mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-12-04 12:24:11 +01:00
46a52fc5ce
know the true stick position to dampen the gyros appropriately.
533 lines
17 KiB
C
533 lines
17 KiB
C
/**
|
|
******************************************************************************
|
|
* @addtogroup OpenPilotModules OpenPilot Modules
|
|
* @{
|
|
* @addtogroup StabilizationModule Stabilization Module
|
|
* @brief Stabilization PID loops in an airframe type independent manner
|
|
* @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the
|
|
* PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeActual "Attitude Actual"
|
|
* @{
|
|
*
|
|
* @file stabilization.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
|
* @brief Attitude stabilization module.
|
|
*
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
*****************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include "openpilot.h"
|
|
#include "stabilization.h"
|
|
#include "stabilizationsettings.h"
|
|
#include "actuatordesired.h"
|
|
#include "ratedesired.h"
|
|
#include "stabilizationdesired.h"
|
|
#include "attitudeactual.h"
|
|
#include "gyros.h"
|
|
#include "flightstatus.h"
|
|
#include "manualcontrol.h" // Just to get a macro
|
|
#include "CoordinateConversions.h"
|
|
|
|
// Private constants
|
|
#define MAX_QUEUE_SIZE 1
|
|
|
|
#if defined(PIOS_STABILIZATION_STACK_SIZE)
|
|
#define STACK_SIZE_BYTES PIOS_STABILIZATION_STACK_SIZE
|
|
#else
|
|
#define STACK_SIZE_BYTES 724
|
|
#endif
|
|
|
|
#define TASK_PRIORITY (tskIDLE_PRIORITY+4)
|
|
#define FAILSAFE_TIMEOUT_MS 30
|
|
|
|
enum {PID_RATE_ROLL, PID_RATE_PITCH, PID_RATE_YAW, PID_ROLL, PID_PITCH, PID_YAW, PID_VBAR_ROLL, PID_VBAR_PITCH, PID_VBAR_YAW, PID_MAX};
|
|
|
|
enum {ROLL,PITCH,YAW,MAX_AXES};
|
|
|
|
|
|
// Private types
|
|
typedef struct {
|
|
float p;
|
|
float i;
|
|
float d;
|
|
float iLim;
|
|
float iAccumulator;
|
|
float lastErr;
|
|
} pid_type;
|
|
|
|
// Private variables
|
|
static xTaskHandle taskHandle;
|
|
static StabilizationSettingsData settings;
|
|
static xQueueHandle queue;
|
|
float gyro_alpha = 0;
|
|
float gyro_filtered[3] = {0,0,0};
|
|
float axis_lock_accum[3] = {0,0,0};
|
|
float vbar_sensitivity[3] = {1, 1, 1};
|
|
uint8_t max_axis_lock = 0;
|
|
uint8_t max_axislock_rate = 0;
|
|
float weak_leveling_kp = 0;
|
|
uint8_t weak_leveling_max = 0;
|
|
bool lowThrottleZeroIntegral;
|
|
float vbar_integral[3] = {0, 0, 0};
|
|
float vbar_decay = 0.991f;
|
|
pid_type pids[PID_MAX];
|
|
int8_t vbar_gyros_suppress;
|
|
bool vbar_piro_comp = false;
|
|
|
|
// Private functions
|
|
static void stabilizationTask(void* parameters);
|
|
static float ApplyPid(pid_type * pid, const float err, float dT);
|
|
static float bound(float val);
|
|
static void ZeroPids(void);
|
|
static void SettingsUpdatedCb(UAVObjEvent * ev);
|
|
|
|
/**
|
|
* Module initialization
|
|
*/
|
|
int32_t StabilizationStart()
|
|
{
|
|
// Initialize variables
|
|
// Create object queue
|
|
queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent));
|
|
|
|
// Listen for updates.
|
|
// AttitudeActualConnectQueue(queue);
|
|
GyrosConnectQueue(queue);
|
|
|
|
StabilizationSettingsConnectCallback(SettingsUpdatedCb);
|
|
SettingsUpdatedCb(StabilizationSettingsHandle());
|
|
|
|
// Start main task
|
|
xTaskCreate(stabilizationTask, (signed char*)"Stabilization", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &taskHandle);
|
|
TaskMonitorAdd(TASKINFO_RUNNING_STABILIZATION, taskHandle);
|
|
PIOS_WDG_RegisterFlag(PIOS_WDG_STABILIZATION);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Module initialization
|
|
*/
|
|
int32_t StabilizationInitialize()
|
|
{
|
|
// Initialize variables
|
|
StabilizationSettingsInitialize();
|
|
ActuatorDesiredInitialize();
|
|
#if defined(DIAGNOSTICS)
|
|
RateDesiredInitialize();
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
MODULE_INITCALL(StabilizationInitialize, StabilizationStart)
|
|
|
|
/**
|
|
* Module task
|
|
*/
|
|
static void stabilizationTask(void* parameters)
|
|
{
|
|
UAVObjEvent ev;
|
|
|
|
uint32_t timeval = PIOS_DELAY_GetRaw();
|
|
|
|
ActuatorDesiredData actuatorDesired;
|
|
StabilizationDesiredData stabDesired;
|
|
RateDesiredData rateDesired;
|
|
AttitudeActualData attitudeActual;
|
|
GyrosData gyrosData;
|
|
FlightStatusData flightStatus;
|
|
|
|
SettingsUpdatedCb((UAVObjEvent *) NULL);
|
|
|
|
// Main task loop
|
|
ZeroPids();
|
|
while(1) {
|
|
float dT;
|
|
|
|
PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION);
|
|
|
|
// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
|
|
if ( xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE )
|
|
{
|
|
AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION,SYSTEMALARMS_ALARM_WARNING);
|
|
continue;
|
|
}
|
|
|
|
dT = PIOS_DELAY_DiffuS(timeval) * 1.0e-6f;
|
|
timeval = PIOS_DELAY_GetRaw();
|
|
|
|
FlightStatusGet(&flightStatus);
|
|
StabilizationDesiredGet(&stabDesired);
|
|
AttitudeActualGet(&attitudeActual);
|
|
GyrosGet(&gyrosData);
|
|
|
|
#if defined(DIAGNOSTICS)
|
|
RateDesiredGet(&rateDesired);
|
|
#endif
|
|
|
|
#if defined(PIOS_QUATERNION_STABILIZATION)
|
|
// Quaternion calculation of error in each axis. Uses more memory.
|
|
float rpy_desired[3];
|
|
float q_desired[4];
|
|
float q_error[4];
|
|
float local_error[3];
|
|
|
|
// Essentially zero errors for anything in rate or none
|
|
if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
|
|
rpy_desired[0] = stabDesired.Roll;
|
|
else
|
|
rpy_desired[0] = attitudeActual.Roll;
|
|
|
|
if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
|
|
rpy_desired[1] = stabDesired.Pitch;
|
|
else
|
|
rpy_desired[1] = attitudeActual.Pitch;
|
|
|
|
if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
|
|
rpy_desired[2] = stabDesired.Yaw;
|
|
else
|
|
rpy_desired[2] = attitudeActual.Yaw;
|
|
|
|
RPY2Quaternion(rpy_desired, q_desired);
|
|
quat_inverse(q_desired);
|
|
quat_mult(q_desired, &attitudeActual.q1, q_error);
|
|
quat_inverse(q_error);
|
|
Quaternion2RPY(q_error, local_error);
|
|
|
|
#else
|
|
// Simpler algorithm for CC, less memory
|
|
float local_error[3] = {stabDesired.Roll - attitudeActual.Roll,
|
|
stabDesired.Pitch - attitudeActual.Pitch,
|
|
stabDesired.Yaw - attitudeActual.Yaw};
|
|
local_error[2] = fmodf(local_error[2] + 180, 360) - 180;
|
|
#endif
|
|
|
|
|
|
gyro_filtered[0] = gyro_filtered[0] * gyro_alpha + gyrosData.x * (1 - gyro_alpha);
|
|
gyro_filtered[1] = gyro_filtered[1] * gyro_alpha + gyrosData.y * (1 - gyro_alpha);
|
|
gyro_filtered[2] = gyro_filtered[2] * gyro_alpha + gyrosData.z * (1 - gyro_alpha);
|
|
|
|
float *attitudeDesiredAxis = &stabDesired.Roll;
|
|
float *actuatorDesiredAxis = &actuatorDesired.Roll;
|
|
float *rateDesiredAxis = &rateDesired.Roll;
|
|
|
|
//Calculate desired rate
|
|
for(uint8_t i=0; i< MAX_AXES; i++)
|
|
{
|
|
switch(stabDesired.StabilizationMode[i])
|
|
{
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR:
|
|
rateDesiredAxis[i] = attitudeDesiredAxis[i];
|
|
|
|
// Zero attitude and axis lock accumulators
|
|
pids[PID_ROLL + i].iAccumulator = 0;
|
|
axis_lock_accum[i] = 0;
|
|
break;
|
|
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
|
|
{
|
|
float weak_leveling = local_error[i] * weak_leveling_kp;
|
|
|
|
if(weak_leveling > weak_leveling_max)
|
|
weak_leveling = weak_leveling_max;
|
|
if(weak_leveling < -weak_leveling_max)
|
|
weak_leveling = -weak_leveling_max;
|
|
|
|
rateDesiredAxis[i] = attitudeDesiredAxis[i] + weak_leveling;
|
|
|
|
// Zero attitude and axis lock accumulators
|
|
pids[PID_ROLL + i].iAccumulator = 0;
|
|
axis_lock_accum[i] = 0;
|
|
break;
|
|
}
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
|
|
rateDesiredAxis[i] = ApplyPid(&pids[PID_ROLL + i], local_error[i], dT);
|
|
|
|
if(rateDesiredAxis[i] > settings.MaximumRate[i])
|
|
rateDesiredAxis[i] = settings.MaximumRate[i];
|
|
else if(rateDesiredAxis[i] < -settings.MaximumRate[i])
|
|
rateDesiredAxis[i] = -settings.MaximumRate[i];
|
|
|
|
|
|
axis_lock_accum[i] = 0;
|
|
break;
|
|
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
|
|
if(fabs(attitudeDesiredAxis[i]) > max_axislock_rate) {
|
|
// While getting strong commands act like rate mode
|
|
rateDesiredAxis[i] = attitudeDesiredAxis[i];
|
|
axis_lock_accum[i] = 0;
|
|
} else {
|
|
// For weaker commands or no command simply attitude lock (almost) on no gyro change
|
|
axis_lock_accum[i] += (attitudeDesiredAxis[i] - gyro_filtered[i]) * dT;
|
|
if(axis_lock_accum[i] > max_axis_lock)
|
|
axis_lock_accum[i] = max_axis_lock;
|
|
else if(axis_lock_accum[i] < -max_axis_lock)
|
|
axis_lock_accum[i] = -max_axis_lock;
|
|
|
|
rateDesiredAxis[i] = ApplyPid(&pids[PID_ROLL + i], axis_lock_accum[i], dT);
|
|
}
|
|
|
|
if(rateDesiredAxis[i] > settings.MaximumRate[i])
|
|
rateDesiredAxis[i] = settings.MaximumRate[i];
|
|
else if(rateDesiredAxis[i] < -settings.MaximumRate[i])
|
|
rateDesiredAxis[i] = -settings.MaximumRate[i];
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Piro compensation rotates the virtual flybar by yaw step to keep it
|
|
// rotated to external world
|
|
if (vbar_piro_comp) {
|
|
const float F_PI = 3.14159f;
|
|
float cy = cosf(gyro_filtered[2] / 180.0f * F_PI * dT);
|
|
float sy = sinf(gyro_filtered[2] / 180.0f * F_PI * dT);
|
|
|
|
float vbar_pitch = cy * vbar_integral[1] - sy * vbar_integral[0];
|
|
float vbar_roll = sy * vbar_integral[1] + cy * vbar_integral[0];
|
|
|
|
vbar_integral[1] = vbar_pitch;
|
|
vbar_integral[0] = vbar_roll;
|
|
}
|
|
|
|
uint8_t shouldUpdate = 1;
|
|
#if defined(DIAGNOSTICS)
|
|
RateDesiredSet(&rateDesired);
|
|
#endif
|
|
ActuatorDesiredGet(&actuatorDesired);
|
|
//Calculate desired command
|
|
for(uint32_t i = 0; i < MAX_AXES; i++)
|
|
{
|
|
switch(stabDesired.StabilizationMode[i])
|
|
{
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
|
|
{
|
|
float command = ApplyPid(&pids[PID_RATE_ROLL + i], rateDesiredAxis[i] - gyro_filtered[i], dT);
|
|
actuatorDesiredAxis[i] = bound(command);
|
|
break;
|
|
}
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR:
|
|
{
|
|
// Track the angle of the virtual flybar which includes a slow decay
|
|
vbar_integral[i] = vbar_integral[i] * vbar_decay + gyro_filtered[i] * dT;
|
|
if (vbar_integral[i] > settings.VbarMaxAngle)
|
|
vbar_integral[i] = settings.VbarMaxAngle;
|
|
if (-vbar_integral[i] < -settings.VbarMaxAngle)
|
|
vbar_integral[i] = -settings.VbarMaxAngle;
|
|
|
|
// Command signal is composed of stick input added to the gyro and virtual flybar
|
|
float gyro_gain = 1.0f;
|
|
if (vbar_gyros_suppress > 0) {
|
|
gyro_gain = (1.0f - fabs(rateDesiredAxis[i]) * vbar_gyros_suppress / 100.0f);
|
|
gyro_gain = (gyro_gain < 0) ? 0 : gyro_gain;
|
|
}
|
|
float command = rateDesiredAxis[i] * vbar_sensitivity[i] - gyro_gain * (
|
|
vbar_integral[i] * pids[PID_VBAR_ROLL + i].i +
|
|
gyro_filtered[i] * pids[PID_VBAR_ROLL + i].p);
|
|
|
|
actuatorDesiredAxis[i] = bound(command);
|
|
break;
|
|
}
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE:
|
|
switch (i)
|
|
{
|
|
case ROLL:
|
|
actuatorDesiredAxis[i] = bound(attitudeDesiredAxis[i]);
|
|
shouldUpdate = 1;
|
|
pids[PID_RATE_ROLL].iAccumulator = 0;
|
|
pids[PID_ROLL].iAccumulator = 0;
|
|
break;
|
|
case PITCH:
|
|
actuatorDesiredAxis[i] = bound(attitudeDesiredAxis[i]);
|
|
shouldUpdate = 1;
|
|
pids[PID_RATE_PITCH].iAccumulator = 0;
|
|
pids[PID_PITCH].iAccumulator = 0;
|
|
break;
|
|
case YAW:
|
|
actuatorDesiredAxis[i] = bound(attitudeDesiredAxis[i]);
|
|
shouldUpdate = 1;
|
|
pids[PID_RATE_YAW].iAccumulator = 0;
|
|
pids[PID_YAW].iAccumulator = 0;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
// Save dT
|
|
actuatorDesired.UpdateTime = dT * 1000;
|
|
|
|
if(PARSE_FLIGHT_MODE(flightStatus.FlightMode) == FLIGHTMODE_MANUAL)
|
|
shouldUpdate = 0;
|
|
|
|
if(shouldUpdate)
|
|
{
|
|
actuatorDesired.Throttle = stabDesired.Throttle;
|
|
if(dT > 15)
|
|
actuatorDesired.NumLongUpdates++;
|
|
ActuatorDesiredSet(&actuatorDesired);
|
|
}
|
|
|
|
if(flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED ||
|
|
(lowThrottleZeroIntegral && stabDesired.Throttle < 0) ||
|
|
!shouldUpdate)
|
|
{
|
|
ZeroPids();
|
|
}
|
|
|
|
|
|
// Clear alarms
|
|
AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION);
|
|
}
|
|
}
|
|
|
|
float ApplyPid(pid_type * pid, const float err, float dT)
|
|
{
|
|
float diff = (err - pid->lastErr);
|
|
pid->lastErr = err;
|
|
|
|
// Scale up accumulator by 1000 while computing to avoid losing precision
|
|
pid->iAccumulator += err * (pid->i * dT * 1000.0f);
|
|
if(pid->iAccumulator > (pid->iLim * 1000.0f)) {
|
|
pid->iAccumulator = pid->iLim * 1000.0f;
|
|
} else if (pid->iAccumulator < -(pid->iLim * 1000.0f)) {
|
|
pid->iAccumulator = -pid->iLim * 1000.0f;
|
|
}
|
|
return ((err * pid->p) + pid->iAccumulator / 1000.0f + (diff * pid->d / dT));
|
|
}
|
|
|
|
|
|
static void ZeroPids(void)
|
|
{
|
|
for(int8_t ct = 0; ct < PID_MAX; ct++) {
|
|
pids[ct].iAccumulator = 0.0f;
|
|
pids[ct].lastErr = 0.0f;
|
|
}
|
|
for(uint8_t i = 0; i < 3; i++)
|
|
axis_lock_accum[i] = 0.0f;
|
|
}
|
|
|
|
|
|
/**
|
|
* Bound input value between limits
|
|
*/
|
|
static float bound(float val)
|
|
{
|
|
if(val < -1.0f) {
|
|
val = -1.0f;
|
|
} else if(val > 1.0f) {
|
|
val = 1.0f;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static void SettingsUpdatedCb(UAVObjEvent * ev)
|
|
{
|
|
memset(pids,0,sizeof (pid_type) * PID_MAX);
|
|
StabilizationSettingsGet(&settings);
|
|
|
|
// Set the roll rate PID constants
|
|
pids[PID_RATE_ROLL].p = settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KP];
|
|
pids[PID_RATE_ROLL].i = settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KI];
|
|
pids[PID_RATE_ROLL].d = settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KD];
|
|
pids[PID_RATE_ROLL].iLim = settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_ILIMIT];
|
|
|
|
// Set the pitch rate PID constants
|
|
pids[PID_RATE_PITCH].p = settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KP];
|
|
pids[PID_RATE_PITCH].i = settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KI];
|
|
pids[PID_RATE_PITCH].d = settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KD];
|
|
pids[PID_RATE_PITCH].iLim = settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_ILIMIT];
|
|
|
|
// Set the yaw rate PID constants
|
|
pids[PID_RATE_YAW].p = settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_KP];
|
|
pids[PID_RATE_YAW].i = settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_KI];
|
|
pids[PID_RATE_YAW].d = settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_KD];
|
|
pids[PID_RATE_YAW].iLim = settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_ILIMIT];
|
|
|
|
// Set the roll attitude PI constants
|
|
pids[PID_ROLL].p = settings.RollPI[STABILIZATIONSETTINGS_ROLLPI_KP];
|
|
pids[PID_ROLL].i = settings.RollPI[STABILIZATIONSETTINGS_ROLLPI_KI];
|
|
pids[PID_ROLL].iLim = settings.RollPI[STABILIZATIONSETTINGS_ROLLPI_ILIMIT];
|
|
|
|
// Set the pitch attitude PI constants
|
|
pids[PID_PITCH].p = settings.PitchPI[STABILIZATIONSETTINGS_PITCHPI_KP];
|
|
pids[PID_PITCH].i = settings.PitchPI[STABILIZATIONSETTINGS_PITCHPI_KI];
|
|
pids[PID_PITCH].iLim = settings.PitchPI[STABILIZATIONSETTINGS_PITCHPI_ILIMIT];
|
|
|
|
// Set the yaw attitude PI constants
|
|
pids[PID_YAW].p = settings.YawPI[STABILIZATIONSETTINGS_YAWPI_KP];
|
|
pids[PID_YAW].i = settings.YawPI[STABILIZATIONSETTINGS_YAWPI_KI];
|
|
pids[PID_YAW].iLim = settings.YawPI[STABILIZATIONSETTINGS_YAWPI_ILIMIT];
|
|
|
|
// Set the roll attitude PI constants
|
|
pids[PID_VBAR_ROLL].p = settings.VbarRollPI[STABILIZATIONSETTINGS_VBARROLLPI_KP];
|
|
pids[PID_VBAR_ROLL].i = settings.VbarRollPI[STABILIZATIONSETTINGS_VBARROLLPI_KI];
|
|
|
|
// Set the pitch attitude PI constants
|
|
pids[PID_VBAR_PITCH].p = settings.VbarPitchPI[STABILIZATIONSETTINGS_VBARPITCHPI_KP];
|
|
pids[PID_VBAR_PITCH].i = settings.VbarPitchPI[STABILIZATIONSETTINGS_VBARPITCHPI_KI];
|
|
|
|
// Set the yaw attitude PI constants
|
|
pids[PID_VBAR_YAW].p = settings.VbarYawPI[STABILIZATIONSETTINGS_VBARYAWPI_KP];
|
|
pids[PID_VBAR_YAW].i = settings.VbarYawPI[STABILIZATIONSETTINGS_VBARYAWPI_KI];
|
|
|
|
// Need to store the vbar sensitivity
|
|
vbar_sensitivity[0] = settings.VbarSensitivity[0];
|
|
vbar_sensitivity[1] = settings.VbarSensitivity[1];
|
|
vbar_sensitivity[2] = settings.VbarSensitivity[2];
|
|
|
|
// Maximum deviation to accumulate for axis lock
|
|
max_axis_lock = settings.MaxAxisLock;
|
|
max_axislock_rate = settings.MaxAxisLockRate;
|
|
|
|
// Settings for weak leveling
|
|
weak_leveling_kp = settings.WeakLevelingKp;
|
|
weak_leveling_max = settings.MaxWeakLevelingRate;
|
|
|
|
// Whether to zero the PID integrals while throttle is low
|
|
lowThrottleZeroIntegral = settings.LowThrottleZeroIntegral == STABILIZATIONSETTINGS_LOWTHROTTLEZEROINTEGRAL_TRUE;
|
|
|
|
// The dT has some jitter iteration to iteration that we don't want to
|
|
// make thie result unpredictable. Still, it's nicer to specify the constant
|
|
// based on a time (in ms) rather than a fixed multiplier. The error between
|
|
// update rates on OP (~300 Hz) and CC (~475 Hz) is negligible for this
|
|
// calculation
|
|
const float fakeDt = 0.0025;
|
|
if(settings.GyroTau < 0.0001)
|
|
gyro_alpha = 0; // not trusting this to resolve to 0
|
|
else
|
|
gyro_alpha = expf(-fakeDt / settings.GyroTau);
|
|
|
|
// Compute time constant for vbar decay term based on a tau
|
|
vbar_decay = expf(-fakeDt / settings.VbarTau);
|
|
vbar_gyros_suppress = settings.VbarGyroSuppress;
|
|
vbar_piro_comp = settings.VbarPiroComp == STABILIZATIONSETTINGS_VBARPIROCOMP_TRUE;
|
|
}
|
|
|
|
|
|
/**
|
|
* @}
|
|
* @}
|
|
*/
|