1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-11 19:24:10 +01:00
LibrePilot/flight/Modules/Guidance/guidance.c
2012-04-15 16:23:34 -05:00

576 lines
19 KiB
C

/**
******************************************************************************
*
* @file guidance.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
* and sets @ref AttitudeDesired. It only does this when the FlightMode field
* of @ref ManualControlCommand is Auto.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input object: ActiveWaypoint
* Input object: PositionActual
* Input object: ManualControlCommand
* Output object: AttitudeDesired
*
* This module will periodically update the value of the AttitudeDesired object.
*
* The module executes in its own thread in this example.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include "openpilot.h"
#include "paths.h"
#include "guidance.h"
#include "accels.h"
#include "attitudeactual.h"
#include "pathdesired.h" // object that will be updated by the module
#include "positiondesired.h" // object that will be updated by the module
#include "positionactual.h"
#include "manualcontrol.h"
#include "flightstatus.h"
#include "gpsvelocity.h"
#include "gpsposition.h"
#include "guidancesettings.h"
#include "nedaccel.h"
#include "nedposition.h"
#include "stabilizationdesired.h"
#include "stabilizationsettings.h"
#include "systemsettings.h"
#include "velocitydesired.h"
#include "velocityactual.h"
#include "CoordinateConversions.h"
// Private constants
#define MAX_QUEUE_SIZE 4
#define STACK_SIZE_BYTES 1548
#define TASK_PRIORITY (tskIDLE_PRIORITY+2)
#define F_PI 3.14159265358979323846f
// Private types
// Private variables
static xTaskHandle guidanceTaskHandle;
static xQueueHandle queue;
// Private functions
static void guidanceTask(void *parameters);
static float bound(float val, float min, float max);
static void updateNedAccel();
static void updatePathVelocity();
static void updateVtolDesiredVelocity();
static void manualSetDesiredVelocity();
static void updateVtolDesiredAttitude();
static GuidanceSettingsData guidanceSettings;
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t GuidanceStart()
{
// Start main task
xTaskCreate(guidanceTask, (signed char *)"Guidance", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &guidanceTaskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_GUIDANCE, guidanceTaskHandle);
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t GuidanceInitialize()
{
GuidanceSettingsInitialize();
NedAccelInitialize();
PathDesiredInitialize();
PositionDesiredInitialize();
VelocityDesiredInitialize();
// Create object queue
queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent));
// Listen for updates.
AccelsConnectQueue(queue);
return 0;
}
MODULE_INITCALL(GuidanceInitialize, GuidanceStart)
static float northVelIntegral = 0;
static float eastVelIntegral = 0;
static float downVelIntegral = 0;
static float northPosIntegral = 0;
static float eastPosIntegral = 0;
static float downPosIntegral = 0;
static uint8_t positionHoldLast = 0;
/**
* Module thread, should not return.
*/
static void guidanceTask(void *parameters)
{
SystemSettingsData systemSettings;
FlightStatusData flightStatus;
portTickType thisTime;
portTickType lastUpdateTime;
UAVObjEvent ev;
// Main task loop
lastUpdateTime = xTaskGetTickCount();
while (1) {
GuidanceSettingsGet(&guidanceSettings);
// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
if ( xQueueReceive(queue, &ev, guidanceSettings.UpdatePeriod / portTICK_RATE_MS) != pdTRUE )
{
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_WARNING);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_GUIDANCE);
}
// Continue collecting data if not enough time
thisTime = xTaskGetTickCount();
if( (thisTime - lastUpdateTime) < (guidanceSettings.UpdatePeriod / portTICK_RATE_MS) )
continue;
// Convert the accels into the NED frame
updateNedAccel();
FlightStatusGet(&flightStatus);
SystemSettingsGet(&systemSettings);
GuidanceSettingsGet(&guidanceSettings);
if ( (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_VTOL) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADP) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADX) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXA) )
{
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_WARNING);
continue;
}
switch(flightStatus.FlightMode) {
case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD:
updateVtolDesiredVelocity();
updateVtolDesiredAttitude();
break;
case FLIGHTSTATUS_FLIGHTMODE_PATHPLANNER:
if (guidanceSettings.PathMode == GUIDANCESETTINGS_PATHMODE_ENDPOINT)
updateVtolDesiredVelocity();
else
updatePathVelocity();
updateVtolDesiredAttitude();
break;
default:
// Be cleaner and get rid of global variables
northVelIntegral = 0;
eastVelIntegral = 0;
downVelIntegral = 0;
northPosIntegral = 0;
eastPosIntegral = 0;
downPosIntegral = 0;
positionHoldLast = 0;
manualSetDesiredVelocity();
break;
}
}
}
/**
* Compute desired velocity from the current position and path
*
* Takes in @ref PositionActual and compares it to @ref PathDesired
* and computes @ref VelocityDesired
*/
static void updatePathVelocity()
{
static portTickType lastSysTime;
portTickType thisSysTime = xTaskGetTickCount();;
float dT = 0;
float downCommand;
// Check how long since last update
if(thisSysTime > lastSysTime) // reuse dt in case of wraparound
dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f;
lastSysTime = thisSysTime;
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
PositionActualData positionActual;
PositionActualGet(&positionActual);
float cur[3] = {positionActual.North, positionActual.East, positionActual.Down};
struct path_status progress;
path_progress(pathDesired.Start, pathDesired.End, cur, &progress);
float groundspeed = pathDesired.StartingVelocity +
(pathDesired.EndingVelocity - pathDesired.StartingVelocity) * progress.fractional_progress;
if(progress.fractional_progress > 1)
groundspeed = 0;
VelocityDesiredData velocityDesired;
velocityDesired.North = progress.path_direction[0] * groundspeed;
velocityDesired.East = progress.path_direction[1] * groundspeed;
float error_speed = progress.error * guidanceSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_KP];
float correction_velocity[2] = {progress.correction_direction[0] * error_speed,
progress.correction_direction[1] * error_speed};
float total_vel = sqrtf(powf(correction_velocity[0],2) + powf(correction_velocity[1],2));
float scale = 1;
if(total_vel > guidanceSettings.HorizontalVelMax)
scale = guidanceSettings.HorizontalVelMax / total_vel;
velocityDesired.North += progress.correction_direction[0] * error_speed * scale;
velocityDesired.East += progress.correction_direction[1] * error_speed * scale;
float altitudeSetpoint = pathDesired.Start[2] + (pathDesired.End[2] - pathDesired.Start[2]) *
bound(progress.fractional_progress,0,1);
float downError = altitudeSetpoint - positionActual.Down;
downPosIntegral = bound(downPosIntegral + downError * dT * guidanceSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_KI],
-guidanceSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_ILIMIT],
guidanceSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_ILIMIT]);
downCommand = (downError * guidanceSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_KP] + downPosIntegral);
velocityDesired.Down = bound(downCommand,
-guidanceSettings.VerticalVelMax,
guidanceSettings.VerticalVelMax);
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired velocity from the current position
*
* Takes in @ref PositionActual and compares it to @ref PositionDesired
* and computes @ref VelocityDesired
*/
void updateVtolDesiredVelocity()
{
static portTickType lastSysTime;
portTickType thisSysTime = xTaskGetTickCount();;
float dT = 0;
GuidanceSettingsData guidanceSettings;
PositionActualData positionActual;
PositionDesiredData positionDesired;
VelocityDesiredData velocityDesired;
GuidanceSettingsGet(&guidanceSettings);
PositionActualGet(&positionActual);
PositionDesiredGet(&positionDesired);
VelocityDesiredGet(&velocityDesired);
float northError;
float eastError;
float downError;
float northCommand;
float eastCommand;
float downCommand;
// Check how long since last update
if(thisSysTime > lastSysTime) // reuse dt in case of wraparound
dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f;
lastSysTime = thisSysTime;
float northPos = 0, eastPos = 0, downPos = 0;
switch (guidanceSettings.PositionSource) {
case GUIDANCESETTINGS_POSITIONSOURCE_EKF:
northPos = positionActual.North;
eastPos = positionActual.East;
downPos = positionActual.Down;
break;
case GUIDANCESETTINGS_POSITIONSOURCE_GPSPOS:
{
NEDPositionData nedPosition;
NEDPositionGet(&nedPosition);
northPos = nedPosition.North;
eastPos = nedPosition.East;
downPos = nedPosition.Down;
}
default:
PIOS_Assert(0);
break;
}
// Note all distances in cm
// Compute desired north command
northError = positionDesired.North - northPos;
northPosIntegral = bound(northPosIntegral + northError * dT * guidanceSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_KI],
-guidanceSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_ILIMIT],
guidanceSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_ILIMIT]);
northCommand = (northError * guidanceSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_KP] +
northPosIntegral);
eastError = positionDesired.East - eastPos;
eastPosIntegral = bound(eastPosIntegral + eastError * dT * guidanceSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_KI],
-guidanceSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_ILIMIT],
guidanceSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_ILIMIT]);
eastCommand = (eastError * guidanceSettings.HorizontalPosPI[GUIDANCESETTINGS_HORIZONTALPOSPI_KP] +
eastPosIntegral);
float total_vel = sqrtf(powf(northCommand,2) + powf(eastCommand,2));
float scale = 1;
if(total_vel > guidanceSettings.HorizontalVelMax)
scale = guidanceSettings.HorizontalVelMax / total_vel;
velocityDesired.North = northCommand * scale;
velocityDesired.East = eastCommand * scale;
downError = positionDesired.Down - downPos;
downPosIntegral = bound(downPosIntegral + downError * dT * guidanceSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_KI],
-guidanceSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_ILIMIT],
guidanceSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_ILIMIT]);
downCommand = (downError * guidanceSettings.VerticalPosPI[GUIDANCESETTINGS_VERTICALPOSPI_KP] + downPosIntegral);
velocityDesired.Down = bound(downCommand,
-guidanceSettings.VerticalVelMax,
guidanceSettings.VerticalVelMax);
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude from the desired velocity
*
* Takes in @ref NedActual which has the acceleration in the
* NED frame as the feedback term and then compares the
* @ref VelocityActual against the @ref VelocityDesired
*/
static void updateVtolDesiredAttitude()
{
static portTickType lastSysTime;
portTickType thisSysTime = xTaskGetTickCount();;
float dT = 0;
VelocityDesiredData velocityDesired;
VelocityActualData velocityActual;
StabilizationDesiredData stabDesired;
AttitudeActualData attitudeActual;
NedAccelData nedAccel;
GuidanceSettingsData guidanceSettings;
StabilizationSettingsData stabSettings;
SystemSettingsData systemSettings;
float northError;
float northCommand;
float eastError;
float eastCommand;
float downError;
float downCommand;
// Check how long since last update
if(thisSysTime > lastSysTime) // reuse dt in case of wraparound
dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f;
lastSysTime = thisSysTime;
SystemSettingsGet(&systemSettings);
GuidanceSettingsGet(&guidanceSettings);
VelocityActualGet(&velocityActual);
VelocityDesiredGet(&velocityDesired);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeActualGet(&attitudeActual);
StabilizationSettingsGet(&stabSettings);
NedAccelGet(&nedAccel);
float northVel = 0, eastVel = 0, downVel = 0;
switch (guidanceSettings.VelocitySource) {
case GUIDANCESETTINGS_VELOCITYSOURCE_EKF:
northVel = velocityActual.North;
eastVel = velocityActual.East;
downVel = velocityActual.Down;
break;
case GUIDANCESETTINGS_VELOCITYSOURCE_NEDVEL:
{
GPSVelocityData gpsVelocity;
GPSVelocityGet(&gpsVelocity);
northVel = gpsVelocity.North;
eastVel = gpsVelocity.East;
downVel = gpsVelocity.Down;
}
case GUIDANCESETTINGS_VELOCITYSOURCE_GPSPOS:
{
GPSPositionData gpsPosition;
GPSPositionGet(&gpsPosition);
northVel = gpsPosition.Groundspeed * cosf(gpsPosition.Heading * F_PI / 180.0f);
eastVel = gpsPosition.Groundspeed * sinf(gpsPosition.Heading * F_PI / 180.0f);
downVel = velocityActual.Down;
}
default:
PIOS_Assert(0);
break;
}
// Testing code - refactor into manual control command
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
stabDesired.Yaw = stabSettings.MaximumRate[STABILIZATIONSETTINGS_MAXIMUMRATE_YAW] * manualControlData.Yaw;
// Compute desired north command
northError = velocityDesired.North - northVel;
northVelIntegral = bound(northVelIntegral + northError * dT * guidanceSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_KI],
-guidanceSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_ILIMIT],
guidanceSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_ILIMIT]);
northCommand = (northError * guidanceSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_KP] +
northVelIntegral -
nedAccel.North * guidanceSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_KD] +
velocityDesired.North * guidanceSettings.VelocityFeedforward);
// Compute desired east command
eastError = velocityDesired.East - eastVel;
eastVelIntegral = bound(eastVelIntegral + eastError * dT * guidanceSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_KI],
-guidanceSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_ILIMIT],
guidanceSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_ILIMIT]);
eastCommand = (eastError * guidanceSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_KP] +
eastVelIntegral -
nedAccel.East * guidanceSettings.HorizontalVelPID[GUIDANCESETTINGS_HORIZONTALVELPID_KD] +
velocityDesired.East * guidanceSettings.VelocityFeedforward);
// Compute desired down command
downError = velocityDesired.Down - downVel;
// Must flip this sign
downError = -downError;
downVelIntegral = bound(downVelIntegral + downError * dT * guidanceSettings.VerticalVelPID[GUIDANCESETTINGS_VERTICALVELPID_KI],
-guidanceSettings.VerticalVelPID[GUIDANCESETTINGS_VERTICALVELPID_ILIMIT],
guidanceSettings.VerticalVelPID[GUIDANCESETTINGS_VERTICALVELPID_ILIMIT]);
downCommand = (downError * guidanceSettings.VerticalVelPID[GUIDANCESETTINGS_VERTICALVELPID_KP] +
downVelIntegral -
nedAccel.Down * guidanceSettings.VerticalVelPID[GUIDANCESETTINGS_VERTICALVELPID_KD]);
stabDesired.Throttle = bound(downCommand, 0, 1);
// Project the north and east command signals into the pitch and roll based on yaw. For this to behave well the
// craft should move similarly for 5 deg roll versus 5 deg pitch
stabDesired.Pitch = bound(-northCommand * cosf(attitudeActual.Yaw * M_PI / 180) +
-eastCommand * sinf(attitudeActual.Yaw * M_PI / 180),
-guidanceSettings.MaxRollPitch, guidanceSettings.MaxRollPitch);
stabDesired.Roll = bound(-northCommand * sinf(attitudeActual.Yaw * M_PI / 180) +
eastCommand * cosf(attitudeActual.Yaw * M_PI / 180),
-guidanceSettings.MaxRollPitch, guidanceSettings.MaxRollPitch);
if(guidanceSettings.ThrottleControl == GUIDANCESETTINGS_THROTTLECONTROL_FALSE) {
// For now override throttle with manual control. Disable at your risk, quad goes to China.
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.Throttle = manualControl.Throttle;
}
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
StabilizationDesiredSet(&stabDesired);
}
/**
* Keep a running filtered version of the acceleration in the NED frame
*/
static void updateNedAccel()
{
float accel[3];
float q[4];
float Rbe[3][3];
float accel_ned[3];
// Collect downsampled attitude data
AccelsData accels;
AccelsGet(&accels);
accel[0] = accels.x;
accel[1] = accels.y;
accel[2] = accels.z;
//rotate avg accels into earth frame and store it
AttitudeActualData attitudeActual;
AttitudeActualGet(&attitudeActual);
q[0]=attitudeActual.q1;
q[1]=attitudeActual.q2;
q[2]=attitudeActual.q3;
q[3]=attitudeActual.q4;
Quaternion2R(q, Rbe);
for (uint8_t i=0; i<3; i++){
accel_ned[i]=0;
for (uint8_t j=0; j<3; j++)
accel_ned[i] += Rbe[j][i]*accel[j];
}
accel_ned[2] += 9.81f;
NedAccelData accelData;
NedAccelGet(&accelData);
accelData.North = accel_ned[0];
accelData.East = accel_ned[1];
accelData.Down = accel_ned[2];
NedAccelSet(&accelData);
}
/**
* Set the desired velocity from the input sticks
*/
static void manualSetDesiredVelocity()
{
ManualControlCommandData cmd;
VelocityDesiredData velocityDesired;
ManualControlCommandGet(&cmd);
VelocityDesiredGet(&velocityDesired);
GuidanceSettingsData guidanceSettings;
GuidanceSettingsGet(&guidanceSettings);
velocityDesired.North = -guidanceSettings.HorizontalVelMax * cmd.Pitch;
velocityDesired.East = guidanceSettings.HorizontalVelMax * cmd.Roll;
velocityDesired.Down = 0;
VelocityDesiredSet(&velocityDesired);
}
/**
* Bound input value between limits
*/
static float bound(float val, float min, float max)
{
if (val < min) {
val = min;
} else if (val > max) {
val = max;
}
return val;
}