1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-25 10:52:11 +01:00
2017-05-30 16:31:39 +02:00

402 lines
14 KiB
C

/**
******************************************************************************
* @addtogroup PIOS PIOS Core hardware abstraction layer
* @{
* @addtogroup PIOS_TIM Timer Functions
* @brief PIOS Timer control code
* @{
*
* @file pios_tim.c
* @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2017.
* The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Sets up timers and ways to register callbacks on them
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "pios.h"
#ifdef PIOS_INCLUDE_TIM
#include "pios_tim_priv.h"
enum pios_tim_dev_magic {
PIOS_TIM_DEV_MAGIC = 0x87654098,
};
struct pios_tim_dev {
enum pios_tim_dev_magic magic;
const struct pios_tim_channel *channels;
uint8_t num_channels;
const struct pios_tim_callbacks *callbacks;
uint32_t context;
};
#if 0
static bool PIOS_TIM_validate(struct pios_tim_dev *tim_dev)
{
return tim_dev->magic == PIOS_TIM_DEV_MAGIC;
}
#endif
#if defined(PIOS_INCLUDE_FREERTOS) && 0
static struct pios_tim_dev *PIOS_TIM_alloc(void)
{
struct pios_tim_dev *tim_dev;
tim_dev = (struct pios_tim_dev *)pios_malloc(sizeof(*tim_dev));
if (!tim_dev) {
return NULL;
}
tim_dev->magic = PIOS_TIM_DEV_MAGIC;
return tim_dev;
}
#else
static struct pios_tim_dev pios_tim_devs[PIOS_TIM_MAX_DEVS];
static uint8_t pios_tim_num_devs;
static struct pios_tim_dev *PIOS_TIM_alloc(void)
{
struct pios_tim_dev *tim_dev;
if (pios_tim_num_devs >= PIOS_TIM_MAX_DEVS) {
return NULL;
}
tim_dev = &pios_tim_devs[pios_tim_num_devs++];
tim_dev->magic = PIOS_TIM_DEV_MAGIC;
return tim_dev;
}
#endif /* if defined(PIOS_INCLUDE_FREERTOS) && 0 */
int32_t PIOS_TIM_InitClock(const struct pios_tim_clock_cfg *cfg)
{
PIOS_DEBUG_Assert(cfg);
/* Configure the dividers for this timer */
TIM_TimeBaseInit(cfg->timer, (TIM_TimeBaseInitTypeDef *)cfg->time_base_init);
/* Configure internal timer clocks */
TIM_InternalClockConfig(cfg->timer);
/* Enable timers */
TIM_Cmd(cfg->timer, ENABLE);
/* Enable Interrupts */
NVIC_Init((NVIC_InitTypeDef *)&cfg->irq.init);
// Advanced timers TIM1 & TIM8 need special handling:
// There are up to 4 separate interrupts handlers for each advanced timer, but
// pios_tim_clock_cfg has provision for only one irq init, so we take care here
// to enable additional irq channels that we intend to use.
if (cfg->timer == TIM1) {
NVIC_InitTypeDef init = cfg->irq.init;
init.NVIC_IRQChannel = TIM1_UP_TIM16_IRQn;
NVIC_Init(&init);
} else if (cfg->timer == TIM8) {
NVIC_InitTypeDef init = cfg->irq.init;
init.NVIC_IRQChannel = TIM8_UP_IRQn;
NVIC_Init(&init);
}
return 0;
}
int32_t PIOS_TIM_InitChannels(uint32_t *tim_id, const struct pios_tim_channel *channels, uint8_t num_channels, const struct pios_tim_callbacks *callbacks, uint32_t context)
{
PIOS_Assert(channels);
PIOS_Assert(num_channels);
struct pios_tim_dev *tim_dev;
tim_dev = (struct pios_tim_dev *)PIOS_TIM_alloc();
if (!tim_dev) {
goto out_fail;
}
/* Bind the configuration to the device instance */
tim_dev->channels = channels;
tim_dev->num_channels = num_channels;
tim_dev->callbacks = callbacks;
tim_dev->context = context;
/* Configure the pins */
for (uint8_t i = 0; i < num_channels; i++) {
const struct pios_tim_channel *chan = &(channels[i]);
GPIO_Init(chan->pin.gpio, (GPIO_InitTypeDef *)&chan->pin.init);
if (chan->remap) {
GPIO_PinAFConfig(chan->pin.gpio, chan->pin.pin_source, chan->remap);
}
}
*tim_id = (uint32_t)tim_dev;
return 0;
out_fail:
return -1;
}
static void PIOS_TIM_generic_irq_handler(TIM_TypeDef *timer)
{
/* Check for an overflow event on this timer */
bool overflow_event = 0;
uint16_t overflow_count = false;
if (TIM_GetITStatus(timer, TIM_IT_Update) == SET) {
TIM_ClearITPendingBit(timer, TIM_IT_Update);
overflow_count = timer->ARR;
overflow_event = true;
}
/* Iterate over all registered clients of the TIM layer to find channels on this timer */
for (uint8_t i = 0; i < pios_tim_num_devs; i++) {
const struct pios_tim_dev *tim_dev = &pios_tim_devs[i];
if (!tim_dev->channels || tim_dev->num_channels == 0) {
/* No channels to process on this client */
continue;
}
for (uint8_t j = 0; j < tim_dev->num_channels; j++) {
const struct pios_tim_channel *chan = &tim_dev->channels[j];
if (chan->timer != timer) {
/* channel is not on this timer */
continue;
}
/* Figure out which interrupt bit we should be looking at */
uint16_t timer_it;
switch (chan->timer_chan) {
case TIM_Channel_1:
timer_it = TIM_IT_CC1;
break;
case TIM_Channel_2:
timer_it = TIM_IT_CC2;
break;
case TIM_Channel_3:
timer_it = TIM_IT_CC3;
break;
case TIM_Channel_4:
timer_it = TIM_IT_CC4;
break;
default:
PIOS_Assert(0);
break;
}
bool edge_event;
uint16_t edge_count;
if (TIM_GetITStatus(chan->timer, timer_it) == SET) {
TIM_ClearITPendingBit(chan->timer, timer_it);
/* Read the current counter */
switch (chan->timer_chan) {
case TIM_Channel_1:
edge_count = TIM_GetCapture1(chan->timer);
break;
case TIM_Channel_2:
edge_count = TIM_GetCapture2(chan->timer);
break;
case TIM_Channel_3:
edge_count = TIM_GetCapture3(chan->timer);
break;
case TIM_Channel_4:
edge_count = TIM_GetCapture4(chan->timer);
break;
default:
PIOS_Assert(0);
break;
}
edge_event = true;
} else {
edge_event = false;
edge_count = 0;
}
if (!tim_dev->callbacks) {
/* No callbacks registered, we're done with this channel */
continue;
}
/* Generate the appropriate callbacks */
if (overflow_event & edge_event) {
/*
* When both edge and overflow happen in the same interrupt, we
* need a heuristic to determine the order of the edge and overflow
* events so that the callbacks happen in the right order. If we
* get the order wrong, our pulse width calculations could be off by up
* to ARR ticks. That could be bad.
*
* Heuristic: If the edge_count is < 32 ticks above zero then we assume the
* edge happened just after the overflow.
*/
if (edge_count < 32) {
/* Call the overflow callback first */
if (tim_dev->callbacks->overflow) {
(*tim_dev->callbacks->overflow)((uint32_t)tim_dev,
tim_dev->context,
j,
overflow_count);
}
/* Call the edge callback second */
if (tim_dev->callbacks->edge) {
(*tim_dev->callbacks->edge)((uint32_t)tim_dev,
tim_dev->context,
j,
edge_count);
}
} else {
/* Call the edge callback first */
if (tim_dev->callbacks->edge) {
(*tim_dev->callbacks->edge)((uint32_t)tim_dev,
tim_dev->context,
j,
edge_count);
}
/* Call the overflow callback second */
if (tim_dev->callbacks->overflow) {
(*tim_dev->callbacks->overflow)((uint32_t)tim_dev,
tim_dev->context,
j,
overflow_count);
}
}
} else if (overflow_event && tim_dev->callbacks->overflow) {
(*tim_dev->callbacks->overflow)((uint32_t)tim_dev,
tim_dev->context,
j,
overflow_count);
} else if (edge_event && tim_dev->callbacks->edge) {
(*tim_dev->callbacks->edge)((uint32_t)tim_dev,
tim_dev->context,
j,
edge_count);
}
}
}
}
/* Bind Interrupt Handlers
*
* Map all valid TIM IRQs to the common interrupt handler
* and give it enough context to properly demux the various timers
*/
void TIM1_CC_IRQHandler(void) __attribute__((alias("PIOS_TIM_1_CC_irq_handler")));
static void PIOS_TIM_1_CC_irq_handler(void)
{
PIOS_TIM_generic_irq_handler(TIM1);
}
// The rest of TIM1 interrupts are overlapped
void TIM1_BRK_TIM15_IRQHandler(void) __attribute__((alias("PIOS_TIM_1_BRK_TIM_15_irq_handler")));
static void PIOS_TIM_1_BRK_TIM_15_irq_handler(void)
{
if (TIM_GetITStatus(TIM1, TIM_IT_Break)) {
PIOS_TIM_generic_irq_handler(TIM1);
} else if (TIM_GetITStatus(TIM15, TIM_IT_Update | TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4 | TIM_IT_COM | TIM_IT_Trigger | TIM_IT_Break)) {
PIOS_TIM_generic_irq_handler(TIM15);
}
}
void TIM1_UP_TIM16_IRQHandler(void) __attribute__((alias("PIOS_TIM_1_UP_TIM_16_irq_handler")));
static void PIOS_TIM_1_UP_TIM_16_irq_handler(void)
{
if (TIM_GetITStatus(TIM1, TIM_IT_Update)) {
PIOS_TIM_generic_irq_handler(TIM1);
} else if (TIM_GetITStatus(TIM16, TIM_IT_Update | TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4 | TIM_IT_COM | TIM_IT_Trigger | TIM_IT_Break)) {
PIOS_TIM_generic_irq_handler(TIM16);
}
}
void TIM1_TRG_COM_TIM17_IRQHandler(void) __attribute__((alias("PIOS_TIM_1_TRG_COM_TIM_17_irq_handler")));
static void PIOS_TIM_1_TRG_COM_TIM_17_irq_handler(void)
{
if (TIM_GetITStatus(TIM1, TIM_IT_Trigger | TIM_IT_COM)) {
PIOS_TIM_generic_irq_handler(TIM1);
} else if (TIM_GetITStatus(TIM17, TIM_IT_Update | TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4 | TIM_IT_COM | TIM_IT_Trigger | TIM_IT_Break)) {
PIOS_TIM_generic_irq_handler(TIM17);
}
}
void TIM2_IRQHandler(void) __attribute__((alias("PIOS_TIM_2_irq_handler")));
static void PIOS_TIM_2_irq_handler(void)
{
PIOS_TIM_generic_irq_handler(TIM2);
}
void TIM3_IRQHandler(void) __attribute__((alias("PIOS_TIM_3_irq_handler")));
static void PIOS_TIM_3_irq_handler(void)
{
PIOS_TIM_generic_irq_handler(TIM3);
}
void TIM4_IRQHandler(void) __attribute__((alias("PIOS_TIM_4_irq_handler")));
static void PIOS_TIM_4_irq_handler(void)
{
PIOS_TIM_generic_irq_handler(TIM4);
}
void TIM6_DAC_IRQHandler(void) __attribute__((alias("PIOS_TIM_6_DAC_irq_handler")));
static void PIOS_TIM_6_DAC_irq_handler(void)
{
// What about DAC irq?
if (TIM_GetITStatus(TIM6, TIM_IT_Update | TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4 | TIM_IT_COM | TIM_IT_Trigger | TIM_IT_Break)) {
PIOS_TIM_generic_irq_handler(TIM6);
}
}
void TIM7_IRQHandler(void) __attribute__((alias("PIOS_TIM_7_irq_handler")));
static void PIOS_TIM_7_irq_handler(void)
{
PIOS_TIM_generic_irq_handler(TIM7);
}
void TIM8_CC_IRQHandler(void) __attribute__((alias("PIOS_TIM_8_CC_irq_handler")));
static void PIOS_TIM_8_CC_irq_handler(void)
{
PIOS_TIM_generic_irq_handler(TIM8);
}
void TIM8_BRK_IRQHandler(void) __attribute__((alias("PIOS_TIM_8_BRK_irq_handler")));
static void PIOS_TIM_8_BRK_irq_handler(void)
{
PIOS_TIM_generic_irq_handler(TIM8);
}
void TIM8_UP_IRQHandler(void) __attribute__((alias("PIOS_TIM_8_UP_irq_handler")));
static void PIOS_TIM_8_UP_irq_handler(void)
{
PIOS_TIM_generic_irq_handler(TIM8);
}
void TIM8_TRG_COM_IRQHandler(void) __attribute__((alias("PIOS_TIM_8_TRG_COM_irq_handler")));
static void PIOS_TIM_8_TRG_COM_irq_handler(void)
{
PIOS_TIM_generic_irq_handler(TIM8);
}
#endif /* PIOS_INCLUDE_TIM */