1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-10 18:24:11 +01:00
LibrePilot/flight/PiOS/STM32F10x/pios_i2c.c
gussy 3b32b89839 Updated copyright headers.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@146 ebee16cc-31ac-478f-84a7-5cbb03baadba
2010-01-31 17:56:54 +00:00

575 lines
18 KiB
C

/**
******************************************************************************
*
* @file pios_i2c.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* Parts by Thorsten Klose (tk@midibox.org) (tk@midibox.org)
* @brief I2C Enable/Disable routines
* @see The GNU Public License (GPL) Version 3
* @defgroup PIOS_I2C I2C Functions
* @{
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Project Includes */
#include "pios.h"
/* Global Variables */
volatile uint32_t PIOS_I2C_UnexpectedEvent;
/* Local types */
typedef union {
struct {
unsigned ALL:8;
};
struct {
unsigned BUSY:1;
unsigned STOP_REQUESTED:1;
unsigned ABORT_IF_FIRST_BYTE_0:1;
unsigned WRITE_WITHOUT_STOP:1;
};
} TransferStateTypeDef;
typedef struct {
I2C_TypeDef *base;
uint8_t i2c_address;
uint8_t *tx_buffer_ptr;
uint8_t *rx_buffer_ptr;
volatile uint16_t buffer_len;
volatile uint16_t buffer_ix;
volatile TransferStateTypeDef transfer_state;
volatile int32_t transfer_error;
volatile int32_t last_transfer_error;
volatile uint8_t i2c_semaphore;
} I2CRecTypeDef;
/* Local Prototypes */
static void PIOS_I2C_InitPeripheral(void);
static void EV_IRQHandler(I2CRecTypeDef *i2cx);
static void ER_IRQHandler(I2CRecTypeDef *i2cx);
/* Local Variables */
static I2CRecTypeDef I2CRec;
/**
* Initializes IIC driver
* \param[in] mode currently only mode 0 supported
* \return < 0 if initialisation failed
*/
int32_t PIOS_I2C_Init(void)
{
/* Configure IIC pins in open drain mode */
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD;
GPIO_InitStructure.GPIO_Pin = I2C_SCL_PIN;
GPIO_Init(I2C_GPIO_PORT, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = I2C_SDA_PIN;
GPIO_Init(I2C_GPIO_PORT, &GPIO_InitStructure);
PIOS_I2C_InitPeripheral();
/* Now accessible for other tasks */
I2CRec.i2c_semaphore = 0;
I2CRec.last_transfer_error = 0;
/* Configure and enable I2C2 interrupts */
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = I2C2_EV_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = IRQ_I2C_EV_PRIORITY;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
NVIC_InitStructure.NVIC_IRQChannel = I2C2_ER_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = IRQ_I2C_ER_PRIORITY;
NVIC_Init(&NVIC_InitStructure);
/* No error */
return 0;
}
/**
* Internal function to (re-)initialize the I2C peripheral
*/
static void PIOS_I2C_InitPeripheral(void)
{
I2C_InitTypeDef I2C_InitStructure;
I2CRecTypeDef *i2cx = &I2CRec;
/* Prepare I2C init-struct */
I2C_StructInit(&I2C_InitStructure);
I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;
I2C_InitStructure.I2C_OwnAddress1 = 0;
I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;
I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
/* Define base address */
i2cx->base = I2C2;
/* enable peripheral clock of I2C */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2, ENABLE);
/* Set I2C clock bus clock params */
/* Note that the STM32 driver handles value <= 100kHz differently! (duty cycle always 1:1) */
/* Important: bus frequencies > 400kHz don't work stable */
I2C_InitStructure.I2C_DutyCycle = I2C_DUTY_CYCLE;
I2C_InitStructure.I2C_ClockSpeed = I2C_BUS_FREQUENCY;
/* Trigger software reset via I2C_DeInit */
I2C_DeInit(i2cx->base);
/* Clear transfer state and error value */
i2cx->transfer_state.ALL = 0;
i2cx->transfer_error = 0;
/* Configure I2C peripheral */
I2C_Init(i2cx->base, &I2C_InitStructure);
}
/**
* Semaphore handling: requests the IIC interface
* \param[in] semaphore_type is either IIC_Blocking or IIC_Non_Blocking
* \return Non_Blocking: returns -1 to request a retry
* \return 0 if IIC interface free
*/
int32_t PIOS_I2C_TransferBegin(I2CSemaphoreTypeDef semaphore_type)
{
I2CRecTypeDef *i2cx = &I2CRec;
int32_t status = -1;
do {
PIOS_IRQ_Disable();
if(!i2cx->i2c_semaphore) {
i2cx->i2c_semaphore = 1;
status = 0;
}
PIOS_IRQ_Enable();
} while(semaphore_type == I2C_Blocking && status != 0);
/* Clear transfer errors of last transmission */
i2cx->last_transfer_error = 0;
i2cx->transfer_error = 0;
return status;
}
/**
* Semaphore handling: releases the IIC interface for other tasks
* \return < 0 on errors
*/
int32_t PIOS_I2C_TransferFinished(void)
{
I2CRec.i2c_semaphore = 0;
/* No error */
return 0;
}
/**
* Returns the last transfer error<BR>
* Will be updated by PIOS_I2C_TransferCheck(), so that the error status
* doesn't get lost (the check function will return 0 when called again)<BR>
* Will be cleared when a new transfer has been started successfully
* \return last error status
*/
int32_t PIOS_IIC_LastErrorGet(void)
{
return I2CRec.last_transfer_error;
}
/**
* Checks if transfer is finished
* \return 0 if no ongoing transfer
* \return 1 if ongoing transfer
* \return < 0 if error during transfer
* \note Note that the semaphore will be released automatically after an error
* (PIOS_I2C_TransferBegin() has to be called again)
*/
int32_t PIOS_I2C_TransferCheck(void)
{
I2CRecTypeDef *i2cx = &I2CRec;
/* Ongoing transfer? */
if(i2cx->transfer_state.BUSY) {
return 1;
}
/* Error during transfer? */
/* (must be done *after* BUSY check to avoid race conditon!) */
if(i2cx->transfer_error) {
/* Store error status for PIOS_IIC_LastErrorGet() function */
i2cx->last_transfer_error = i2cx->transfer_error;
/* Clear current error status */
i2cx->transfer_error = 0;
/* Release semaphore for easier programming at user level */
i2cx->i2c_semaphore = 0;
/* And exit */
return i2cx->last_transfer_error;
}
/* No transfer */
return 0;
}
/**
* Waits until transfer is finished
* \return 0 if no ongoing transfer
* \return < 0 if error during transfer
* \note Note that the semaphore will be released automatically after an error
* (PIOS_I2C_TransferBegin() has to be called again)
*/
int32_t PIOS_I2C_TransferWait(void)
{
I2CRecTypeDef *i2cx = &I2CRec;
uint32_t repeat_ctr = I2C_TIMEOUT_VALUE;
uint16_t last_buffer_ix = i2cx->buffer_ix;
while(--repeat_ctr > 0) {
/* Check if buffer index has changed - if so, reload repeat counter */
if(i2cx->buffer_ix != last_buffer_ix) {
repeat_ctr = I2C_TIMEOUT_VALUE;
last_buffer_ix = i2cx->buffer_ix;
}
/* Get transfer state */
int32_t check_state = PIOS_I2C_TransferCheck();
/* Exit if transfer finished or error detected */
if(check_state <= 0) {
if(check_state < 0) {
/* Release semaphore for easier programming at user level */
i2cx->i2c_semaphore = 0;
}
return check_state;
}
}
/* Timeout error - something is stalling... */
/* Send stop condition */
I2C_GenerateSTOP(i2cx->base, ENABLE);
/* Re-initialize peripheral */
PIOS_I2C_InitPeripheral();
/* Release semaphore (!) */
i2cx->i2c_semaphore = 0;
return (i2cx->last_transfer_error = I2C_ERROR_TIMEOUT);
}
/**
* Starts a new transfer. If this function is called during an ongoing
* transfer, we wait until it has been finished and setup the new transfer
* \param[in] transfer type:<BR>
* <UL>
* <LI>I2C_Read: a common Read transfer
* <LI>I2C_Write: a common Write transfer
* <LI>I2C_Write_WithoutStop: don't send stop condition after transfer to allow
* a restart condition (e.g. used to access EEPROMs)
* \param[in] address of I2C device (bit 0 always cleared)
* \param[in] *buffer pointer to transmit/receive buffer
* \param[in] len number of bytes which should be transmitted/received
* \return 0 no error
* \return < 0 on errors, if PIOS_I2C_ERROR_PREV_OFFSET is added, the previous
* transfer got an error (the previous task didn't use \ref PIOS_I2C_TransferWait
* to poll the transfer state)
* \note Note that the semaphore will be released automatically after an error
* (PIOS_I2C_TransferBegin() has to be called again)
*/
int32_t PIOS_I2C_Transfer(I2CTransferTypeDef transfer, uint8_t address, uint8_t *buffer, uint16_t len)
{
I2CRecTypeDef *i2cx = &I2CRec;
int32_t error;
/* Wait until previous transfer finished */
if((error = PIOS_I2C_TransferWait())) {
/* Transmission error during previous transfer */
/* Release semaphore for easier programming at user level */
i2cx->i2c_semaphore = 0;
return error + I2C_ERROR_PREV_OFFSET;
}
/* Disable interrupts */
I2C_ITConfig(i2cx->base, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR, DISABLE);
/* Clear transfer state and error value */
i2cx->transfer_state.ALL = 0;
i2cx->transfer_error = 0;
/* Set buffer length and start index */
i2cx->buffer_len = len;
i2cx->buffer_ix = 0;
/* Branch depending on read/write */
if(transfer == I2C_Read) {
/* Take new address/buffer/len */
/* Set bit 0 for read operation */
i2cx->i2c_address = address | 1;
/* Ensure that previous TX buffer won't be accessed */
i2cx->tx_buffer_ptr = NULL;
i2cx->rx_buffer_ptr = buffer;
} else if(transfer == I2C_Write || transfer == I2C_Write_WithoutStop) {
/* Take new address/buffer/len */
/* Clear bit 0 for write operation */
i2cx->i2c_address = address & 0xfe;
i2cx->tx_buffer_ptr = buffer;
/* Ensure that nothing will be received */
i2cx->rx_buffer_ptr = NULL;
/* Option to skip stop-condition generation after successful write */
i2cx->transfer_state.WRITE_WITHOUT_STOP = transfer == I2C_Write_WithoutStop ? 1 : 0;
} else {
/* Release semaphore for easier programming at user level */
i2cx->i2c_semaphore = 0;
return (i2cx->last_transfer_error=I2C_ERROR_UNSUPPORTED_TRANSFER_TYPE);
}
/* Start with ACK */
I2C_AcknowledgeConfig(i2cx->base, ENABLE);
/* Clear last error status */
i2cx->last_transfer_error = 0;
/* Notify that transfer has started */
i2cx->transfer_state.BUSY = 1;
/* Send start condition */
I2C_GenerateSTART(i2cx->base, ENABLE);
/* Enable I2V2 event, buffer and error interrupt */
/* This must be done *after* GenerateStart, for the case last transfer was WRITE_WITHOUT_STOP. */
/* In this case, start was already generated at the end of the last communication! */
I2C_ITConfig(i2cx->base, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR, ENABLE);
/* No error */
return 0;
}
/**
* Internal function for handling IIC event interrupts
*/
static void EV_IRQHandler(I2CRecTypeDef *i2cx)
{
uint8_t b;
/* Read SR1 and SR2 at the beginning (if not done so, flags may get lost) */
uint32_t event = I2C_GetLastEvent(i2cx->base);
/* The order of the handling blocks is chosen by test results @ 1MHZ */
/* Don't change this order */
/* RxNE set, will be cleared by reading/writing DR */
/* Note: also BTF will be reset after a read of SR1 (TxE flag) followed by either read/write DR */
/* Or a START or STOP condition generated */
/* Failsave: really requested a receive transfer? If not, continue to check TXE flag, if not set, */
/* We'll end up in the unexpected event handler. */
if(event & I2C_FLAG_RXNE && i2cx->rx_buffer_ptr != NULL) {
/* Get received data */
b = I2C_ReceiveData(i2cx->base);
/* Failsave: still place in buffer? */
if(i2cx->buffer_ix < i2cx->buffer_len) {
i2cx->rx_buffer_ptr[i2cx->buffer_ix++] = b;
}
/* Last byte received, disable interrupts and return. */
if(i2cx->transfer_state.STOP_REQUESTED) {
/* Transfer finished */
i2cx->transfer_state.BUSY = 0;
/* Disable all interrupts */
I2C_ITConfig(i2cx->base, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR, DISABLE);
return;
}
/* Request NAK and stop condition before receiving last data */
if(i2cx->buffer_ix >= i2cx->buffer_len-1) {
/* Request NAK */
I2C_AcknowledgeConfig(i2cx->base, DISABLE);
/* Request stop condition */
I2C_GenerateSTOP(i2cx->base, ENABLE);
i2cx->transfer_state.STOP_REQUESTED = 1;
}
return;
}
/* ADDR set, TRA flag not set (indicates transmitter/receiver mode). */
/* ADDR will be cleared by a read of SR1 followed by a read of SR2 (done by I2C_GetLastEvent) */
/* If transmitter mode is selected (TRA set), we go on, TXE will be catched to send the first byte */
if((event & I2C_FLAG_ADDR) && !(event & I2C_FLAG_TRA)) {
/* Address sent (receiver mode), receiving first byte - check if we already have to request NAK/Stop */
if(i2cx->buffer_len == 1) {
/* Request NAK */
I2C_AcknowledgeConfig(i2cx->base, DISABLE);
/* Request stop condition */
I2C_GenerateSTOP(i2cx->base, ENABLE);
i2cx->transfer_state.STOP_REQUESTED = 1;
}
return;
}
/* TxE set, will be cleared by writing DR, or after START or STOP was generated */
/* This handling also applies for BTF, as TXE will alway be set if BTF is. */
/* Note: also BTF will be reset after a read of SR1 (TxE flag) followed by either read/write DR */
/* Or a START or STOP condition generated */
if(event & I2C_FLAG_TXE) {
/* Last byte already sent, disable interrupts and return. */
if(i2cx->transfer_state.STOP_REQUESTED) {
/* Transfer finished */
i2cx->transfer_state.BUSY = 0;
/* Disable all interrupts */
I2C_ITConfig(i2cx->base, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR, DISABLE);
return;
}
if(i2cx->buffer_ix < i2cx->buffer_len) {
/* Checking tx_buffer_ptr for NULL is a failsafe measure. */
I2C_SendData(i2cx->base, (i2cx->tx_buffer_ptr == NULL) ? 0 : i2cx->tx_buffer_ptr[i2cx->buffer_ix++]);
return;
}
/* Peripheral is transfering last byte, request stop condition / */
/* On write-without-stop transfer-type, request start condition instead */
if(!i2cx->transfer_state.WRITE_WITHOUT_STOP) {
I2C_GenerateSTOP(i2cx->base, ENABLE);
} else {
I2C_GenerateSTART(i2cx->base, ENABLE);
i2cx->transfer_state.STOP_REQUESTED = 1;
}
if(i2cx->buffer_len == 0) {
/* Transfer finished */
i2cx->transfer_state.BUSY = 0;
/* Disable all interrupts */
I2C_ITConfig(i2cx->base, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR, DISABLE);
} else {
/* Disable the I2C_IT_BUF interrupt after sending the last buffer data */
/* (last EV8) to not allow a new interrupt just with TxE - only BTF will generate it */
/* If this is not done, BUSY will be cleared before the transfer is finished */
I2C_ITConfig(i2cx->base, I2C_IT_BUF, DISABLE);
}
return;
}
/* SB set, cleared by reading SR1 (done by I2C_GetLastEvent) followed by writing DR register */
if(event & I2C_FLAG_SB) {
/* Don't send address if stop was requested (WRITE_WITHOUT_STOP - mode, start condition was sent) */
/* We have to wait for the application to start the next transfer */
if(i2cx->transfer_state.STOP_REQUESTED) {
/* Transfer finished */
i2cx->transfer_state.BUSY = 0;
/* Disable all interrupts */
I2C_ITConfig(i2cx->base, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR, DISABLE);
return;
}
/* Send IIC address */
I2C_Send7bitAddress(i2cx->base, i2cx->i2c_address,
(i2cx->i2c_address & 1)
? I2C_Direction_Receiver
: I2C_Direction_Transmitter);
return;
}
/* This code is only reached if something got wrong, e.g. interrupt handler is called too late, */
/* The device reset itself (while testing, it was always event 0x00000000). we have to stop the transfer, */
/* Else read/write of corrupt data may be the result. */
I2C_ITConfig(i2cx->base, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR, DISABLE);
/* Notify error */
PIOS_I2C_UnexpectedEvent = event;
i2cx->transfer_error = I2C_ERROR_UNEXPECTED_EVENT;
i2cx->transfer_state.BUSY = 0;
/* Do dummy read to send NAK + STOP condition */
I2C_AcknowledgeConfig(i2cx->base, DISABLE);
b = I2C_ReceiveData(i2cx->base);
I2C_GenerateSTOP(i2cx->base, ENABLE);
}
/**
* Internal function for handling IIC error interrupts
*/
static void ER_IRQHandler(I2CRecTypeDef *i2cx)
{
/* Read SR1 and SR2 at the beginning (if not done so, flags may get lost) */
uint32_t event = I2C_GetLastEvent(i2cx->base);
/* Note that only one error number is available */
/* The order of these checks defines the priority */
/* Bus error (start/stop condition during read */
/* Unlikely, should only be relevant for slave mode?) */
if(event & I2C_FLAG_BERR) {
I2C_ClearITPendingBit(i2cx->base, I2C_IT_BERR);
i2cx->transfer_error = I2C_ERROR_BUS;
}
/* Arbitration lost */
if(event & I2C_FLAG_ARLO) {
I2C_ClearITPendingBit(i2cx->base, I2C_IT_ARLO);
i2cx->transfer_error = I2C_ERROR_ARBITRATION_LOST;
}
/* No acknowledge received from slave (e.g. slave not connected) */
if(event & I2C_FLAG_AF) {
I2C_ClearITPendingBit(i2cx->base, I2C_IT_AF);
i2cx->transfer_error = I2C_ERROR_SLAVE_NOT_CONNECTED;
/* Send stop condition to release bus */
I2C_GenerateSTOP(i2cx->base, ENABLE);
}
/* Disable interrupts */
I2C_ITConfig(i2cx->base, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR, DISABLE);
/* Notify that transfer has finished (due to the error) */
i2cx->transfer_state.BUSY = 0;
}
/* Interrupt vectors */
void I2C2_EV_IRQHandler(void)
{
EV_IRQHandler((I2CRecTypeDef *)&I2CRec);
}
void I2C2_ER_IRQHandler(void)
{
ER_IRQHandler((I2CRecTypeDef *)&I2CRec);
}