1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-13 20:48:42 +01:00
LibrePilot/flight/libraries/math/pid.c

245 lines
7.9 KiB
C

/**
******************************************************************************
* @file pid.c
* @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2017.
* The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Methods to work with PID structure
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "openpilot.h"
#include "pid.h"
#include <mathmisc.h>
#include <pios_math.h>
// ! Store the shared time constant for the derivative cutoff.
static float deriv_tau = 7.9577e-3f;
// ! Store the setpoint weight to apply for the derivative term
static float deriv_gamma = 1.0f;
/**
* Update the PID computation
* @param[in] pid The PID struture which stores temporary information
* @param[in] err The error term
* @param[in] dT The time step
* @returns Output the computed controller value
*/
float pid_apply(struct pid *pid, const float err, float dT)
{
// Scale up accumulator by 1000 while computing to avoid losing precision
pid->iAccumulator += err * (pid->i * dT * 1000.0f);
pid->iAccumulator = boundf(pid->iAccumulator, pid->iLim * -1000.0f, pid->iLim * 1000.0f);
// Calculate DT1 term
float diff = (err - pid->lastErr);
float dterm = 0;
pid->lastErr = err;
if (pid->d > 0.0f && dT > 0.0f) {
dterm = pid->lastDer + dT / (dT + deriv_tau) * ((diff * pid->d / dT) - pid->lastDer);
pid->lastDer = dterm; // ^ set constant to 1/(2*pi*f_cutoff)
} // 7.9577e-3 means 20 Hz f_cutoff
return (err * pid->p) + pid->iAccumulator / 1000.0f + dterm;
}
/**
* Update the PID computation with setpoint weighting on the derivative
* @param[in] pid The PID struture which stores temporary information
* @param[in] factor A dynamic factor to scale pid's by, to compensate nonlinearities
* @param[in] setpoint The setpoint to use
* @param[in] measured The measured value of output
* @param[in] dT The time step
* @returns Output the computed controller value
*
* This version of apply uses setpoint weighting for the derivative component so the gain
* on the gyro derivative can be different than the gain on the setpoint derivative
*/
float pid_apply_setpoint(struct pid *pid, const pid_scaler *scaler, const float setpoint, const float measured, float dT, bool meas_based_d_term)
{
float err = setpoint - measured;
// Scale up accumulator by 1000 while computing to avoid losing precision
pid->iAccumulator += err * (scaler->i * pid->i * dT * 1000.0f);
pid->iAccumulator = boundf(pid->iAccumulator, pid->iLim * -1000.0f, pid->iLim * 1000.0f);
// Calculate DT1 term,
float diff;
float derr = (-measured);
if (!meas_based_d_term) {
derr += deriv_gamma * setpoint;
}
diff = derr - pid->lastErr;
pid->lastErr = derr;
float dterm = 0;
if (pid->d > 0.0f && dT > 0.0f) {
// low pass filter derivative term. below formula is the same as
// dterm = (1-alpha)*pid->lastDer + alpha * (...)/dT
// with alpha = dT/(deriv_tau+dT)
dterm = pid->lastDer + dT / (dT + deriv_tau) * ((scaler->d * diff * pid->d / dT) - pid->lastDer);
pid->lastDer = dterm;
}
return (err * scaler->p * pid->p) + pid->iAccumulator / 1000.0f + dterm;
}
/**
* Reset a bit
* @param[in] pid The pid to reset
*/
void pid_zero(struct pid *pid)
{
if (!pid) {
return;
}
pid->iAccumulator = 0;
pid->lastErr = 0;
pid->lastDer = 0;
}
/**
* @brief Configure the common terms that alter ther derivative
* @param[in] cutoff The cutoff frequency (in Hz)
* @param[in] gamma The gamma term for setpoint shaping (unsused now)
*/
void pid_configure_derivative(float cutoff, float g)
{
deriv_tau = 1.0f / (2 * M_PI_F * cutoff);
deriv_gamma = g;
}
/**
* Configure the settings for a pid structure
* @param[out] pid The PID structure to configure
* @param[in] p The proportional term
* @param[in] i The integral term
* @param[in] d The derivative term
*/
void pid_configure(struct pid *pid, float p, float i, float d, float iLim)
{
if (!pid) {
return;
}
pid->p = p;
pid->i = i;
pid->d = d;
pid->iLim = iLim;
}
/**
* Configure the settings for a pid2 structure
* @param[out] pid The PID2 structure to configure
* @param[in] kp proportional gain
* @param[in] ki integral gain. Time constant Ti = kp/ki
* @param[in] kd derivative gain. Time constant Td = kd/kp
* @param[in] Tf filtering time = (kd/kp)/N, N is in the range of 2 to 20
* @param[in] kt tracking gain for anti-windup. Tt = √TiTd and Tt = (Ti + Td)/2
* @param[in] dt delta time increment
* @param[in] beta setpoint weight on setpoint in P component. beta=1 error feedback. beta=0 smoothes out response to changes in setpoint
* @param[in] u0 initial output for r=y at activation to achieve bumpless transfer
* @param[in] va constant for compute of actuator output for check against limits for antiwindup
* @param[in] vb multiplier for compute of actuator output for check against limits for anti-windup
*/
void pid2_configure(struct pid2 *pid, float kp, float ki, float kd, float Tf, float kt, float dT, float beta, float u0, float va, float vb)
{
pid->reconfigure = true;
pid->u0 = u0;
pid->va = va;
pid->vb = vb;
pid->kp = kp;
pid->beta = beta; // setpoint weight on proportional term
pid->bi = ki * dT;
pid->br = kt * dT / vb;
pid->ad = Tf / (Tf + dT);
pid->bd = kd / (Tf + dT);
}
/**
* Achieve a bumpless transfer and trigger initialisation of I term
* @param[out] pid The PID structure to configure
* @param[in] u0 initial output for r=y at activation to achieve bumpless transfer
*/
void pid2_transfer(struct pid2 *pid, float u0)
{
pid->reconfigure = true;
pid->u0 = u0;
}
/**
* pid controller with setpoint weighting, anti-windup, with a low-pass filtered derivative on the process variable
* See "Feedback Systems" for an explanation
* @param[out] pid The PID structure to configure
* @param[in] r setpoint
* @param[in] y process variable
* @param[in] ulow lower limit on actuator
* @param[in] uhigh upper limit on actuator
*/
float pid2_apply(
struct pid2 *pid,
const float r,
const float y,
const float ulow,
const float uhigh)
{
// on reconfigure ensure bumpless transfer
// http://www.controlguru.com/2008/021008.html
if (pid->reconfigure) {
pid->reconfigure = false;
// initialise derivative terms
pid->yold = y;
pid->D = 0.0f;
// t=0, u=u0, y=y0, v=u
// pid->I = (pid->u0 - pid->va) / pid->vb - pid->kp * (pid->beta * r - y);
// this is dangerous, if pid->I starts nonzero with very low or zero kI, then
// it will never settle!
pid->I = 0.0f;
}
// compute proportional part
pid->P = pid->kp * (pid->beta * r - y);
// update derivative part
pid->D = pid->ad * pid->D - pid->bd * (y - pid->yold);
// compute temporary output
float v = pid->va + pid->vb * (pid->P + pid->I + pid->D);
// simulate actuator saturation
float u = boundf(v, ulow, uhigh);
// update integral
pid->I = pid->I + pid->bi * (r - y) + pid->br * (u - v);
// update old process output
pid->yold = y;
return u;
}