mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2025-01-09 20:46:07 +01:00
255 lines
8.5 KiB
C
255 lines
8.5 KiB
C
/**
|
|
******************************************************************************
|
|
* @file pid.c
|
|
* @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2017.
|
|
* The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
|
|
* @brief Methods to work with PID structure
|
|
*
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
*****************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include "openpilot.h"
|
|
#include "pid.h"
|
|
#include <mathmisc.h>
|
|
#include <pios_math.h>
|
|
|
|
// ! Store the shared time constant for the derivative cutoff.
|
|
static float deriv_tau = 7.9577e-3f;
|
|
|
|
// ! Store the setpoint weight to apply for the derivative term
|
|
static float deriv_gamma = 1.0f;
|
|
|
|
/**
|
|
* Update the PID computation
|
|
* @param[in] pid The PID struture which stores temporary information
|
|
* @param[in] err The error term
|
|
* @param[in] dT The time step
|
|
* @returns Output the computed controller value
|
|
*/
|
|
float pid_apply(struct pid *pid, const float err, float dT)
|
|
{
|
|
// Scale up accumulator by 1000 while computing to avoid losing precision
|
|
pid->iAccumulator += err * (pid->i * dT * 1000.0f);
|
|
pid->iAccumulator = boundf(pid->iAccumulator, pid->iLim * -1000.0f, pid->iLim * 1000.0f);
|
|
|
|
// Calculate DT1 term
|
|
float diff = (err - pid->lastErr);
|
|
float dterm = 0;
|
|
pid->lastErr = err;
|
|
if (pid->d > 0.0f && dT > 0.0f) {
|
|
dterm = pid->lastDer + dT / (dT + deriv_tau) * ((diff * pid->d / dT) - pid->lastDer);
|
|
pid->lastDer = dterm; // ^ set constant to 1/(2*pi*f_cutoff)
|
|
} // 7.9577e-3 means 20 Hz f_cutoff
|
|
|
|
return (err * pid->p) + pid->iAccumulator / 1000.0f + dterm;
|
|
}
|
|
|
|
/**
|
|
* Update the PID computation with setpoint weighting on the derivative
|
|
* @param[in] pid The PID struture which stores temporary information
|
|
* @param[in] factor A dynamic factor to scale pid's by, to compensate nonlinearities
|
|
* @param[in] setpoint The setpoint to use
|
|
* @param[in] measured The measured value of output
|
|
* @param[in] dT The time step
|
|
* @returns Output the computed controller value
|
|
*
|
|
* This version of apply uses setpoint weighting for the derivative component so the gain
|
|
* on the gyro derivative can be different than the gain on the setpoint derivative
|
|
*/
|
|
float pid_apply_setpoint(struct pid *pid, const pid_scaler *scaler, const float setpoint, const float measured, float dT, bool meas_based_d_term)
|
|
{
|
|
float err = setpoint - measured;
|
|
|
|
// Scale up accumulator by 1000 while computing to avoid losing precision
|
|
pid->iAccumulator += err * (scaler->i * pid->i * dT * 1000.0f);
|
|
pid->iAccumulator = boundf(pid->iAccumulator, pid->iLim * -1000.0f, pid->iLim * 1000.0f);
|
|
|
|
// Calculate DT1 term,
|
|
float diff;
|
|
float derr = (-measured);
|
|
|
|
if (!meas_based_d_term) {
|
|
derr += deriv_gamma * setpoint;
|
|
}
|
|
|
|
diff = derr - pid->lastErr;
|
|
pid->lastErr = derr;
|
|
|
|
float dterm = 0;
|
|
|
|
if (pid->d > 0.0f && dT > 0.0f) {
|
|
// low pass filter derivative term. below formula is the same as
|
|
// dterm = (1-alpha)*pid->lastDer + alpha * (...)/dT
|
|
// with alpha = dT/(deriv_tau+dT)
|
|
dterm = pid->lastDer + dT / (dT + deriv_tau) * ((scaler->d * diff * pid->d / dT) - pid->lastDer);
|
|
pid->lastDer = dterm;
|
|
}
|
|
return (err * scaler->p * pid->p) + pid->iAccumulator / 1000.0f + dterm;
|
|
}
|
|
|
|
/**
|
|
* Reset a bit
|
|
* @param[in] pid The pid to reset
|
|
*/
|
|
void pid_zero(struct pid *pid)
|
|
{
|
|
if (!pid) {
|
|
return;
|
|
}
|
|
|
|
pid->iAccumulator = 0;
|
|
pid->lastErr = 0;
|
|
pid->lastDer = 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the common terms that alter ther derivative
|
|
* @param[in] cutoff The cutoff frequency (in Hz)
|
|
* @param[in] gamma The gamma term for setpoint shaping (unsused now)
|
|
*/
|
|
void pid_configure_derivative(float cutoff, float g)
|
|
{
|
|
deriv_tau = 1.0f / (2 * M_PI_F * cutoff);
|
|
deriv_gamma = g;
|
|
}
|
|
|
|
/**
|
|
* Configure the settings for a pid structure
|
|
* @param[out] pid The PID structure to configure
|
|
* @param[in] p The proportional term
|
|
* @param[in] i The integral term
|
|
* @param[in] d The derivative term
|
|
*/
|
|
void pid_configure(struct pid *pid, float p, float i, float d, float iLim)
|
|
{
|
|
if (!pid) {
|
|
return;
|
|
}
|
|
|
|
pid->p = p;
|
|
pid->i = i;
|
|
pid->d = d;
|
|
pid->iLim = iLim;
|
|
}
|
|
|
|
|
|
/**
|
|
* Configure the settings for a pid2 structure
|
|
* @param[out] pid The PID2 structure to configure
|
|
* @param[in] kp proportional gain
|
|
* @param[in] ki integral gain. Time constant Ti = kp/ki
|
|
* @param[in] kd derivative gain. Time constant Td = kd/kp
|
|
* @param[in] Tf filtering time = (kd/kp)/N, N is in the range of 2 to 20
|
|
* @param[in] kt tracking gain for anti-windup. Tt = √TiTd and Tt = (Ti + Td)/2
|
|
* @param[in] dt delta time increment
|
|
* @param[in] beta setpoint weight on setpoint in P component. beta=1 error feedback. beta=0 smoothes out response to changes in setpoint
|
|
* @param[in] u0 initial output for r=y at activation to achieve bumpless transfer
|
|
* @param[in] va constant for compute of actuator output for check against limits for antiwindup
|
|
* @param[in] vb multiplier for compute of actuator output for check against limits for anti-windup
|
|
*/
|
|
void pid2_configure(struct pid2 *pid, float kp, float ki, float kd, float Tf, float kt, float dT, float beta, float u0, float va, float vb)
|
|
{
|
|
pid->reconfigure = true;
|
|
pid->u0 = u0;
|
|
pid->va = va;
|
|
pid->vb = vb;
|
|
pid->kp = kp;
|
|
pid->beta = beta; // setpoint weight on proportional term
|
|
|
|
pid->bi = ki * dT;
|
|
pid->br = kt * dT / vb;
|
|
|
|
pid->ad = Tf / (Tf + dT);
|
|
pid->bd = kd / (Tf + dT);
|
|
}
|
|
|
|
/**
|
|
* Achieve a bumpless transfer and trigger initialisation of I term
|
|
* @param[out] pid The PID structure to configure
|
|
* @param[in] u0 initial output for r=y at activation to achieve bumpless transfer
|
|
*/
|
|
void pid2_transfer(struct pid2 *pid, float u0)
|
|
{
|
|
pid->reconfigure = true;
|
|
pid->u0 = u0;
|
|
}
|
|
|
|
/**
|
|
* pid controller with setpoint weighting, anti-windup, with a low-pass filtered derivative on the process variable
|
|
* See "Feedback Systems" for an explanation
|
|
* @param[out] pid The PID structure to configure
|
|
* @param[in] r setpoint
|
|
* @param[in] y process variable
|
|
* @param[in] ulow lower limit on actuator
|
|
* @param[in] uhigh upper limit on actuator
|
|
*/
|
|
float pid2_apply(
|
|
struct pid2 *pid,
|
|
const float r,
|
|
const float y,
|
|
const float ulow,
|
|
const float uhigh)
|
|
{
|
|
// on reconfigure ensure bumpless transfer
|
|
// http://www.controlguru.com/2008/021008.html
|
|
if (pid->reconfigure) {
|
|
pid->reconfigure = false;
|
|
|
|
// initialise derivative terms
|
|
pid->yold = y;
|
|
pid->D = 0.0f;
|
|
|
|
// t=0, u=u0, y=y0, v=u
|
|
// pid->I = (pid->u0 - pid->va) / pid->vb - pid->kp * (pid->beta * r - y);
|
|
// this is dangerous, if pid->I starts nonzero with very low or zero kI, then
|
|
// it will never settle!
|
|
// pid->I = 0.0f;
|
|
// whether ki is zero or non-zero, when doing 'reconfigure' we start with setpoint==actual
|
|
pid->I = (pid->u0 - pid->va) / pid->vb;
|
|
// if ki is non-zero
|
|
if (pid->bi > 5e-7f) {
|
|
// then the output can wind up/down to get rid of a difference between setpoint and actual
|
|
// so we can generate the full bumpless transfer here
|
|
// else leave off the part that can vary due to difference between setpoint and actual
|
|
// so that it is repeatable (for tuning purposes at least)
|
|
pid->I -= pid->kp * (pid->beta * r - y);
|
|
}
|
|
}
|
|
|
|
// compute proportional part
|
|
pid->P = pid->kp * (pid->beta * r - y);
|
|
|
|
// update derivative part
|
|
pid->D = pid->ad * pid->D - pid->bd * (y - pid->yold);
|
|
|
|
// compute temporary output
|
|
float v = pid->va + pid->vb * (pid->P + pid->I + pid->D);
|
|
|
|
// simulate actuator saturation
|
|
float u = boundf(v, ulow, uhigh);
|
|
|
|
// update integral
|
|
pid->I = pid->I + pid->bi * (r - y) + pid->br * (u - v);
|
|
|
|
// update old process output
|
|
pid->yold = y;
|
|
|
|
return u;
|
|
}
|