1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-09 20:46:07 +01:00
LibrePilot/flight/libraries/pid/pidcontroldown.cpp
2017-03-09 19:43:24 +01:00

369 lines
12 KiB
C++

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup PathFollower PID interface class
* @brief PID loop for down control
* @{
*
* @file pidcontroldown.h
* @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2017.
* The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Executes PID control for down direction
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <math.h>
#include <pid.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <stabilizationdesired.h>
#include <vtolselftuningstats.h>
}
#include "pidcontroldown.h"
#define NEUTRALTHRUST_PH_POSITIONAL_ERROR_LIMIT 0.5f
#define NEUTRALTHRUST_PH_VEL_DESIRED_LIMIT 0.2f
#define NEUTRALTHRUST_PH_VEL_STATE_LIMIT 0.2f
#define NEUTRALTHRUST_PH_VEL_ERROR_LIMIT 0.1f
#define NEUTRALTHRUST_START_DELAY (2 * 20) // 2 seconds at rate of 20Hz (50ms update rate)
#define NEUTRALTHRUST_END_COUNT (NEUTRALTHRUST_START_DELAY + (4 * 20)) // 4 second sample
PIDControlDown::PIDControlDown()
: deltaTime(0.0f), mVelocitySetpointTarget(0.0f), mVelocitySetpointCurrent(0.0f), mVelocityState(0.0f), mDownCommand(0.0f),
mCallback(NULL), mNeutral(0.5f), mVelocityMax(1.0f), mPositionSetpointTarget(0.0f), mPositionState(0.0f),
mMinThrust(0.1f), mMaxThrust(0.6f), mActive(false), mAllowNeutralThrustCalc(true)
{
Deactivate();
}
PIDControlDown::~PIDControlDown() {}
void PIDControlDown::Initialize(PIDControlDownCallback *callback)
{
mCallback = callback;
}
void PIDControlDown::SetThrustLimits(float min_thrust, float max_thrust)
{
mMinThrust = min_thrust;
mMaxThrust = max_thrust;
}
void PIDControlDown::Deactivate()
{
mActive = false;
}
void PIDControlDown::Activate()
{
float currentThrust;
StabilizationDesiredThrustGet(&currentThrust);
pid2_transfer(&PID, currentThrust);
mActive = true;
}
void PIDControlDown::UpdateParameters(float kp, float ki, float kd, float beta, float dT, float velocityMax)
{
float Td; // Derivative time constant
float Ti; // Integral time constant
float kt; // Feedback gain for integral windup avoidance
float N = 10.0f; // N is the factor used to determine the
// time constant for derivative filtering
// Why 10? Maybe should be configurable?
float Tf; // Low pass filter time constant for derivative filtering
// Define Td, handling zero kp term (for I or ID controller)
if (kp < 1e-6f) {
Td = 1e6f;
} else {
Td = kd / kp;
}
// Define Ti, Tt and kt, handling zero ki term (for P or PD controller)
if (ki < 1e-6f) { // Avoid Ti being infinite
kt = 0.0f;
} else {
Ti = kp / ki;
kt = 1.0f / Ti;
}
// Define Tf, according to controller type
if (kd < 1e-6f) {
// PI Controller or P Controller
Tf = 0;
} else {
Tf = Td / N;
}
if (beta > 1.0f) {
beta = 1.0f;
} else if (beta < 0.4f) {
beta = 0.4f;
}
pid2_configure(&PID, kp, ki, kd, Tf, kt, dT, beta, mNeutral, mNeutral, -1.0f);
deltaTime = dT;
mVelocityMax = velocityMax;
}
void PIDControlDown::UpdatePositionalParameters(float kp)
{
pid_configure(&PIDpos, kp, 0.0f, 0.0f, 0.0f);
}
void PIDControlDown::UpdatePositionSetpoint(float setpointDown)
{
mPositionSetpointTarget = setpointDown;
}
void PIDControlDown::UpdatePositionState(float pvDown)
{
mPositionState = pvDown;
setup_neutralThrustCalc();
}
// This is a pure position hold position control
void PIDControlDown::ControlPosition()
{
// Current progress location relative to end
float velDown = 0.0f;
velDown = pid_apply(&PIDpos, mPositionSetpointTarget - mPositionState, deltaTime);
UpdateVelocitySetpoint(velDown);
run_neutralThrustCalc();
}
void PIDControlDown::ControlPositionWithPath(struct path_status *progress)
{
// Current progress location relative to end
float velDown = progress->path_vector[2];
velDown += pid_apply(&PIDpos, progress->correction_vector[2], deltaTime);
UpdateVelocitySetpoint(velDown);
}
void PIDControlDown::run_neutralThrustCalc(void)
{
// if auto thrust and we have not run a correction calc check for PH and stability to then run an assessment
// note that arming into this flight mode is not allowed, so assumption here is that
// we have not landed. If GPSAssist+Manual/Cruise control thrust mode is used, a user overriding the
// altitude maintaining PID will have moved the throttle state to FLIGHTSTATUS_ASSISTEDTHROTTLESTATE_MANUAL.
// In manualcontrol.c the state will stay in manual throttle until the throttle command exceeds the vtol thrust min,
// avoiding auto-takeoffs. Therefore no need to check that here.
if (neutralThrustEst.have_correction != true) {
// Make FSM specific
bool stable = (fabsf(mPositionSetpointTarget - mPositionState) < NEUTRALTHRUST_PH_POSITIONAL_ERROR_LIMIT &&
fabsf(mVelocitySetpointCurrent) < NEUTRALTHRUST_PH_VEL_DESIRED_LIMIT &&
fabsf(mVelocityState) < NEUTRALTHRUST_PH_VEL_STATE_LIMIT &&
fabsf(mVelocitySetpointCurrent - mVelocityState) < NEUTRALTHRUST_PH_VEL_ERROR_LIMIT);
if (stable) {
if (neutralThrustEst.start_sampling) {
neutralThrustEst.count++;
// delay count for 2 seconds into hold allowing for stablisation
if (neutralThrustEst.count > NEUTRALTHRUST_START_DELAY) {
neutralThrustEst.sum += PID.I;
if (PID.I < neutralThrustEst.min) {
neutralThrustEst.min = PID.I;
}
if (PID.I > neutralThrustEst.max) {
neutralThrustEst.max = PID.I;
}
}
if (neutralThrustEst.count >= NEUTRALTHRUST_END_COUNT) {
// 6 seconds have past
// lets take an average
neutralThrustEst.average = neutralThrustEst.sum / (float)(NEUTRALTHRUST_END_COUNT - NEUTRALTHRUST_START_DELAY);
neutralThrustEst.correction = neutralThrustEst.average;
PID.I -= neutralThrustEst.average;
neutralThrustEst.start_sampling = false;
neutralThrustEst.have_correction = true;
// Write a new adjustment value
// vtolSelfTuningStats.NeutralThrustOffset was incremental adjusted above
VtolSelfTuningStatsData vtolSelfTuningStats;
VtolSelfTuningStatsGet(&vtolSelfTuningStats);
// add the average remaining i value to the
vtolSelfTuningStats.NeutralThrustOffset += neutralThrustEst.correction;
vtolSelfTuningStats.NeutralThrustCorrection = neutralThrustEst.correction; // the i term thrust correction value applied
vtolSelfTuningStats.NeutralThrustAccumulator = PID.I; // the actual iaccumulator value after correction
vtolSelfTuningStats.NeutralThrustRange = neutralThrustEst.max - neutralThrustEst.min;
VtolSelfTuningStatsSet(&vtolSelfTuningStats);
}
} else {
// start a tick count
neutralThrustEst.start_sampling = true;
neutralThrustEst.count = 0;
neutralThrustEst.sum = 0.0f;
neutralThrustEst.max = 0.0f;
neutralThrustEst.min = 0.0f;
}
} else {
// reset sampling as we did't get 6 continuous seconds
neutralThrustEst.start_sampling = false;
}
} // else we already have a correction for this PH run
}
void PIDControlDown::setup_neutralThrustCalc(void)
{
// reset neutral thrust assessment.
// and do once for each position hold engagement
neutralThrustEst.start_sampling = false;
neutralThrustEst.count = 0;
neutralThrustEst.sum = 0.0f;
neutralThrustEst.have_correction = false;
neutralThrustEst.average = 0.0f;
neutralThrustEst.correction = 0.0f;
neutralThrustEst.min = 0.0f;
neutralThrustEst.max = 0.0f;
}
void PIDControlDown::UpdateNeutralThrust(float neutral)
{
if (mActive) {
// adjust neutral and achieve bumpless transfer
PID.va = neutral;
pid2_transfer(&PID, mDownCommand);
}
mNeutral = neutral;
}
void PIDControlDown::UpdateVelocitySetpoint(float setpoint)
{
mVelocitySetpointTarget = setpoint;
if (fabsf(mVelocitySetpointTarget) > mVelocityMax) {
// maintain sign but set to max
mVelocitySetpointTarget *= mVelocityMax / fabsf(mVelocitySetpointTarget);
}
}
void PIDControlDown::RateLimit(float *spDesired, float *spCurrent, float rateLimit)
{
float velocity_delta = *spDesired - *spCurrent;
if (fabsf(velocity_delta) < 1e-6f) {
*spCurrent = *spDesired;
return;
}
// Calculate the rate of change
float accelerationDesired = velocity_delta / deltaTime;
if (fabsf(accelerationDesired) > rateLimit) {
accelerationDesired *= rateLimit / accelerationDesired;
}
if (fabsf(accelerationDesired) < 0.1f) {
*spCurrent = *spDesired;
} else {
*spCurrent += accelerationDesired * deltaTime;
}
}
void PIDControlDown::UpdateBrakeVelocity(float startingVelocity, float dT, float brakeRate, float currentVelocity, float *updatedVelocity)
{
if (startingVelocity >= 0.0f) {
*updatedVelocity = startingVelocity - dT * brakeRate;
if (*updatedVelocity > currentVelocity) {
*updatedVelocity = currentVelocity;
}
if (*updatedVelocity < 0.0f) {
*updatedVelocity = 0.0f;
}
} else {
*updatedVelocity = startingVelocity + dT * brakeRate;
if (*updatedVelocity < currentVelocity) {
*updatedVelocity = currentVelocity;
}
if (*updatedVelocity > 0.0f) {
*updatedVelocity = 0.0f;
}
}
}
void PIDControlDown::UpdateVelocityStateWithBrake(float pvDown, float path_time, float brakeRate)
{
mVelocityState = pvDown;
float velocitySetpointDesired;
UpdateBrakeVelocity(mVelocitySetpointTarget, path_time, brakeRate, pvDown, &velocitySetpointDesired);
// Calculate the rate of change
// RateLimit(velocitySetpointDesired[iaxis], mVelocitySetpointCurrent[iaxis], 2.0f );
mVelocitySetpointCurrent = velocitySetpointDesired;
}
// Update velocity state called per dT. Also update current
// desired velocity
void PIDControlDown::UpdateVelocityState(float pv)
{
mVelocityState = pv;
if (mCallback) {
// The FSM controls the actual descent velocity and introduces step changes as required
float velocitySetpointDesired = mCallback->BoundVelocityDown(mVelocitySetpointTarget);
// RateLimit(velocitySetpointDesired, mVelocitySetpointCurrent, 2.0f );
mVelocitySetpointCurrent = velocitySetpointDesired;
} else {
mVelocitySetpointCurrent = mVelocitySetpointTarget;
}
}
float PIDControlDown::GetVelocityDesired(void)
{
return mVelocitySetpointCurrent;
}
float PIDControlDown::GetDownCommand(void)
{
float ulow = mMinThrust;
float uhigh = mMaxThrust;
if (mCallback) {
mCallback->BoundThrust(ulow, uhigh);
}
float downCommand = pid2_apply(&PID, mVelocitySetpointCurrent, mVelocityState, ulow, uhigh);
mDownCommand = downCommand;
return mDownCommand;
}