1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-22 07:52:12 +01:00
LibrePilot/flight/pios/common/pios_ms5611.c

532 lines
15 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
******************************************************************************
* @addtogroup PIOS PIOS Core hardware abstraction layer
* @{
* @addtogroup PIOS_MS5611 MS5611 Functions
* @brief Hardware functions to deal with the altitude pressure sensor
* @{
*
* @file pios_ms5611.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief MS5611 Pressure Sensor Routines
* @see The GNU Public License (GPL) Version 3
*
******************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "pios.h"
#ifdef PIOS_INCLUDE_MS5611
#include <pios_ms5611.h>
#define POW2(x) (1 << x)
// TODO: Clean this up. Getting around old constant.
#define PIOS_MS5611_OVERSAMPLING oversampling
// Option to change the interleave between Temp and Pressure conversions
// Undef for normal operation
#define PIOS_MS5611_SLOW_TEMP_RATE 20
#ifndef PIOS_MS5611_SLOW_TEMP_RATE
#define PIOS_MS5611_SLOW_TEMP_RATE 1
#endif
// Running moving average smoothing factor
#define PIOS_MS5611_TEMP_SMOOTHING 10
//
#define PIOS_MS5611_I2C_RETRIES 5
/* Local Types */
typedef struct {
uint16_t C[6];
} MS5611CalibDataTypeDef;
typedef enum {
MS5611_CONVERSION_TYPE_None = 0,
MS5611_CONVERSION_TYPE_PressureConv,
MS5611_CONVERSION_TYPE_TemperatureConv
} ConversionTypeTypeDef;
typedef enum {
MS5611_FSM_INIT = 0,
MS5611_FSM_TEMPERATURE,
MS5611_FSM_PRESSURE,
MS5611_FSM_CALCULATE,
} MS5611_FSM_State;
/* Glocal Variables */
ConversionTypeTypeDef CurrentRead = MS5611_CONVERSION_TYPE_None;
/* Local Variables */
MS5611CalibDataTypeDef CalibData;
/* Straight from the datasheet */
static uint32_t RawTemperature;
static uint32_t RawPressure;
static int64_t Pressure;
static int64_t Temperature;
static int64_t FilteredTemperature = INT32_MIN;
static int32_t lastConversionStart;
static uint32_t conversionDelayMs;
static uint32_t conversionDelayUs;
static int32_t PIOS_MS5611_Read(uint8_t address, uint8_t *buffer, uint8_t len);
static int32_t PIOS_MS5611_WriteCommand(uint8_t command);
static uint32_t PIOS_MS5611_GetDelay();
static uint32_t PIOS_MS5611_GetDelayUs();
// Second order temperature compensation. Temperature offset
static int64_t compensation_t2;
// Move into proper driver structure with cfg stored
static uint32_t oversampling;
static const struct pios_ms5611_cfg *dev_cfg;
static int32_t i2c_id;
static PIOS_SENSORS_1Axis_SensorsWithTemp results;
static bool sensorIsAlive = false;
// sensor driver interface
bool PIOS_MS5611_driver_Test(uintptr_t context);
void PIOS_MS5611_driver_Reset(uintptr_t context);
void PIOS_MS5611_driver_get_scale(float *scales, uint8_t size, uintptr_t context);
void PIOS_MS5611_driver_fetch(void *, uint8_t size, uintptr_t context);
bool PIOS_MS5611_driver_poll(uintptr_t context);
const PIOS_SENSORS_Driver PIOS_MS5611_Driver = {
.test = PIOS_MS5611_driver_Test,
.poll = PIOS_MS5611_driver_poll,
.fetch = PIOS_MS5611_driver_fetch,
.reset = PIOS_MS5611_driver_Reset,
.get_queue = NULL,
.get_scale = PIOS_MS5611_driver_get_scale,
.is_polled = true,
};
/**
* Initialise the MS5611 sensor
*/
int32_t ms5611_read_flag;
void PIOS_MS5611_Init(const struct pios_ms5611_cfg *cfg, int32_t i2c_device)
{
static uint32_t initTime;
if (cfg) {
i2c_id = i2c_device;
oversampling = cfg->oversampling;
conversionDelayMs = PIOS_MS5611_GetDelay();
conversionDelayUs = PIOS_MS5611_GetDelayUs();
dev_cfg = cfg; // Store cfg before enabling interrupt
} else if (PIOS_DELAY_DiffuS(initTime) < 1000000) { // Do not reinitialize too often
return;
}
initTime = PIOS_DELAY_GetRaw();
PIOS_MS5611_WriteCommand(MS5611_RESET);
PIOS_DELAY_WaitmS(20);
uint8_t data[2];
// reset temperature compensation values
compensation_t2 = 0;
/* Calibration parameters */
for (int i = 0; i < 6; i++) {
if (PIOS_MS5611_Read(MS5611_CALIB_ADDR + i * 2, data, 2) != 0) {
return;
}
CalibData.C[i] = (data[0] << 8) | data[1];
}
sensorIsAlive = true;
}
/**
* Start the ADC conversion
* \param[in] PresOrTemp BMP085_PRES_ADDR or BMP085_TEMP_ADDR
* \return 0 for success, -1 for failure (conversion completed and not read), -2 if failure occurred
*/
int32_t PIOS_MS5611_StartADC(ConversionTypeTypeDef Type)
{
if (!sensorIsAlive) { /* if sensor is not alive, don't bother, wait for next poll to try to reinitialize */
return -2;
}
/* Start the conversion */
if (Type == MS5611_CONVERSION_TYPE_TemperatureConv) {
if (PIOS_MS5611_WriteCommand(MS5611_TEMP_ADDR + oversampling) != 0) {
return -2;
}
} else if (Type == MS5611_CONVERSION_TYPE_PressureConv) {
if (PIOS_MS5611_WriteCommand(MS5611_PRES_ADDR + oversampling) != 0) {
return -2;
}
}
lastConversionStart = PIOS_DELAY_GetRaw();
CurrentRead = Type;
return 0;
}
/**
* @brief Return the delay for the current osr
*/
static uint32_t PIOS_MS5611_GetDelay()
{
switch (oversampling) {
case MS5611_OSR_256:
return 1;
case MS5611_OSR_512:
return 2;
case MS5611_OSR_1024:
return 3;
case MS5611_OSR_2048:
return 5;
case MS5611_OSR_4096:
return 10;
default:
break;
}
return 10;
}
/**
* @brief Return the delay for the current osr in uS
*/
static uint32_t PIOS_MS5611_GetDelayUs()
{
switch (oversampling) {
case MS5611_OSR_256:
return 600;
case MS5611_OSR_512:
return 1170;
case MS5611_OSR_1024:
return 2280;
case MS5611_OSR_2048:
return 4540;
case MS5611_OSR_4096:
return 9040;
default:
break;
}
return 10;
}
/**
* Read the ADC conversion value (once ADC conversion has completed)
* \return 0 if successfully read the ADC, -1 if conversion time has not elapsed, -2 if failure occurred
*/
int32_t PIOS_MS5611_ReadADC(void)
{
if (!sensorIsAlive) { /* if sensor is not alive, don't bother, wait for next poll to try to reinitialize */
return -2;
}
uint8_t Data[3];
Data[0] = 0;
Data[1] = 0;
Data[2] = 0;
if (CurrentRead == MS5611_CONVERSION_TYPE_None) {
return -2;
}
if (conversionDelayUs > PIOS_DELAY_DiffuS(lastConversionStart)) {
return -1;
}
static int64_t deltaTemp;
/* Read and store the 16bit result */
if (CurrentRead == MS5611_CONVERSION_TYPE_TemperatureConv) {
/* Read the temperature conversion */
if (PIOS_MS5611_Read(MS5611_ADC_READ, Data, 3) != 0) {
return -2;
}
RawTemperature = (Data[0] << 16) | (Data[1] << 8) | Data[2];
// Difference between actual and reference temperature
// dT = D2 - TREF = D2 - C5 * 2^8
deltaTemp = ((int32_t)RawTemperature) - (CalibData.C[4] * POW2(8));
// Actual temperature (-40…85°C with 0.01°C resolution)
// TEMP = 20°C + dT * TEMPSENS = 2000 + dT * C6 / 2^23
Temperature = 2000l + ((deltaTemp * CalibData.C[5]) / POW2(23));
if (FilteredTemperature != INT32_MIN) {
FilteredTemperature = (FilteredTemperature * (PIOS_MS5611_TEMP_SMOOTHING - 1)
+ Temperature) / PIOS_MS5611_TEMP_SMOOTHING;
} else {
FilteredTemperature = Temperature;
}
} else {
int64_t Offset;
int64_t Sens;
// used for second order temperature compensation
int64_t Offset2 = 0;
int64_t Sens2 = 0;
/* Read the pressure conversion */
if (PIOS_MS5611_Read(MS5611_ADC_READ, Data, 3) != 0) {
return -2;
}
// check if temperature is less than 20°C
if (FilteredTemperature < 2000) {
// Apply compensation
// T2 = dT^2 / 2^31
// OFF2 = 5 ⋅ (TEMP 2000)^2/2
// SENS2 = 5 ⋅ (TEMP 2000)^2/2^2
int64_t tcorr = (FilteredTemperature - 2000) * (FilteredTemperature - 2000);
Offset2 = (5 * tcorr) / 2;
Sens2 = (5 * tcorr) / 4;
compensation_t2 = (deltaTemp * deltaTemp) >> 31;
// Apply the "Very low temperature compensation" when temp is less than -15°C
if (FilteredTemperature < -1500) {
// OFF2 = OFF2 + 7 ⋅ (TEMP + 1500)^2
// SENS2 = SENS2 + 11 ⋅ (TEMP + 1500)^2 / 2
int64_t tcorr2 = (FilteredTemperature + 1500) * (FilteredTemperature + 1500);
Offset2 += 7 * tcorr2;
Sens2 += (11 * tcorr2) / 2;
}
} else {
compensation_t2 = 0;
Offset2 = 0;
Sens2 = 0;
}
RawPressure = ((Data[0] << 16) | (Data[1] << 8) | Data[2]);
// Offset at actual temperature
// OFF = OFFT1 + TCO * dT = C2 * 2^16 + (C4 * dT) / 2^7
Offset = ((int64_t)CalibData.C[1]) * POW2(16) + (((int64_t)CalibData.C[3]) * deltaTemp) / POW2(7) - Offset2;
// Sensitivity at actual temperature
// SENS = SENST1 + TCS * dT = C1 * 2^15 + (C3 * dT) / 2^8
Sens = ((int64_t)CalibData.C[0]) * POW2(15) + (((int64_t)CalibData.C[2]) * deltaTemp) / POW2(8) - Sens2;
// Temperature compensated pressure (10…1200mbar with 0.01mbar resolution)
// P = D1 * SENS - OFF = (D1 * SENS / 2^21 - OFF) / 2^15
Pressure = (((((int64_t)RawPressure) * Sens) / POW2(21)) - Offset) / POW2(15);
}
return 0;
}
/**
* Return the most recently computed temperature in kPa
*/
static float PIOS_MS5611_GetTemperature(void)
{
// Apply the second order low and very low temperature compensation offset
return ((float)(FilteredTemperature - compensation_t2)) / 100.0f;
}
/**
* Return the most recently computed pressure in Pa
*/
static float PIOS_MS5611_GetPressure(void)
{
return (float)Pressure;
}
/**
* Reads one or more bytes into a buffer
* \param[in] the command indicating the address to read
* \param[out] buffer destination buffer
* \param[in] len number of bytes which should be read
* \return 0 if operation was successful
* \return -1 if error during I2C transfer
*/
static int32_t PIOS_MS5611_Read(uint8_t address, uint8_t *buffer, uint8_t len)
{
const struct pios_i2c_txn txn_list[] = {
{
.info = __func__,
.addr = MS5611_I2C_ADDR,
.rw = PIOS_I2C_TXN_WRITE,
.len = 1,
.buf = &address,
}
,
{
.info = __func__,
.addr = MS5611_I2C_ADDR,
.rw = PIOS_I2C_TXN_READ,
.len = len,
.buf = buffer,
}
};
for (uint8_t retry = PIOS_MS5611_I2C_RETRIES; retry > 0; --retry) {
if (PIOS_I2C_Transfer(i2c_id, txn_list, NELEMENTS(txn_list)) == 0) {
return 0;
}
}
sensorIsAlive = false;
return -1;
}
/**
* Writes one or more bytes to the MS5611
* \param[in] address Register address
* \param[in] buffer source buffer
* \return 0 if operation was successful
* \return -1 if error during I2C transfer
*/
static int32_t PIOS_MS5611_WriteCommand(uint8_t command)
{
const struct pios_i2c_txn txn_list[] = {
{
.info = __func__,
.addr = MS5611_I2C_ADDR,
.rw = PIOS_I2C_TXN_WRITE,
.len = 1,
.buf = &command,
}
,
};
for (uint8_t retry = PIOS_MS5611_I2C_RETRIES; retry > 0; --retry) {
if (PIOS_I2C_Transfer(i2c_id, txn_list, NELEMENTS(txn_list)) == 0) {
return 0;
}
}
sensorIsAlive = false;
return -1;
}
/**
* @brief Run self-test operation.
* \return 0 if self-test succeed, -1 if failed
*/
int32_t PIOS_MS5611_Test()
{
// TODO: Is there a better way to test this than just checking that pressure/temperature has changed?
int32_t cur_value = 0;
cur_value = Temperature;
PIOS_MS5611_StartADC(MS5611_CONVERSION_TYPE_TemperatureConv);
PIOS_DELAY_WaitmS(10);
PIOS_MS5611_ReadADC();
if (cur_value == Temperature) {
return -1;
}
cur_value = Pressure;
PIOS_MS5611_StartADC(MS5611_CONVERSION_TYPE_PressureConv);
PIOS_DELAY_WaitmS(10);
PIOS_MS5611_ReadADC();
if (cur_value == Pressure) {
return -1;
}
return 0;
}
/* PIOS sensor driver implementation */
void PIOS_MS5611_Register()
{
PIOS_SENSORS_Register(&PIOS_MS5611_Driver, PIOS_SENSORS_TYPE_1AXIS_BARO, 0);
}
bool PIOS_MS5611_driver_Test(__attribute__((unused)) uintptr_t context)
{
return true; // !PIOS_MS5611_Test();
}
void PIOS_MS5611_driver_Reset(__attribute__((unused)) uintptr_t context) {}
void PIOS_MS5611_driver_get_scale(float *scales, uint8_t size, __attribute__((unused)) uintptr_t context)
{
PIOS_Assert(size > 0);
scales[0] = 1;
}
void PIOS_MS5611_driver_fetch(void *data, __attribute__((unused)) uint8_t size, __attribute__((unused)) uintptr_t context)
{
PIOS_Assert(data);
memcpy(data, (void *)&results, sizeof(PIOS_SENSORS_1Axis_SensorsWithTemp));
}
bool PIOS_MS5611_driver_poll(__attribute__((unused)) uintptr_t context)
{
static uint8_t temp_press_interleave_count = 1;
static MS5611_FSM_State next_state = MS5611_FSM_INIT;
if (!sensorIsAlive) { // try to reinit
PIOS_MS5611_Init(0, 0);
}
int32_t conversionResult = PIOS_MS5611_ReadADC();
if (__builtin_expect(conversionResult == -1, 1)) {
return false; // wait for conversion to complete
} else if (__builtin_expect(conversionResult == -2, 0)) {
temp_press_interleave_count = 1;
next_state = MS5611_FSM_INIT;
}
switch (next_state) {
case MS5611_FSM_INIT:
case MS5611_FSM_TEMPERATURE:
PIOS_MS5611_StartADC(MS5611_CONVERSION_TYPE_TemperatureConv);
next_state = MS5611_FSM_PRESSURE;
return false;
case MS5611_FSM_PRESSURE:
PIOS_MS5611_StartADC(MS5611_CONVERSION_TYPE_PressureConv);
next_state = MS5611_FSM_CALCULATE;
return false;
case MS5611_FSM_CALCULATE:
temp_press_interleave_count--;
if (!temp_press_interleave_count) {
temp_press_interleave_count = PIOS_MS5611_SLOW_TEMP_RATE;
PIOS_MS5611_StartADC(MS5611_CONVERSION_TYPE_TemperatureConv);
next_state = MS5611_FSM_PRESSURE;
} else {
PIOS_MS5611_StartADC(MS5611_CONVERSION_TYPE_PressureConv);
next_state = MS5611_FSM_CALCULATE;
}
results.temperature = PIOS_MS5611_GetTemperature();
results.sample = PIOS_MS5611_GetPressure();
return true;
default:
// it should not be there
PIOS_Assert(0);
}
return false;
}
#endif /* PIOS_INCLUDE_MS5611 */
/**
* @}
* @}
*/