mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-12-10 18:24:11 +01:00
451 lines
13 KiB
C
451 lines
13 KiB
C
/**
|
|
******************************************************************************
|
|
* @addtogroup OpenPilotModules OpenPilot Modules
|
|
* @{
|
|
* @addtogroup Sensors
|
|
* @brief Acquires sensor data
|
|
* Specifically updates the the @ref Gyros, @ref Accels, and @ref Magnetometer objects
|
|
* @{
|
|
*
|
|
* @file sensors.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
|
* @brief Module to handle all comms to the AHRS on a periodic basis.
|
|
*
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
******************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/**
|
|
* Input objects: None, takes sensor data via pios
|
|
* Output objects: @ref Gyros @ref Accels @ref Magnetometer
|
|
*
|
|
* The module executes in its own thread.
|
|
*
|
|
* UAVObjects are automatically generated by the UAVObjectGenerator from
|
|
* the object definition XML file.
|
|
*
|
|
* Modules have no API, all communication to other modules is done through UAVObjects.
|
|
* However modules may use the API exposed by shared libraries.
|
|
* See the OpenPilot wiki for more details.
|
|
* http://www.openpilot.org/OpenPilot_Application_Architecture
|
|
*
|
|
*/
|
|
|
|
#include "pios.h"
|
|
#include "attitude.h"
|
|
#include "magnetometer.h"
|
|
#include "accels.h"
|
|
#include "gyros.h"
|
|
#include "gyrosbias.h"
|
|
#include "attitudeactual.h"
|
|
#include "attitudesettings.h"
|
|
#include "revocalibration.h"
|
|
#include "flightstatus.h"
|
|
#include "gpsposition.h"
|
|
#include "baroaltitude.h"
|
|
#include "CoordinateConversions.h"
|
|
|
|
// Private constants
|
|
#define STACK_SIZE_BYTES 1540
|
|
#define TASK_PRIORITY (tskIDLE_PRIORITY+3)
|
|
#define SENSOR_PERIOD 2
|
|
|
|
#define F_PI 3.14159265358979323846f
|
|
#define PI_MOD(x) (fmod(x + F_PI, F_PI * 2) - F_PI)
|
|
// Private types
|
|
|
|
// Private variables
|
|
static xTaskHandle sensorsTaskHandle;
|
|
static bool gps_updated = false;
|
|
static bool baro_updated = false;
|
|
|
|
// Private functions
|
|
static void SensorsTask(void *parameters);
|
|
static void settingsUpdatedCb(UAVObjEvent * objEv);
|
|
static void sensorsUpdatedCb(UAVObjEvent * objEv);
|
|
|
|
// These values are initialized by settings but can be updated by the attitude algorithm
|
|
static bool bias_correct_gyro = true;
|
|
|
|
static float mag_bias[3] = {0,0,0};
|
|
static float mag_scale[3] = {0,0,0};
|
|
static float accel_bias[3] = {0,0,0};
|
|
static float accel_scale[3] = {0,0,0};
|
|
|
|
/**
|
|
* API for sensor fusion algorithms:
|
|
* Configure(xQueueHandle gyro, xQueueHandle accel, xQueueHandle mag, xQueueHandle baro)
|
|
* Stores all the queues the algorithm will pull data from
|
|
* FinalizeSensors() -- before saving the sensors modifies them based on internal state (gyro bias)
|
|
* Update() -- queries queues and updates the attitude estiamte
|
|
*/
|
|
|
|
|
|
/**
|
|
* Initialise the module. Called before the start function
|
|
* \returns 0 on success or -1 if initialisation failed
|
|
*/
|
|
int32_t SensorsInitialize(void)
|
|
{
|
|
GyrosInitialize();
|
|
GyrosBiasInitialize();
|
|
AccelsInitialize();
|
|
MagnetometerInitialize();
|
|
RevoCalibrationInitialize();
|
|
|
|
RevoCalibrationConnectCallback(&settingsUpdatedCb);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Start the task. Expects all objects to be initialized by this point.
|
|
* \returns 0 on success or -1 if initialisation failed
|
|
*/
|
|
int32_t SensorsStart(void)
|
|
{
|
|
// Start main task
|
|
xTaskCreate(SensorsTask, (signed char *)"Sensors", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &sensorsTaskHandle);
|
|
TaskMonitorAdd(TASKINFO_RUNNING_SENSORS, sensorsTaskHandle);
|
|
PIOS_WDG_RegisterFlag(PIOS_WDG_SENSORS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
MODULE_INITCALL(SensorsInitialize, SensorsStart)
|
|
|
|
int32_t accel_test;
|
|
int32_t gyro_test;
|
|
int32_t mag_test;
|
|
//int32_t pressure_test;
|
|
|
|
|
|
/**
|
|
* The sensor task. This polls the gyros at 500 Hz and pumps that data to
|
|
* stabilization and to the attitude loop
|
|
*
|
|
* This function has a lot of if/defs right now to allow these configurations:
|
|
* 1. BMA180 accel and MPU6000 gyro
|
|
* 2. MPU6000 gyro and accel
|
|
* 3. BMA180 accel and L3GD20 gyro
|
|
*/
|
|
|
|
uint32_t sensor_dt_us;
|
|
static void SensorsTask(void *parameters)
|
|
{
|
|
uint8_t init = 0;
|
|
portTickType lastSysTime;
|
|
uint32_t accel_samples;
|
|
uint32_t gyro_samples;
|
|
int32_t accel_accum[3] = {0, 0, 0};
|
|
int32_t gyro_accum[3] = {0,0,0};
|
|
float gyro_scaling;
|
|
float accel_scaling;
|
|
static int32_t timeval;
|
|
|
|
AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);
|
|
|
|
UAVObjEvent ev;
|
|
settingsUpdatedCb(&ev);
|
|
|
|
#if defined(PIOS_INCLUDE_MPU6000)
|
|
gyro_test = PIOS_MPU6000_Test();
|
|
#if !defined(PIOS_INCLUDE_BMA180)
|
|
accel_test = gyro_test;
|
|
#endif
|
|
#elif defined(PIOS_INCLUDE_L3GD20)
|
|
gyro_test = PIOS_L3GD20_Test();
|
|
#endif
|
|
#if defined(PIOS_INCLUDE_BMA180)
|
|
accel_test = PIOS_BMA180_Test();
|
|
#endif
|
|
mag_test = PIOS_HMC5883_Test();
|
|
|
|
if(accel_test < 0 || gyro_test < 0 || mag_test < 0) {
|
|
AlarmsSet(SYSTEMALARMS_ALARM_SENSORS, SYSTEMALARMS_ALARM_CRITICAL);
|
|
while(1) {
|
|
PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
|
|
vTaskDelay(10);
|
|
}
|
|
}
|
|
|
|
// If debugging connect callback
|
|
if(pios_com_aux_id != 0) {
|
|
BaroAltitudeConnectCallback(&sensorsUpdatedCb);
|
|
GPSPositionConnectCallback(&sensorsUpdatedCb);
|
|
}
|
|
|
|
// Main task loop
|
|
lastSysTime = xTaskGetTickCount();
|
|
bool error = false;
|
|
while (1) {
|
|
// TODO: add timeouts to the sensor reads and set an error if the fail
|
|
sensor_dt_us = PIOS_DELAY_DiffuS(timeval);
|
|
timeval = PIOS_DELAY_GetRaw();
|
|
|
|
if (error) {
|
|
PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
|
|
lastSysTime = xTaskGetTickCount();
|
|
vTaskDelayUntil(&lastSysTime, SENSOR_PERIOD / portTICK_RATE_MS);
|
|
AlarmsSet(SYSTEMALARMS_ALARM_SENSORS, SYSTEMALARMS_ALARM_CRITICAL);
|
|
error = false;
|
|
} else {
|
|
AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);
|
|
}
|
|
|
|
int32_t read_good;
|
|
int32_t count;
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
accel_accum[i] = 0;
|
|
gyro_accum[i] = 0;
|
|
}
|
|
accel_samples = 0;
|
|
gyro_samples = 0;
|
|
|
|
// Make sure we get one sample
|
|
#if !defined(PIOS_MPU6000_ACCEL)
|
|
struct pios_bma180_data accel;
|
|
|
|
count = 0;
|
|
while((read_good = PIOS_BMA180_ReadFifo(&accel)) != 0 && !error)
|
|
error = ((xTaskGetTickCount() - lastSysTime) > SENSOR_PERIOD) ? true : error;
|
|
if (error) {
|
|
// Unfortunately if the BMA180 ever misses getting read, then it will not
|
|
// trigger more interrupts. In this case we must force a read to kickstarts
|
|
// it.
|
|
struct pios_bma180_data data;
|
|
PIOS_BMA180_ReadAccels(&data);
|
|
continue;
|
|
}
|
|
while(read_good == 0) {
|
|
count++;
|
|
|
|
accel_accum[0] += accel.x;
|
|
accel_accum[1] += accel.y;
|
|
accel_accum[2] += accel.z;
|
|
|
|
read_good = PIOS_BMA180_ReadFifo(&accel);
|
|
}
|
|
accel_samples = count;
|
|
accel_scaling = PIOS_BMA180_GetScale();
|
|
#endif
|
|
|
|
// Using MPU6000 gyro and possibly accel
|
|
#if defined(PIOS_INCLUDE_MPU6000)
|
|
struct pios_mpu6000_data gyro;
|
|
|
|
count = 0;
|
|
while((read_good = PIOS_MPU6000_ReadFifo(&gyro)) != 0 && !error)
|
|
error = ((xTaskGetTickCount() - lastSysTime) > SENSOR_PERIOD) ? true : error;
|
|
if (error)
|
|
continue;
|
|
while(read_good == 0) {
|
|
count++;
|
|
|
|
gyro_accum[0] += gyro.gyro_x;
|
|
gyro_accum[1] += gyro.gyro_y;
|
|
gyro_accum[2] += gyro.gyro_z;
|
|
|
|
#if defined(PIOS_MPU6000_ACCEL)
|
|
accel_accum[0] += gyro.accel_x;
|
|
accel_accum[1] += gyro.accel_y;
|
|
accel_accum[2] += gyro.accel_z;
|
|
#endif
|
|
|
|
read_good = PIOS_MPU6000_ReadFifo(&gyro);
|
|
}
|
|
gyro_samples = count;
|
|
gyro_scaling = PIOS_MPU6000_GetScale();
|
|
|
|
#if defined(PIOS_MPU6000_ACCEL)
|
|
accel_samples = count;
|
|
accel_scaling = PIOS_MPU6000_GetAccelScale();
|
|
#endif
|
|
|
|
// Using L3DG20 gyro
|
|
#elif defined(PIOS_INCLUDE_L3GD20)
|
|
struct pios_l3gd20_data gyro;
|
|
gyro_samples = 0;
|
|
xQueueHandle gyro_queue = PIOS_L3GD20_GetQueue();
|
|
|
|
if(xQueueReceive(gyro_queue, (void *) &gyro, 4) == errQUEUE_EMPTY) {
|
|
error = true;
|
|
continue;
|
|
}
|
|
|
|
gyro_samples = 1;
|
|
gyro_accum[0] += gyro.gyro_x;
|
|
gyro_accum[1] += gyro.gyro_y;
|
|
gyro_accum[2] += gyro.gyro_z;
|
|
|
|
gyro_scaling = PIOS_L3GD20_GetScale();
|
|
|
|
#else
|
|
//#error No gyro defined
|
|
struct gyro_data {float x; float y; float z; float temperature;} gyro;
|
|
gyro_scaling = 0;
|
|
gyro_samples = 1;
|
|
#endif
|
|
float accels[3] = {(float) accel_accum[1] / accel_samples, (float) accel_accum[0] / accel_samples, -(float) accel_accum[2] / accel_samples};
|
|
|
|
// Not the swaping of channel orders
|
|
#if defined(PIOS_MPU6000_ACCEL)
|
|
accel_scaling = PIOS_MPU6000_GetAccelScale();
|
|
#else
|
|
accel_scaling = PIOS_BMA180_GetScale();
|
|
#endif
|
|
AccelsData accelsData; // Skip get as we set all the fields
|
|
accelsData.x = accels[0] * accel_scaling * accel_scale[0] - accel_bias[0];
|
|
accelsData.y = accels[1] * accel_scaling * accel_scale[1] - accel_bias[1];
|
|
accelsData.z = accels[2] * accel_scaling * accel_scale[2] - accel_bias[2];
|
|
#if defined(BMA180)
|
|
accelsData.temperature = 25.0f + ((float) accel.temperature - 2.0f) / 2.0f;
|
|
#elif defined(PIOS_MPU6000_ACCEL)
|
|
accelsData.temperature = 35.0f + ((float) gyro.temperature + 512.0f) / 340.0f;
|
|
#endif
|
|
accelsData.temperature =
|
|
AccelsSet(&accelsData);
|
|
|
|
float gyros[3] = {(float) gyro_accum[1] / gyro_samples, (float) gyro_accum[0] / gyro_samples, -(float) gyro_accum[2] / gyro_samples};
|
|
|
|
GyrosData gyrosData; // Skip get as we set all the fields
|
|
gyrosData.x = gyros[0] * gyro_scaling;
|
|
gyrosData.y = gyros[1] * gyro_scaling;
|
|
gyrosData.z = gyros[2] * gyro_scaling;
|
|
#if defined(PIOS_INCLUDE_MPU6000)
|
|
gyrosData.temperature = 35.0f + ((float) gyro.temperature + 512.0f) / 340.0f;
|
|
#else
|
|
gyrosData.temperature = gyro.temperature;
|
|
#endif
|
|
if (bias_correct_gyro) {
|
|
// Apply bias correction to the gyros
|
|
GyrosBiasData gyrosBias;
|
|
GyrosBiasGet(&gyrosBias);
|
|
gyrosData.x += gyrosBias.x;
|
|
gyrosData.y += gyrosBias.y;
|
|
gyrosData.z += gyrosBias.z;
|
|
}
|
|
|
|
GyrosSet(&gyrosData);
|
|
|
|
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
|
|
// and make it average zero (weakly)
|
|
MagnetometerData mag;
|
|
bool mag_updated = false;
|
|
if (PIOS_HMC5883_NewDataAvailable()) {
|
|
mag_updated = true;
|
|
int16_t values[3];
|
|
PIOS_HMC5883_ReadMag(values);
|
|
mag.x = values[1] * mag_scale[0] - mag_bias[0];
|
|
mag.y = values[0] * mag_scale[1] - mag_bias[1];
|
|
mag.z = -values[2] * mag_scale[2] - mag_bias[2];
|
|
MagnetometerSet(&mag);
|
|
}
|
|
|
|
// For debugging purposes here we can output all of the sensors. Do it as a single transaction
|
|
// so the message isn't split if anything else is writing to it
|
|
if(pios_com_aux_id != 0) {
|
|
uint32_t message_size = 3;
|
|
uint8_t message[200] = {0xff, (lastSysTime & 0xff00) >> 8, lastSysTime & 0x00ff};
|
|
|
|
// Add accel data
|
|
memcpy(&message[message_size], &accelsData.x, sizeof(accelsData.x) * 3);
|
|
message_size += sizeof(accelsData.x) * 3;
|
|
|
|
// Add gyro data with temp
|
|
memcpy(&message[message_size], &gyrosData, sizeof(gyrosData));
|
|
message_size += sizeof(gyrosData);
|
|
|
|
if(mag_updated) { // Add mag data
|
|
message[message_size] = 0x01; // Indicate mag data here
|
|
message_size++;
|
|
memcpy(&message[message_size], &mag, sizeof(mag));
|
|
message_size += sizeof(mag);
|
|
}
|
|
|
|
if(gps_updated) { // Add GPS data
|
|
gps_updated = false;
|
|
GPSPositionData gps;
|
|
GPSPositionGet(&gps);
|
|
message[message_size] = 0x02; // Indicate gps data here
|
|
message_size++;
|
|
memcpy(&message[message_size], &gps, sizeof(gps));
|
|
message_size += sizeof(gps);
|
|
}
|
|
|
|
if(baro_updated) { // Add baro data
|
|
baro_updated = false;
|
|
BaroAltitudeData baro;
|
|
BaroAltitudeGet(&baro);
|
|
message[message_size] = 0x03; // Indicate mag data here
|
|
message_size++;
|
|
memcpy(&message[message_size], &baro, sizeof(baro));
|
|
message_size += sizeof(baro);
|
|
}
|
|
|
|
PIOS_COM_SendBufferNonBlocking(pios_com_aux_id, message, message_size);
|
|
|
|
}
|
|
|
|
PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
|
|
|
|
// For L3GD20 which runs at 760 then one cycle per sample
|
|
#if defined(PIOS_INCLUDE_MPU6000) && !defined(PIOS_INCLUDE_L3GD20)
|
|
vTaskDelayUntil(&lastSysTime, SENSOR_PERIOD / portTICK_RATE_MS);
|
|
#else
|
|
lastSysTime = xTaskGetTickCount();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Indicate that these sensors have been updated
|
|
*/
|
|
static void sensorsUpdatedCb(UAVObjEvent * objEv)
|
|
{
|
|
if(objEv->obj == GPSPositionHandle())
|
|
gps_updated = true;
|
|
if(objEv->obj == BaroAltitudeHandle())
|
|
baro_updated = true;
|
|
}
|
|
|
|
/**
|
|
* Locally cache some variables from the AtttitudeSettings object
|
|
*/
|
|
static void settingsUpdatedCb(UAVObjEvent * objEv) {
|
|
RevoCalibrationData cal;
|
|
RevoCalibrationGet(&cal);
|
|
|
|
mag_bias[0] = cal.mag_bias[REVOCALIBRATION_MAG_BIAS_X];
|
|
mag_bias[1] = cal.mag_bias[REVOCALIBRATION_MAG_BIAS_Y];
|
|
mag_bias[2] = cal.mag_bias[REVOCALIBRATION_MAG_BIAS_Z];
|
|
mag_scale[0] = cal.mag_scale[REVOCALIBRATION_MAG_SCALE_X];
|
|
mag_scale[1] = cal.mag_scale[REVOCALIBRATION_MAG_SCALE_Y];
|
|
mag_scale[2] = cal.mag_scale[REVOCALIBRATION_MAG_SCALE_Z];
|
|
accel_bias[0] = cal.accel_bias[REVOCALIBRATION_ACCEL_BIAS_X];
|
|
accel_bias[1] = cal.accel_bias[REVOCALIBRATION_ACCEL_BIAS_Y];
|
|
accel_bias[2] = cal.accel_bias[REVOCALIBRATION_ACCEL_BIAS_Z];
|
|
accel_scale[0] = cal.accel_scale[REVOCALIBRATION_ACCEL_SCALE_X];
|
|
accel_scale[1] = cal.accel_scale[REVOCALIBRATION_ACCEL_SCALE_Y];
|
|
accel_scale[2] = cal.accel_scale[REVOCALIBRATION_ACCEL_SCALE_Z];
|
|
}
|
|
/**
|
|
* @}
|
|
* @}
|
|
*/
|