,1,2} vector length {3} velocity {4}
if (vario_hold) {
// start position is the position where positionvario is initially enabled
vario_hold = false;
pathDesired.Start.North = positionState.North;
pathDesired.Start.East = positionState.East;
pathDesired.Start.Down = positionState.Down;
} else {
// start position is advanced according to movement - in the direction of controlVector only
// projection using scalar product
float kp = (positionState.North - pathDesired.Start.North) * controlVector[0]
+ (positionState.East - pathDesired.Start.East) * controlVector[1]
+ (positionState.Down - pathDesired.Start.Down) * controlVector[2];
if (kp > 0.0f) {
pathDesired.Start.North += kp * controlVector[0];
pathDesired.Start.East += kp * controlVector[1];
pathDesired.Start.Down += kp * controlVector[2];
}
}
pathDesired.StartingVelocity = controlVector[4];
pathDesired.EndingVelocity = 0;
pathDesired.End.North = pathDesired.Start.North + controlVector[0] * controlVector[3];
pathDesired.End.East = pathDesired.Start.East + controlVector[1] * controlVector[3];
pathDesired.End.Down = pathDesired.Start.Down - controlVector[2] * controlVector[3];
PathDesiredSet(&pathDesired);
}
}
void plan_run_PositionVarioFPV()
{
plan_run_PositionVario(FPV);
}
void plan_run_PositionVarioLOS()
{
plan_run_PositionVario(LOS);
}
void plan_run_PositionVarioNSEW()
{
plan_run_PositionVario(NSEW);
}
/**
* @brief setup pathplanner/pathfollower for AutoCruise
*/
static PiOSDeltatimeConfig actimeval;
void plan_setup_AutoCruise()
{
PositionStateData positionState;
PositionStateGet(&positionState);
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
FlightModeSettingsPositionHoldMaxGradientData maxGradient;
FlightModeSettingsPositionHoldMaxGradientGet(&maxGradient);
// initialization is flight in direction of the nose.
// the velocity is not relevant, as it will be reset by the run function even during first call
float angle;
AttitudeStateYawGet(&angle);
float vector[2] = {
cos_lookup_deg(angle),
sin_lookup_deg(angle)
};
pathDesired.Start.North = positionState.North;
pathDesired.Start.East = positionState.East;
pathDesired.Start.Down = positionState.Down;
pathDesired.End.North = positionState.North + vector[0];
pathDesired.End.East = positionState.East + vector[1];
pathDesired.End.Down = positionState.Down;
pathDesired.StartingVelocity = 1.0f;
pathDesired.EndingVelocity = 1.0f;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
PathDesiredSet(&pathDesired);
// re-iniztializing deltatime is valid and also good practice here since
// getAverageSeconds() has not been called/updated in a long time if we were in a different flightmode.
PIOS_DELTATIME_Init(&actimeval, UPDATE_EXPECTED, UPDATE_MIN, UPDATE_MAX, UPDATE_ALPHA);
}
/**
* @brief execute autocruise
*/
void plan_run_AutoCruise()
{
PositionStateData positionState;
PositionStateGet(&positionState);
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
FlightModeSettingsPositionHoldMaxGradientData maxGradient;
FlightModeSettingsPositionHoldMaxGradientGet(&maxGradient);
float controlVector[4];
ManualControlCommandRollGet(&controlVector[0]);
ManualControlCommandPitchGet(&controlVector[1]);
ManualControlCommandYawGet(&controlVector[2]);
controlVector[3] = 0.5f; // dummy, thrust is normalized separately
normalizeDeadband(controlVector); // return value ignored
ManualControlCommandThrustGet(&controlVector[3]); // no deadband as we are using thrust for velocity
controlVector[3] = boundf(controlVector[3], 0.0f, 1.0f);
// normalize old desired movement vector
float vector[3] = { pathDesired.End.North - pathDesired.Start.North,
pathDesired.End.East - pathDesired.Start.East,
pathDesired.End.Down - pathDesired.Start.Down };
float length = sqrtf(vector[0] * vector[0] + vector[1] * vector[1] + vector[2] * vector[2]);
if (length < 1e-9f) {
length = 1.0f; // should not happen since initialized properly in setup()
}
vector[0] /= length;
vector[1] /= length;
vector[2] /= length;
// start position is advanced according to actual movement - in the direction of desired vector only
// projection using scalar product
float kp = (positionState.North - pathDesired.Start.North) * vector[0]
+ (positionState.East - pathDesired.Start.East) * vector[1]
+ (positionState.Down - pathDesired.Start.Down) * vector[2];
if (kp > 0.0f) {
pathDesired.Start.North += kp * vector[0];
pathDesired.Start.East += kp * vector[1];
pathDesired.Start.Down += kp * vector[2];
}
// new angle is equal to old angle plus offset depending on yaw input and time
// (controlVector is normalized with a deadband, change is zero within deadband)
float angle = RAD2DEG(atan2f(vector[1], vector[0]));
float dT = PIOS_DELTATIME_GetAverageSeconds(&actimeval);
angle += 10.0f * controlVector[2] * dT; // TODO magic value could eventually end up in a to be created settings
// resulting movement vector is scaled by velocity demand in controlvector[3] [0.0-1.0]
vector[0] = cosf(DEG2RAD(angle)) * maxGradient.Distance * controlVector[3];
vector[1] = sinf(DEG2RAD(angle)) * maxGradient.Distance * controlVector[3];
vector[2] = controlVector[1] * maxGradient.Distance * controlVector[3];
// note: no negation in down vector, negative pitch demand actually "pulls
// up", which reduces "down" coordinate as expected by fixed wing pilots
pathDesired.End.North = pathDesired.Start.North + vector[0];
pathDesired.End.East = pathDesired.Start.East + vector[1];
pathDesired.End.Down = pathDesired.Start.Down + vector[2];
pathDesired.StartingVelocity = maxGradient.Speed * controlVector[3];
pathDesired.EndingVelocity = maxGradient.Speed * controlVector[3];
PathDesiredSet(&pathDesired);
}