1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-13 20:48:42 +01:00
LibrePilot/flight/modules/Attitude/revolution/attitude.c

1349 lines
47 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup Attitude Copter Control Attitude Estimation
* @brief Acquires sensor data and computes attitude estimate
* Specifically updates the the @ref AttitudeState "AttitudeState" and @ref AttitudeRaw "AttitudeRaw" settings objects
* @{
*
* @file attitude.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Module to handle all comms to the AHRS on a periodic basis.
*
* @see The GNU Public License (GPL) Version 3
*
******************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input objects: None, takes sensor data via pios
* Output objects: @ref AttitudeRaw @ref AttitudeState
*
* This module computes an attitude estimate from the sensor data
*
* The module executes in its own thread.
*
* UAVObjects are automatically generated by the UAVObjectGenerator from
* the object definition XML file.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include <openpilot.h>
#include <pios_struct_helper.h>
#include "attitude.h"
#include "accelsensor.h"
#include "accelstate.h"
#include "airspeedsensor.h"
#include "airspeedstate.h"
#include "attitudestate.h"
#include "attitudesettings.h"
#include "barosensor.h"
#include "flightstatus.h"
#include "gpspositionsensor.h"
#include "gpsvelocitysensor.h"
#include "gyrostate.h"
#include "gyrosensor.h"
#include "homelocation.h"
#include "magsensor.h"
#include "magstate.h"
#include "positionstate.h"
#include "ekfconfiguration.h"
#include "ekfstatevariance.h"
#include "revocalibration.h"
#include "revosettings.h"
#include "velocitystate.h"
#include "taskinfo.h"
#include "CoordinateConversions.h"
// Private constants
#define STACK_SIZE_BYTES 2048
#define TASK_PRIORITY (tskIDLE_PRIORITY + 3)
#define FAILSAFE_TIMEOUT_MS 10
#define CALIBRATION_DELAY 4000
#define CALIBRATION_DURATION 6000
// low pass filter configuration to calculate offset
// of barometric altitude sensor
// reasoning: updates at: 10 Hz, tau= 300 s settle time
// exp(-(1/f) / tau ) ~=~ 0.9997
#define BARO_OFFSET_LOWPASS_ALPHA 0.9997f
// simple IAS to TAS aproximation - 2% increase per 1000ft
// since we do not have flowing air temperature information
#define IAS2TAS(alt) (1.0f + (0.02f * (alt) / 304.8f))
// Private types
// Private variables
static xTaskHandle attitudeTaskHandle;
static xQueueHandle gyroQueue;
static xQueueHandle accelQueue;
static xQueueHandle magQueue;
static xQueueHandle airspeedQueue;
static xQueueHandle baroQueue;
static xQueueHandle gpsQueue;
static xQueueHandle gpsVelQueue;
static AttitudeSettingsData attitudeSettings;
static HomeLocationData homeLocation;
static RevoCalibrationData revoCalibration;
static EKFConfigurationData ekfConfiguration;
static RevoSettingsData revoSettings;
static FlightStatusData flightStatus;
const uint32_t SENSOR_QUEUE_SIZE = 10;
static bool volatile variance_error = true;
static bool volatile initialization_required = true;
static uint32_t volatile running_algorithm = 0xffffffff; // we start with no algorithm running
static float rollPitchBiasRate = 0;
// Accel filtering
static float accel_alpha = 0;
static bool accel_filter_enabled = false;
static float accels_filtered[3];
static float grot_filtered[3];
// Private functions
static void AttitudeTask(void *parameters);
static int32_t updateAttitudeComplementary(bool first_run);
static int32_t updateAttitudeINSGPS(bool first_run, bool outdoor_mode);
static void settingsUpdatedCb(UAVObjEvent *objEv);
static int32_t getNED(GPSPositionSensorData *gpsPosition, float *NED);
static void magOffsetEstimation(MagSensorData *mag);
// check for invalid values
static inline bool invalid(float data)
{
if (isnan(data) || isinf(data)) {
return true;
}
return false;
}
// check for invalid variance values
static inline bool invalid_var(float data)
{
if (invalid(data)) {
return true;
}
if (data < 1e-15f) { // var should not be close to zero. And not negative either.
return true;
}
return false;
}
/**
* API for sensor fusion algorithms:
* Configure(xQueueHandle gyro, xQueueHandle accel, xQueueHandle mag, xQueueHandle baro)
* Stores all the queues the algorithm will pull data from
* FinalizeSensors() -- before saving the sensors modifies them based on internal state (gyro bias)
* Update() -- queries queues and updates the attitude estiamte
*/
/**
* Initialise the module. Called before the start function
* \returns 0 on success or -1 if initialisation failed
*/
int32_t AttitudeInitialize(void)
{
GyroSensorInitialize();
GyroStateInitialize();
AccelSensorInitialize();
AccelStateInitialize();
MagSensorInitialize();
MagStateInitialize();
AirspeedSensorInitialize();
AirspeedStateInitialize();
BaroSensorInitialize();
GPSPositionSensorInitialize();
GPSVelocitySensorInitialize();
AttitudeSettingsInitialize();
AttitudeStateInitialize();
PositionStateInitialize();
VelocityStateInitialize();
RevoSettingsInitialize();
RevoCalibrationInitialize();
EKFConfigurationInitialize();
EKFStateVarianceInitialize();
FlightStatusInitialize();
// Initialize this here while we aren't setting the homelocation in GPS
HomeLocationInitialize();
// Initialize quaternion
AttitudeStateData attitude;
AttitudeStateGet(&attitude);
attitude.q1 = 1.0f;
attitude.q2 = 0.0f;
attitude.q3 = 0.0f;
attitude.q4 = 0.0f;
AttitudeStateSet(&attitude);
AttitudeSettingsConnectCallback(&settingsUpdatedCb);
RevoSettingsConnectCallback(&settingsUpdatedCb);
RevoCalibrationConnectCallback(&settingsUpdatedCb);
HomeLocationConnectCallback(&settingsUpdatedCb);
EKFConfigurationConnectCallback(&settingsUpdatedCb);
FlightStatusConnectCallback(&settingsUpdatedCb);
return 0;
}
/**
* Start the task. Expects all objects to be initialized by this point.
* \returns 0 on success or -1 if initialisation failed
*/
int32_t AttitudeStart(void)
{
// Create the queues for the sensors
gyroQueue = xQueueCreate(1, sizeof(UAVObjEvent));
accelQueue = xQueueCreate(1, sizeof(UAVObjEvent));
magQueue = xQueueCreate(1, sizeof(UAVObjEvent));
airspeedQueue = xQueueCreate(1, sizeof(UAVObjEvent));
baroQueue = xQueueCreate(1, sizeof(UAVObjEvent));
gpsQueue = xQueueCreate(1, sizeof(UAVObjEvent));
gpsVelQueue = xQueueCreate(1, sizeof(UAVObjEvent));
// Start main task
xTaskCreate(AttitudeTask, "Attitude", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &attitudeTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_ATTITUDE, attitudeTaskHandle);
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_RegisterFlag(PIOS_WDG_ATTITUDE);
#endif
GyroSensorConnectQueue(gyroQueue);
AccelSensorConnectQueue(accelQueue);
MagSensorConnectQueue(magQueue);
AirspeedSensorConnectQueue(airspeedQueue);
BaroSensorConnectQueue(baroQueue);
GPSPositionSensorConnectQueue(gpsQueue);
GPSVelocitySensorConnectQueue(gpsVelQueue);
return 0;
}
MODULE_INITCALL(AttitudeInitialize, AttitudeStart);
/**
* Module thread, should not return.
*/
static void AttitudeTask(__attribute__((unused)) void *parameters)
{
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
// Force settings update to make sure rotation loaded
settingsUpdatedCb(NULL);
// Wait for all the sensors be to read
vTaskDelay(100);
// Main task loop - TODO: make it run as delayed callback
while (1) {
int32_t ret_val = -1;
bool first_run = false;
if (initialization_required) {
initialization_required = false;
first_run = true;
}
// This function blocks on data queue
switch (running_algorithm) {
case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARY:
ret_val = updateAttitudeComplementary(first_run);
break;
case REVOSETTINGS_FUSIONALGORITHM_INS13GPSOUTDOOR:
ret_val = updateAttitudeINSGPS(first_run, true);
break;
case REVOSETTINGS_FUSIONALGORITHM_INS13INDOOR:
ret_val = updateAttitudeINSGPS(first_run, false);
break;
default:
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL);
break;
}
if (ret_val != 0) {
initialization_required = true;
}
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);
#endif
}
}
static inline void apply_accel_filter(const float *raw, float *filtered)
{
if (accel_filter_enabled) {
filtered[0] = filtered[0] * accel_alpha + raw[0] * (1 - accel_alpha);
filtered[1] = filtered[1] * accel_alpha + raw[1] * (1 - accel_alpha);
filtered[2] = filtered[2] * accel_alpha + raw[2] * (1 - accel_alpha);
} else {
filtered[0] = raw[0];
filtered[1] = raw[1];
filtered[2] = raw[2];
}
}
float accel_mag;
float qmag;
float attitudeDt;
float mag_err[3];
static int32_t updateAttitudeComplementary(bool first_run)
{
UAVObjEvent ev;
GyroSensorData gyroSensorData;
GyroStateData gyroStateData;
AccelSensorData accelSensorData;
static int32_t timeval;
float dT;
static uint8_t init = 0;
static float gyro_bias[3] = { 0, 0, 0 };
static bool magCalibrated = true;
static uint32_t initStartupTime = 0;
// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
if (xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE ||
xQueueReceive(accelQueue, &ev, 1 / portTICK_RATE_MS) != pdTRUE) {
// When one of these is updated so should the other
// Do not set attitude timeout warnings in simulation mode
if (!AttitudeStateReadOnly()) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_WARNING);
return -1;
}
}
AccelSensorGet(&accelSensorData);
// TODO: put in separate filter
AccelStateData accelState;
accelState.x = accelSensorData.x;
accelState.y = accelSensorData.y;
accelState.z = accelSensorData.z;
AccelStateSet(&accelState);
// During initialization and
if (first_run) {
#if defined(PIOS_INCLUDE_HMC5883)
// To initialize we need a valid mag reading
if (xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) != pdTRUE) {
return -1;
}
MagSensorData magData;
MagSensorGet(&magData);
#else
MagSensorData magData;
magData.x = 100.0f;
magData.y = 0.0f;
magData.z = 0.0f;
#endif
float magBias[3];
RevoCalibrationmag_biasArrayGet(magBias);
// don't trust Mag for initial orientation if it has not been calibrated
if (magBias[0] < 1e-6f && magBias[1] < 1e-6f && magBias[2] < 1e-6f) {
magCalibrated = false;
magData.x = 100.0f;
magData.y = 0.0f;
magData.z = 0.0f;
}
AttitudeStateData attitudeState;
AttitudeStateGet(&attitudeState);
init = 0;
// Set initial attitude. Use accels to determine roll and pitch, rotate magnetic measurement accordingly,
// so pseudo "north" vector can be estimated even if the board is not level
attitudeState.Roll = atan2f(-accelSensorData.y, -accelSensorData.z);
float zn = cosf(attitudeState.Roll) * magData.z + sinf(attitudeState.Roll) * magData.y;
float yn = cosf(attitudeState.Roll) * magData.y - sinf(attitudeState.Roll) * magData.z;
// rotate accels z vector according to roll
float azn = cosf(attitudeState.Roll) * accelSensorData.z + sinf(attitudeState.Roll) * accelSensorData.y;
attitudeState.Pitch = atan2f(accelSensorData.x, -azn);
float xn = cosf(attitudeState.Pitch) * magData.x + sinf(attitudeState.Pitch) * zn;
attitudeState.Yaw = atan2f(-yn, xn);
// TODO: This is still a hack
// Put this in a proper generic function in CoordinateConversion.c
// should take 4 vectors: g (0,0,-9.81), accels, Be (or 1,0,0 if no home loc) and magnetometers (or 1,0,0 if no mags)
// should calculate the rotation in 3d space using proper cross product math
// SUBTODO: formulate the math required
attitudeState.Roll = RAD2DEG(attitudeState.Roll);
attitudeState.Pitch = RAD2DEG(attitudeState.Pitch);
attitudeState.Yaw = RAD2DEG(attitudeState.Yaw);
RPY2Quaternion(&attitudeState.Roll, &attitudeState.q1);
AttitudeStateSet(&attitudeState);
timeval = PIOS_DELAY_GetRaw();
// wait calibration_delay only at powerup
if (xTaskGetTickCount() < 3000) {
initStartupTime = 0;
} else {
initStartupTime = xTaskGetTickCount() - CALIBRATION_DELAY;
}
// Zero gyro bias
// This is really needed after updating calibration settings.
gyro_bias[0] = 0.0f;
gyro_bias[1] = 0.0f;
gyro_bias[2] = 0.0f;
return 0;
}
if ((xTaskGetTickCount() - initStartupTime < CALIBRATION_DURATION + CALIBRATION_DELAY) &&
(xTaskGetTickCount() - initStartupTime > CALIBRATION_DELAY)) {
// For first CALIBRATION_DURATION seconds after CALIBRATION_DELAY from startup
// Zero gyro bias assuming it is steady, smoothing the gyro input value applying rollPitchBiasRate.
attitudeSettings.AccelKp = 1.0f;
attitudeSettings.AccelKi = 0.0f;
attitudeSettings.YawBiasRate = 0.23f;
accel_filter_enabled = false;
rollPitchBiasRate = 0.01f;
attitudeSettings.MagKp = magCalibrated ? 1.0f : 0.0f;
init = 0;
} else if ((attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE) && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) {
attitudeSettings.AccelKp = 1.0f;
attitudeSettings.AccelKi = 0.0f;
attitudeSettings.YawBiasRate = 0.23f;
accel_filter_enabled = false;
rollPitchBiasRate = 0.01f;
attitudeSettings.MagKp = magCalibrated ? 1.0f : 0.0f;
init = 0;
} else if (init == 0) {
// Reload settings (all the rates)
AttitudeSettingsGet(&attitudeSettings);
rollPitchBiasRate = 0.0f;
if (accel_alpha > 0.0f) {
accel_filter_enabled = true;
}
init = 1;
}
GyroSensorGet(&gyroSensorData);
gyroStateData.x = gyroSensorData.x;
gyroStateData.y = gyroSensorData.y;
gyroStateData.z = gyroSensorData.z;
// Compute the dT using the cpu clock
dT = PIOS_DELAY_DiffuS(timeval) / 1000000.0f;
timeval = PIOS_DELAY_GetRaw();
float q[4];
AttitudeStateData attitudeState;
AttitudeStateGet(&attitudeState);
float grot[3];
float accel_err[3];
// Get the current attitude estimate
quat_copy(&attitudeState.q1, q);
// Apply smoothing to accel values, to reduce vibration noise before main calculations.
apply_accel_filter((const float *)&accelSensorData.x, accels_filtered);
// Rotate gravity to body frame and cross with accels
grot[0] = -(2.0f * (q[1] * q[3] - q[0] * q[2]));
grot[1] = -(2.0f * (q[2] * q[3] + q[0] * q[1]));
grot[2] = -(q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
apply_accel_filter(grot, grot_filtered);
CrossProduct((const float *)accels_filtered, (const float *)grot_filtered, accel_err);
// Account for accel magnitude
accel_mag = accels_filtered[0] * accels_filtered[0] + accels_filtered[1] * accels_filtered[1] + accels_filtered[2] * accels_filtered[2];
accel_mag = sqrtf(accel_mag);
float grot_mag;
if (accel_filter_enabled) {
grot_mag = sqrtf(grot_filtered[0] * grot_filtered[0] + grot_filtered[1] * grot_filtered[1] + grot_filtered[2] * grot_filtered[2]);
} else {
grot_mag = 1.0f;
}
// TODO! check grot_mag & accel vector magnitude values for correctness.
accel_err[0] /= (accel_mag * grot_mag);
accel_err[1] /= (accel_mag * grot_mag);
accel_err[2] /= (accel_mag * grot_mag);
if (xQueueReceive(magQueue, &ev, 0) != pdTRUE) {
// Rotate gravity to body frame and cross with accels
float brot[3];
float Rbe[3][3];
MagSensorData mag;
Quaternion2R(q, Rbe);
MagSensorGet(&mag);
// TODO: separate filter!
if (revoCalibration.MagBiasNullingRate > 0) {
magOffsetEstimation(&mag);
}
MagStateData mags;
mags.x = mag.x;
mags.y = mag.y;
mags.z = mag.z;
MagStateSet(&mags);
// If the mag is producing bad data don't use it (normally bad calibration)
if (!isnan(mag.x) && !isinf(mag.x) && !isnan(mag.y) && !isinf(mag.y) && !isnan(mag.z) && !isinf(mag.z)) {
rot_mult(Rbe, homeLocation.Be, brot);
float mag_len = sqrtf(mag.x * mag.x + mag.y * mag.y + mag.z * mag.z);
mag.x /= mag_len;
mag.y /= mag_len;
mag.z /= mag_len;
float bmag = sqrtf(brot[0] * brot[0] + brot[1] * brot[1] + brot[2] * brot[2]);
brot[0] /= bmag;
brot[1] /= bmag;
brot[2] /= bmag;
// Only compute if neither vector is null
if (bmag < 1.0f || mag_len < 1.0f) {
mag_err[0] = mag_err[1] = mag_err[2] = 0.0f;
} else {
CrossProduct((const float *)&mag.x, (const float *)brot, mag_err);
}
}
} else {
mag_err[0] = mag_err[1] = mag_err[2] = 0.0f;
}
// Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s
// Correct rates based on integral coefficient
gyroStateData.x -= gyro_bias[0];
gyroStateData.y -= gyro_bias[1];
gyroStateData.z -= gyro_bias[2];
gyro_bias[0] -= accel_err[0] * attitudeSettings.AccelKi - (gyroStateData.x) * rollPitchBiasRate;
gyro_bias[1] -= accel_err[1] * attitudeSettings.AccelKi - (gyroStateData.y) * rollPitchBiasRate;
gyro_bias[2] -= -mag_err[2] * attitudeSettings.MagKi - (gyroStateData.z) * rollPitchBiasRate;
// save gyroscope state
GyroStateSet(&gyroStateData);
// Correct rates based on proportional coefficient
gyroStateData.x += accel_err[0] * attitudeSettings.AccelKp / dT;
gyroStateData.y += accel_err[1] * attitudeSettings.AccelKp / dT;
gyroStateData.z += accel_err[2] * attitudeSettings.AccelKp / dT + mag_err[2] * attitudeSettings.MagKp / dT;
// Work out time derivative from INSAlgo writeup
// Also accounts for the fact that gyros are in deg/s
float qdot[4];
qdot[0] = DEG2RAD(-q[1] * gyroStateData.x - q[2] * gyroStateData.y - q[3] * gyroStateData.z) * dT / 2;
qdot[1] = DEG2RAD(q[0] * gyroStateData.x - q[3] * gyroStateData.y + q[2] * gyroStateData.z) * dT / 2;
qdot[2] = DEG2RAD(q[3] * gyroStateData.x + q[0] * gyroStateData.y - q[1] * gyroStateData.z) * dT / 2;
qdot[3] = DEG2RAD(-q[2] * gyroStateData.x + q[1] * gyroStateData.y + q[0] * gyroStateData.z) * dT / 2;
// Take a time step
q[0] = q[0] + qdot[0];
q[1] = q[1] + qdot[1];
q[2] = q[2] + qdot[2];
q[3] = q[3] + qdot[3];
if (q[0] < 0.0f) {
q[0] = -q[0];
q[1] = -q[1];
q[2] = -q[2];
q[3] = -q[3];
}
// Renomalize
qmag = sqrtf(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
q[0] = q[0] / qmag;
q[1] = q[1] / qmag;
q[2] = q[2] / qmag;
q[3] = q[3] / qmag;
// If quaternion has become inappropriately short or is nan reinit.
// THIS SHOULD NEVER ACTUALLY HAPPEN
if ((fabsf(qmag) < 1.0e-3f) || isnan(qmag)) {
q[0] = 1.0f;
q[1] = 0.0f;
q[2] = 0.0f;
q[3] = 0.0f;
}
quat_copy(q, &attitudeState.q1);
// Convert into eueler degrees (makes assumptions about RPY order)
Quaternion2RPY(&attitudeState.q1, &attitudeState.Roll);
AttitudeStateSet(&attitudeState);
// Flush these queues for avoid errors
xQueueReceive(baroQueue, &ev, 0);
if (xQueueReceive(gpsQueue, &ev, 0) == pdTRUE && homeLocation.Set == HOMELOCATION_SET_TRUE) {
float NED[3];
// Transform the GPS position into NED coordinates
GPSPositionSensorData gpsPosition;
GPSPositionSensorGet(&gpsPosition);
getNED(&gpsPosition, NED);
PositionStateData positionState;
PositionStateGet(&positionState);
positionState.North = NED[0];
positionState.East = NED[1];
positionState.Down = NED[2];
PositionStateSet(&positionState);
}
if (xQueueReceive(gpsVelQueue, &ev, 0) == pdTRUE) {
// Transform the GPS position into NED coordinates
GPSVelocitySensorData gpsVelocity;
GPSVelocitySensorGet(&gpsVelocity);
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
velocityState.North = gpsVelocity.North;
velocityState.East = gpsVelocity.East;
velocityState.Down = gpsVelocity.Down;
VelocityStateSet(&velocityState);
}
if (xQueueReceive(airspeedQueue, &ev, 0) == pdTRUE) {
// Calculate true airspeed from indicated airspeed
AirspeedSensorData airspeedSensor;
AirspeedSensorGet(&airspeedSensor);
AirspeedStateData airspeed;
AirspeedStateGet(&airspeed);
PositionStateData positionState;
PositionStateGet(&positionState);
if (airspeedSensor.SensorConnected == AIRSPEEDSENSOR_SENSORCONNECTED_TRUE) {
// we have airspeed available
airspeed.CalibratedAirspeed = airspeedSensor.CalibratedAirspeed;
airspeed.TrueAirspeed = (airspeedSensor.TrueAirspeed < 0.f) ? airspeed.CalibratedAirspeed *IAS2TAS(homeLocation.Altitude - positionState.Down) : airspeedSensor.TrueAirspeed;
AirspeedStateSet(&airspeed);
}
}
if (!init && flightStatus.Armed == FLIGHTSTATUS_ARMED_DISARMED) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
} else if (variance_error) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
}
return 0;
}
#include "insgps.h"
int32_t ins_failed = 0;
extern struct NavStruct Nav;
int32_t init_stage = 0;
/**
* @brief Use the INSGPS fusion algorithm in either indoor or outdoor mode (use GPS)
* @params[in] first_run This is the first run so trigger reinitialization
* @params[in] outdoor_mode If true use the GPS for position, if false weakly pull to (0,0)
* @return 0 for success, -1 for failure
*/
static int32_t updateAttitudeINSGPS(bool first_run, bool outdoor_mode)
{
UAVObjEvent ev;
GyroSensorData gyroSensorData;
AccelSensorData accelSensorData;
MagStateData magData;
AirspeedSensorData airspeedData;
BaroSensorData baroData;
GPSPositionSensorData gpsData;
GPSVelocitySensorData gpsVelData;
static bool mag_updated = false;
static bool baro_updated;
static bool airspeed_updated;
static bool gps_updated;
static bool gps_vel_updated;
static bool value_error = false;
static float baroOffset = 0.0f;
static uint32_t ins_last_time = 0;
static bool inited;
float NED[3] = { 0.0f, 0.0f, 0.0f };
float vel[3] = { 0.0f, 0.0f, 0.0f };
float zeros[3] = { 0.0f, 0.0f, 0.0f };
// Perform the update
uint16_t sensors = 0;
float dT;
// Wait until the gyro and accel object is updated, if a timeout then go to failsafe
if ((xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE) ||
(xQueueReceive(accelQueue, &ev, 1 / portTICK_RATE_MS) != pdTRUE)) {
// Do not set attitude timeout warnings in simulation mode
if (!AttitudeStateReadOnly()) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_WARNING);
return -1;
}
}
if (inited) {
mag_updated = 0;
baro_updated = 0;
airspeed_updated = 0;
gps_updated = 0;
gps_vel_updated = 0;
}
if (first_run) {
inited = false;
init_stage = 0;
mag_updated = 0;
baro_updated = 0;
airspeed_updated = 0;
gps_updated = 0;
gps_vel_updated = 0;
ins_last_time = PIOS_DELAY_GetRaw();
return 0;
}
mag_updated |= (xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE);
baro_updated |= xQueueReceive(baroQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE;
airspeed_updated |= xQueueReceive(airspeedQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE;
// Check if we are running simulation
if (!GPSPositionSensorReadOnly()) {
gps_updated |= (xQueueReceive(gpsQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && outdoor_mode;
} else {
gps_updated |= pdTRUE && outdoor_mode;
}
if (!GPSVelocitySensorReadOnly()) {
gps_vel_updated |= (xQueueReceive(gpsVelQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && outdoor_mode;
} else {
gps_vel_updated |= pdTRUE && outdoor_mode;
}
// Get most recent data
GyroSensorGet(&gyroSensorData);
AccelSensorGet(&accelSensorData);
// TODO: separate filter!
if (mag_updated) {
MagSensorData mags;
MagSensorGet(&mags);
if (revoCalibration.MagBiasNullingRate > 0) {
magOffsetEstimation(&mags);
}
magData.x = mags.x;
magData.y = mags.y;
magData.z = mags.z;
MagStateSet(&magData);
} else {
MagStateGet(&magData);
}
BaroSensorGet(&baroData);
AirspeedSensorGet(&airspeedData);
GPSPositionSensorGet(&gpsData);
GPSVelocitySensorGet(&gpsVelData);
// TODO: put in separate filter
AccelStateData accelState;
accelState.x = accelSensorData.x;
accelState.y = accelSensorData.y;
accelState.z = accelSensorData.z;
AccelStateSet(&accelState);
value_error = false;
// safety checks
if (invalid(gyroSensorData.x) ||
invalid(gyroSensorData.y) ||
invalid(gyroSensorData.z) ||
invalid(accelSensorData.x) ||
invalid(accelSensorData.y) ||
invalid(accelSensorData.z)) {
// cannot run process update, raise error!
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
return 0;
}
if (invalid(magData.x) ||
invalid(magData.y) ||
invalid(magData.z)) {
// magnetometers can be ignored for a while
mag_updated = false;
value_error = true;
}
// Don't require HomeLocation.Set to be true but at least require a mag configuration (allows easily
// switching between indoor and outdoor mode with Set = false)
if ((homeLocation.Be[0] * homeLocation.Be[0] + homeLocation.Be[1] * homeLocation.Be[1] + homeLocation.Be[2] * homeLocation.Be[2] < 1e-5f)) {
mag_updated = false;
value_error = true;
}
if (invalid(baroData.Altitude)) {
baro_updated = false;
value_error = true;
}
if (invalid(airspeedData.CalibratedAirspeed)) {
airspeed_updated = false;
value_error = true;
}
if (invalid(gpsData.Altitude)) {
gps_updated = false;
value_error = true;
}
if (invalid_var(ekfConfiguration.R.GPSPosNorth) ||
invalid_var(ekfConfiguration.R.GPSPosEast) ||
invalid_var(ekfConfiguration.R.GPSPosDown) ||
invalid_var(ekfConfiguration.R.GPSVelNorth) ||
invalid_var(ekfConfiguration.R.GPSVelEast) ||
invalid_var(ekfConfiguration.R.GPSVelDown)) {
gps_updated = false;
value_error = true;
}
if (invalid(gpsVelData.North) ||
invalid(gpsVelData.East) ||
invalid(gpsVelData.Down)) {
gps_vel_updated = false;
value_error = true;
}
// Discard airspeed if sensor not connected
if (airspeedData.SensorConnected != AIRSPEEDSENSOR_SENSORCONNECTED_TRUE) {
airspeed_updated = false;
}
// Have a minimum requirement for gps usage
if ((gpsData.Satellites < 7) ||
(gpsData.PDOP > 4.0f) ||
(gpsData.Latitude == 0 && gpsData.Longitude == 0) ||
(homeLocation.Set != HOMELOCATION_SET_TRUE)) {
gps_updated = false;
gps_vel_updated = false;
}
if (!inited) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
} else if (value_error) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL);
} else if (variance_error) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL);
} else if (outdoor_mode && gpsData.Satellites < 7) {
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
}
dT = PIOS_DELAY_DiffuS(ins_last_time) / 1.0e6f;
ins_last_time = PIOS_DELAY_GetRaw();
// This should only happen at start up or at mode switches
if (dT > 0.01f) {
dT = 0.01f;
} else if (dT <= 0.001f) {
dT = 0.001f;
}
if (!inited && mag_updated && baro_updated && (gps_updated || !outdoor_mode) && !variance_error) {
// Don't initialize until all sensors are read
if (init_stage == 0) {
// Reset the INS algorithm
INSGPSInit();
INSSetMagVar((float[3]) { ekfConfiguration.R.MagX,
ekfConfiguration.R.MagY,
ekfConfiguration.R.MagZ }
);
INSSetAccelVar((float[3]) { ekfConfiguration.Q.AccelX,
ekfConfiguration.Q.AccelY,
ekfConfiguration.Q.AccelZ }
);
INSSetGyroVar((float[3]) { ekfConfiguration.Q.GyroX,
ekfConfiguration.Q.GyroY,
ekfConfiguration.Q.GyroZ }
);
INSSetGyroBiasVar((float[3]) { ekfConfiguration.Q.GyroDriftX,
ekfConfiguration.Q.GyroDriftY,
ekfConfiguration.Q.GyroDriftZ }
);
INSSetBaroVar(ekfConfiguration.R.BaroZ);
// Initialize the gyro bias
float gyro_bias[3] = { 0.0f, 0.0f, 0.0f };
INSSetGyroBias(gyro_bias);
float pos[3] = { 0.0f, 0.0f, 0.0f };
if (outdoor_mode) {
GPSPositionSensorData gpsPosition;
GPSPositionSensorGet(&gpsPosition);
// Transform the GPS position into NED coordinates
getNED(&gpsPosition, pos);
// Initialize barometric offset to current GPS NED coordinate
baroOffset = -pos[2] - baroData.Altitude;
} else {
// Initialize barometric offset to homelocation altitude
baroOffset = -baroData.Altitude;
pos[2] = -(baroData.Altitude + baroOffset);
}
// xQueueReceive(magQueue, &ev, 100 / portTICK_RATE_MS);
// MagSensorGet(&magData);
AttitudeStateData attitudeState;
AttitudeStateGet(&attitudeState);
// Set initial attitude. Use accels to determine roll and pitch, rotate magnetic measurement accordingly,
// so pseudo "north" vector can be estimated even if the board is not level
attitudeState.Roll = atan2f(-accelSensorData.y, -accelSensorData.z);
float zn = cosf(attitudeState.Roll) * magData.z + sinf(attitudeState.Roll) * magData.y;
float yn = cosf(attitudeState.Roll) * magData.y - sinf(attitudeState.Roll) * magData.z;
// rotate accels z vector according to roll
float azn = cosf(attitudeState.Roll) * accelSensorData.z + sinf(attitudeState.Roll) * accelSensorData.y;
attitudeState.Pitch = atan2f(accelSensorData.x, -azn);
float xn = cosf(attitudeState.Pitch) * magData.x + sinf(attitudeState.Pitch) * zn;
attitudeState.Yaw = atan2f(-yn, xn);
// TODO: This is still a hack
// Put this in a proper generic function in CoordinateConversion.c
// should take 4 vectors: g (0,0,-9.81), accels, Be (or 1,0,0 if no home loc) and magnetometers (or 1,0,0 if no mags)
// should calculate the rotation in 3d space using proper cross product math
// SUBTODO: formulate the math required
attitudeState.Roll = RAD2DEG(attitudeState.Roll);
attitudeState.Pitch = RAD2DEG(attitudeState.Pitch);
attitudeState.Yaw = RAD2DEG(attitudeState.Yaw);
RPY2Quaternion(&attitudeState.Roll, &attitudeState.q1);
AttitudeStateSet(&attitudeState);
float q[4] = { attitudeState.q1, attitudeState.q2, attitudeState.q3, attitudeState.q4 };
INSSetState(pos, zeros, q, zeros, zeros);
INSResetP(cast_struct_to_array(ekfConfiguration.P, ekfConfiguration.P.AttitudeQ1));
} else {
// Run prediction a bit before any corrections
// Because the sensor module remove the bias we need to add it
// back in here so that the INS algorithm can track it correctly
float gyros[3] = { DEG2RAD(gyroSensorData.x), DEG2RAD(gyroSensorData.y), DEG2RAD(gyroSensorData.z) };
INSStatePrediction(gyros, &accelSensorData.x, dT);
AttitudeStateData attitude;
AttitudeStateGet(&attitude);
attitude.q1 = Nav.q[0];
attitude.q2 = Nav.q[1];
attitude.q3 = Nav.q[2];
attitude.q4 = Nav.q[3];
Quaternion2RPY(&attitude.q1, &attitude.Roll);
AttitudeStateSet(&attitude);
}
init_stage++;
if (init_stage > 10) {
inited = true;
}
return 0;
}
if (!inited) {
return 0;
}
// Because the sensor module remove the bias we need to add it
// back in here so that the INS algorithm can track it correctly
float gyros[3] = { DEG2RAD(gyroSensorData.x), DEG2RAD(gyroSensorData.y), DEG2RAD(gyroSensorData.z) };
// Advance the state estimate
INSStatePrediction(gyros, &accelSensorData.x, dT);
// Copy the attitude into the UAVO
AttitudeStateData attitude;
AttitudeStateGet(&attitude);
attitude.q1 = Nav.q[0];
attitude.q2 = Nav.q[1];
attitude.q3 = Nav.q[2];
attitude.q4 = Nav.q[3];
Quaternion2RPY(&attitude.q1, &attitude.Roll);
AttitudeStateSet(&attitude);
// Advance the covariance estimate
INSCovariancePrediction(dT);
if (mag_updated) {
sensors |= MAG_SENSORS;
}
if (baro_updated) {
sensors |= BARO_SENSOR;
}
INSSetMagNorth(homeLocation.Be);
if (gps_updated && outdoor_mode) {
INSSetPosVelVar((float[3]) { ekfConfiguration.R.GPSPosNorth,
ekfConfiguration.R.GPSPosEast,
ekfConfiguration.R.GPSPosDown },
(float[3]) { ekfConfiguration.R.GPSVelNorth,
ekfConfiguration.R.GPSVelEast,
ekfConfiguration.R.GPSVelDown }
);
sensors |= POS_SENSORS;
if (0) { // Old code to take horizontal velocity from GPS Position update
sensors |= HORIZ_SENSORS;
vel[0] = gpsData.Groundspeed * cosf(DEG2RAD(gpsData.Heading));
vel[1] = gpsData.Groundspeed * sinf(DEG2RAD(gpsData.Heading));
vel[2] = 0.0f;
}
// Transform the GPS position into NED coordinates
getNED(&gpsData, NED);
// Track barometric altitude offset with a low pass filter
baroOffset = BARO_OFFSET_LOWPASS_ALPHA * baroOffset +
(1.0f - BARO_OFFSET_LOWPASS_ALPHA)
* (-NED[2] - baroData.Altitude);
} else if (!outdoor_mode) {
INSSetPosVelVar((float[3]) { ekfConfiguration.FakeR.FakeGPSPosIndoor,
ekfConfiguration.FakeR.FakeGPSPosIndoor,
ekfConfiguration.FakeR.FakeGPSPosIndoor },
(float[3]) { ekfConfiguration.FakeR.FakeGPSVelIndoor,
ekfConfiguration.FakeR.FakeGPSVelIndoor,
ekfConfiguration.FakeR.FakeGPSVelIndoor }
);
vel[0] = vel[1] = vel[2] = 0.0f;
NED[0] = NED[1] = 0.0f;
NED[2] = -(baroData.Altitude + baroOffset);
sensors |= HORIZ_SENSORS | HORIZ_POS_SENSORS;
sensors |= POS_SENSORS | VERT_SENSORS;
}
if (gps_vel_updated && outdoor_mode) {
sensors |= HORIZ_SENSORS | VERT_SENSORS;
vel[0] = gpsVelData.North;
vel[1] = gpsVelData.East;
vel[2] = gpsVelData.Down;
}
// Copy the position into the UAVO
PositionStateData positionState;
PositionStateGet(&positionState);
positionState.North = Nav.Pos[0];
positionState.East = Nav.Pos[1];
positionState.Down = Nav.Pos[2];
PositionStateSet(&positionState);
// airspeed correction needs current positionState
if (airspeed_updated) {
// we have airspeed available
AirspeedStateData airspeed;
AirspeedStateGet(&airspeed);
airspeed.CalibratedAirspeed = airspeedData.CalibratedAirspeed;
airspeed.TrueAirspeed = (airspeedData.TrueAirspeed < 0.f) ? airspeed.CalibratedAirspeed *IAS2TAS(homeLocation.Altitude - positionState.Down) : airspeedData.TrueAirspeed;
AirspeedStateSet(&airspeed);
if (!gps_vel_updated && !gps_updated) {
// feed airspeed into EKF, treat wind as 1e2 variance
sensors |= HORIZ_SENSORS | VERT_SENSORS;
INSSetPosVelVar((float[3]) { ekfConfiguration.FakeR.FakeGPSPosIndoor,
ekfConfiguration.FakeR.FakeGPSPosIndoor,
ekfConfiguration.FakeR.FakeGPSPosIndoor },
(float[3]) { ekfConfiguration.FakeR.FakeGPSVelAirspeed,
ekfConfiguration.FakeR.FakeGPSVelAirspeed,
ekfConfiguration.FakeR.FakeGPSVelAirspeed }
);
// rotate airspeed vector into NED frame - airspeed is measured in X axis only
float R[3][3];
Quaternion2R(Nav.q, R);
float vtas[3] = { airspeed.TrueAirspeed, 0.0f, 0.0f };
rot_mult(R, vtas, vel);
}
}
/*
* TODO: Need to add a general sanity check for all the inputs to make sure their kosher
* although probably should occur within INS itself
*/
if (sensors) {
INSCorrection(&magData.x, NED, vel, (baroData.Altitude + baroOffset), sensors);
}
// Copy the velocity into the UAVO
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
velocityState.North = Nav.Vel[0];
velocityState.East = Nav.Vel[1];
velocityState.Down = Nav.Vel[2];
VelocityStateSet(&velocityState);
GyroStateData gyroState;
gyroState.x = RAD2DEG(gyros[0] - RAD2DEG(Nav.gyro_bias[0]));
gyroState.y = RAD2DEG(gyros[1] - RAD2DEG(Nav.gyro_bias[1]));
gyroState.z = RAD2DEG(gyros[2] - RAD2DEG(Nav.gyro_bias[2]));
GyroStateSet(&gyroState);
EKFStateVarianceData vardata;
EKFStateVarianceGet(&vardata);
INSGetP(cast_struct_to_array(vardata.P, vardata.P.AttitudeQ1));
EKFStateVarianceSet(&vardata);
return 0;
}
/**
* @brief Convert the GPS LLA position into NED coordinates
* @note this method uses a taylor expansion around the home coordinates
* to convert to NED which allows it to be done with all floating
* calculations
* @param[in] Current GPS coordinates
* @param[out] NED frame coordinates
* @returns 0 for success, -1 for failure
*/
float T[3];
static int32_t getNED(GPSPositionSensorData *gpsPosition, float *NED)
{
float dL[3] = { DEG2RAD((gpsPosition->Latitude - homeLocation.Latitude) / 10.0e6f),
DEG2RAD((gpsPosition->Longitude - homeLocation.Longitude) / 10.0e6f),
(gpsPosition->Altitude + gpsPosition->GeoidSeparation - homeLocation.Altitude) };
NED[0] = T[0] * dL[0];
NED[1] = T[1] * dL[1];
NED[2] = T[2] * dL[2];
return 0;
}
static void settingsUpdatedCb(UAVObjEvent *ev)
{
if (ev == NULL || ev->obj == FlightStatusHandle()) {
FlightStatusGet(&flightStatus);
}
if (ev == NULL || ev->obj == RevoCalibrationHandle()) {
RevoCalibrationGet(&revoCalibration);
}
// change of these settings require reinitialization of the EKF
// when an error flag has been risen, we also listen to flightStatus updates,
// since we are waiting for the system to get disarmed so we can reinitialize safely.
if (ev == NULL ||
ev->obj == EKFConfigurationHandle() ||
ev->obj == RevoSettingsHandle() ||
(variance_error == true && ev->obj == FlightStatusHandle())
) {
bool error = false;
EKFConfigurationGet(&ekfConfiguration);
int t;
for (t = 0; t < EKFCONFIGURATION_P_NUMELEM; t++) {
if (invalid_var(cast_struct_to_array(ekfConfiguration.P, ekfConfiguration.P.AttitudeQ1)[t])) {
error = true;
}
}
for (t = 0; t < EKFCONFIGURATION_Q_NUMELEM; t++) {
if (invalid_var(cast_struct_to_array(ekfConfiguration.Q, ekfConfiguration.Q.AccelX)[t])) {
error = true;
}
}
for (t = 0; t < EKFCONFIGURATION_R_NUMELEM; t++) {
if (invalid_var(cast_struct_to_array(ekfConfiguration.R, ekfConfiguration.R.BaroZ)[t])) {
error = true;
}
}
RevoSettingsGet(&revoSettings);
// Reinitialization of the EKF is not desired during flight.
// It will be delayed until the board is disarmed by raising the error flag.
// We will not prevent the initial initialization though, since the board could be in always armed mode.
if (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED && !initialization_required) {
error = true;
}
if (error) {
variance_error = true;
} else {
// trigger reinitialization - possibly with new algorithm
running_algorithm = revoSettings.FusionAlgorithm;
variance_error = false;
initialization_required = true;
}
}
if (ev == NULL || ev->obj == HomeLocationHandle()) {
HomeLocationGet(&homeLocation);
// Compute matrix to convert deltaLLA to NED
float lat, alt;
lat = DEG2RAD(homeLocation.Latitude / 10.0e6f);
alt = homeLocation.Altitude;
T[0] = alt + 6.378137E6f;
T[1] = cosf(lat) * (alt + 6.378137E6f);
T[2] = -1.0f;
// TODO: convert positionState to new reference frame and gracefully update EKF state!
// needed for long range flights where the reference coordinate is adjusted in flight
}
if (ev == NULL || ev->obj == AttitudeSettingsHandle()) {
AttitudeSettingsGet(&attitudeSettings);
// Calculate accel filter alpha, in the same way as for gyro data in stabilization module.
const float fakeDt = 0.0015f;
if (attitudeSettings.AccelTau < 0.0001f) {
accel_alpha = 0; // not trusting this to resolve to 0
accel_filter_enabled = false;
} else {
accel_alpha = expf(-fakeDt / attitudeSettings.AccelTau);
accel_filter_enabled = true;
}
}
}
/**
* Perform an update of the @ref MagBias based on
* Magmeter Offset Cancellation: Theory and Implementation,
* revisited William Premerlani, October 14, 2011
*/
static void magOffsetEstimation(MagSensorData *mag)
{
#if 0
// Constants, to possibly go into a UAVO
static const float MIN_NORM_DIFFERENCE = 50;
static float B2[3] = { 0, 0, 0 };
MagBiasData magBias;
MagBiasGet(&magBias);
// Remove the current estimate of the bias
mag->x -= magBias.x;
mag->y -= magBias.y;
mag->z -= magBias.z;
// First call
if (B2[0] == 0 && B2[1] == 0 && B2[2] == 0) {
B2[0] = mag->x;
B2[1] = mag->y;
B2[2] = mag->z;
return;
}
float B1[3] = { mag->x, mag->y, mag->z };
float norm_diff = sqrtf(powf(B2[0] - B1[0], 2) + powf(B2[1] - B1[1], 2) + powf(B2[2] - B1[2], 2));
if (norm_diff > MIN_NORM_DIFFERENCE) {
float norm_b1 = sqrtf(B1[0] * B1[0] + B1[1] * B1[1] + B1[2] * B1[2]);
float norm_b2 = sqrtf(B2[0] * B2[0] + B2[1] * B2[1] + B2[2] * B2[2]);
float scale = cal.MagBiasNullingRate * (norm_b2 - norm_b1) / norm_diff;
float b_error[3] = { (B2[0] - B1[0]) * scale, (B2[1] - B1[1]) * scale, (B2[2] - B1[2]) * scale };
magBias.x += b_error[0];
magBias.y += b_error[1];
magBias.z += b_error[2];
MagBiasSet(&magBias);
// Store this value to compare against next update
B2[0] = B1[0]; B2[1] = B1[1]; B2[2] = B1[2];
}
#else // if 0
static float magBias[3] = { 0 };
// Remove the current estimate of the bias
mag->x -= magBias[0];
mag->y -= magBias[1];
mag->z -= magBias[2];
AttitudeStateData attitude;
AttitudeStateGet(&attitude);
const float Rxy = sqrtf(homeLocation.Be[0] * homeLocation.Be[0] + homeLocation.Be[1] * homeLocation.Be[1]);
const float Rz = homeLocation.Be[2];
const float rate = revoCalibration.MagBiasNullingRate;
float Rot[3][3];
float B_e[3];
float xy[2];
float delta[3];
// Get the rotation matrix
Quaternion2R(&attitude.q1, Rot);
// Rotate the mag into the NED frame
B_e[0] = Rot[0][0] * mag->x + Rot[1][0] * mag->y + Rot[2][0] * mag->z;
B_e[1] = Rot[0][1] * mag->x + Rot[1][1] * mag->y + Rot[2][1] * mag->z;
B_e[2] = Rot[0][2] * mag->x + Rot[1][2] * mag->y + Rot[2][2] * mag->z;
float cy = cosf(DEG2RAD(attitude.Yaw));
float sy = sinf(DEG2RAD(attitude.Yaw));
xy[0] = cy * B_e[0] + sy * B_e[1];
xy[1] = -sy * B_e[0] + cy * B_e[1];
float xy_norm = sqrtf(xy[0] * xy[0] + xy[1] * xy[1]);
delta[0] = -rate * (xy[0] / xy_norm * Rxy - xy[0]);
delta[1] = -rate * (xy[1] / xy_norm * Rxy - xy[1]);
delta[2] = -rate * (Rz - B_e[2]);
if (!isnan(delta[0]) && !isinf(delta[0]) &&
!isnan(delta[1]) && !isinf(delta[1]) &&
!isnan(delta[2]) && !isinf(delta[2])) {
magBias[0] += delta[0];
magBias[1] += delta[1];
magBias[2] += delta[2];
}
#endif // if 0
}
/**
* @}
* @}
*/