1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-11 19:24:10 +01:00
LibrePilot/flight/Modules/Sensors/simulated/sensors.c
2012-07-27 13:14:18 -05:00

935 lines
30 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup Sensors
* @brief Acquires sensor data
* Specifically updates the the @ref Gyros, @ref Accels, and @ref Magnetometer objects
* @{
*
* @file sensors.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Module to handle all comms to the AHRS on a periodic basis.
*
* @see The GNU Public License (GPL) Version 3
*
******************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input objects: None, takes sensor data via pios
* Output objects: @ref Gyros @ref Accels @ref Magnetometer
*
* The module executes in its own thread.
*
* UAVObjects are automatically generated by the UAVObjectGenerator from
* the object definition XML file.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include "pios.h"
#include "attitude.h"
#include "accels.h"
#include "actuatordesired.h"
#include "attitudeactual.h"
#include "attitudesimulated.h"
#include "attitudesettings.h"
#include "baroairspeed.h"
#include "baroaltitude.h"
#include "gyros.h"
#include "gyrosbias.h"
#include "flightstatus.h"
#include "gpsposition.h"
#include "gpsvelocity.h"
#include "homelocation.h"
#include "magnetometer.h"
#include "magbias.h"
#include "ratedesired.h"
#include "revocalibration.h"
#include "CoordinateConversions.h"
// Private constants
#define STACK_SIZE_BYTES 1540
#define TASK_PRIORITY (tskIDLE_PRIORITY+3)
#define SENSOR_PERIOD 2
#define F_PI 3.14159265358979323846f
#define PI_MOD(x) (fmod(x + F_PI, F_PI * 2) - F_PI)
// Private types
// Private variables
static xTaskHandle sensorsTaskHandle;
// Private functions
static void SensorsTask(void *parameters);
static void simulateConstant();
static void simulateModelAgnostic();
static void simulateModelQuadcopter();
static void simulateModelAirplane();
static void magOffsetEstimation(MagnetometerData *mag);
static float accel_bias[3];
static float rand_gauss();
enum sensor_sim_type {CONSTANT, MODEL_AGNOSTIC, MODEL_QUADCOPTER, MODEL_AIRPLANE} sensor_sim_type;
#define GRAV 9.81
/**
* Initialise the module. Called before the start function
* \returns 0 on success or -1 if initialisation failed
*/
int32_t SensorsInitialize(void)
{
accel_bias[0] = rand_gauss() / 10;
accel_bias[1] = rand_gauss() / 10;
accel_bias[2] = rand_gauss() / 10;
AccelsInitialize();
AttitudeSimulatedInitialize();
BaroAltitudeInitialize();
BaroAirspeedInitialize();
GyrosInitialize();
GyrosBiasInitialize();
GPSPositionInitialize();
GPSVelocityInitialize();
MagnetometerInitialize();
MagBiasInitialize();
RevoCalibrationInitialize();
return 0;
}
/**
* Start the task. Expects all objects to be initialized by this point.
*pick \returns 0 on success or -1 if initialisation failed
*/
int32_t SensorsStart(void)
{
// Start main task
xTaskCreate(SensorsTask, (signed char *)"Sensors", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &sensorsTaskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_SENSORS, sensorsTaskHandle);
PIOS_WDG_RegisterFlag(PIOS_WDG_SENSORS);
return 0;
}
MODULE_INITCALL(SensorsInitialize, SensorsStart)
/**
* Simulated sensor task. Run a model of the airframe and produce sensor values
*/
int sensors_count;
static void SensorsTask(void *parameters)
{
portTickType lastSysTime;
AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);
// HomeLocationData homeLocation;
// HomeLocationGet(&homeLocation);
// homeLocation.Latitude = 0;
// homeLocation.Longitude = 0;
// homeLocation.Altitude = 0;
// homeLocation.Be[0] = 26000;
// homeLocation.Be[1] = 400;
// homeLocation.Be[2] = 40000;
// homeLocation.Set = HOMELOCATION_SET_TRUE;
// HomeLocationSet(&homeLocation);
sensor_sim_type = MODEL_AIRPLANE;
// Main task loop
lastSysTime = xTaskGetTickCount();
uint32_t last_time = PIOS_DELAY_GetRaw();
while (1) {
PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
static int i;
i++;
if (i % 5000 == 0) {
//float dT = PIOS_DELAY_DiffuS(last_time) / 10.0e6;
//fprintf(stderr, "Sensor relative timing: %f\n", dT);
last_time = PIOS_DELAY_GetRaw();
}
sensors_count++;
switch(sensor_sim_type) {
case CONSTANT:
simulateConstant();
break;
case MODEL_AGNOSTIC:
simulateModelAgnostic();
break;
case MODEL_QUADCOPTER:
simulateModelQuadcopter();
break;
case MODEL_AIRPLANE:
simulateModelAirplane();
}
vTaskDelay(2 / portTICK_RATE_MS);
}
}
static void simulateConstant()
{
AccelsData accelsData; // Skip get as we set all the fields
accelsData.x = 0;
accelsData.y = 0;
accelsData.z = -GRAV;
accelsData.temperature = 0;
AccelsSet(&accelsData);
GyrosData gyrosData; // Skip get as we set all the fields
gyrosData.x = 0;
gyrosData.y = 0;
gyrosData.z = 0;
// Apply bias correction to the gyros
GyrosBiasData gyrosBias;
GyrosBiasGet(&gyrosBias);
gyrosData.x += gyrosBias.x;
gyrosData.y += gyrosBias.y;
gyrosData.z += gyrosBias.z;
GyrosSet(&gyrosData);
BaroAltitudeData baroAltitude;
BaroAltitudeGet(&baroAltitude);
baroAltitude.Altitude = 1;
BaroAltitudeSet(&baroAltitude);
GPSPositionData gpsPosition;
GPSPositionGet(&gpsPosition);
gpsPosition.Latitude = 0;
gpsPosition.Longitude = 0;
gpsPosition.Altitude = 0;
GPSPositionSet(&gpsPosition);
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
// and make it average zero (weakly)
MagnetometerData mag;
mag.x = 400;
mag.y = 0;
mag.z = 800;
MagnetometerSet(&mag);
}
static void simulateModelAgnostic()
{
float Rbe[3][3];
float q[4];
// Simulate accels based on current attitude
AttitudeActualData attitudeActual;
AttitudeActualGet(&attitudeActual);
q[0] = attitudeActual.q1;
q[1] = attitudeActual.q2;
q[2] = attitudeActual.q3;
q[3] = attitudeActual.q4;
Quaternion2R(q,Rbe);
AccelsData accelsData; // Skip get as we set all the fields
accelsData.x = -GRAV * Rbe[0][2];
accelsData.y = -GRAV * Rbe[1][2];
accelsData.z = -GRAV * Rbe[2][2];
accelsData.temperature = 30;
AccelsSet(&accelsData);
RateDesiredData rateDesired;
RateDesiredGet(&rateDesired);
GyrosData gyrosData; // Skip get as we set all the fields
gyrosData.x = rateDesired.Roll + rand_gauss();
gyrosData.y = rateDesired.Pitch + rand_gauss();
gyrosData.z = rateDesired.Yaw + rand_gauss();
// Apply bias correction to the gyros
GyrosBiasData gyrosBias;
GyrosBiasGet(&gyrosBias);
gyrosData.x += gyrosBias.x;
gyrosData.y += gyrosBias.y;
gyrosData.z += gyrosBias.z;
GyrosSet(&gyrosData);
BaroAltitudeData baroAltitude;
BaroAltitudeGet(&baroAltitude);
baroAltitude.Altitude = 1;
BaroAltitudeSet(&baroAltitude);
GPSPositionData gpsPosition;
GPSPositionGet(&gpsPosition);
gpsPosition.Latitude = 0;
gpsPosition.Longitude = 0;
gpsPosition.Altitude = 0;
GPSPositionSet(&gpsPosition);
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
// and make it average zero (weakly)
MagnetometerData mag;
mag.x = 400;
mag.y = 0;
mag.z = 800;
MagnetometerSet(&mag);
}
float thrustToDegs = 50;
bool overideAttitude = false;
static void simulateModelQuadcopter()
{
static double pos[3] = {0,0,0};
static double vel[3] = {0,0,0};
static double ned_accel[3] = {0,0,0};
static float q[4] = {1,0,0,0};
static float rpy[3] = {0,0,0}; // Low pass filtered actuator
static float baro_offset = 0.0f;
float Rbe[3][3];
const float ACTUATOR_ALPHA = 0.8;
const float MAX_THRUST = GRAV * 2;
const float K_FRICTION = 1;
const float GPS_PERIOD = 0.1;
const float MAG_PERIOD = 1.0 / 75.0;
const float BARO_PERIOD = 1.0 / 20.0;
static uint32_t last_time;
float dT = (PIOS_DELAY_DiffuS(last_time) / 1e6);
if(dT < 1e-3)
dT = 2e-3;
last_time = PIOS_DELAY_GetRaw();
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
ActuatorDesiredData actuatorDesired;
ActuatorDesiredGet(&actuatorDesired);
float thrust = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) ? actuatorDesired.Throttle * MAX_THRUST : 0;
if (thrust < 0)
thrust = 0;
if (thrust != thrust)
thrust = 0;
// float control_scaling = thrust * thrustToDegs;
// // In rad/s
// rpy[0] = control_scaling * actuatorDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
// rpy[1] = control_scaling * actuatorDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
// rpy[2] = control_scaling * actuatorDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
//
// GyrosData gyrosData; // Skip get as we set all the fields
// gyrosData.x = rpy[0] * 180 / M_PI + rand_gauss();
// gyrosData.y = rpy[1] * 180 / M_PI + rand_gauss();
// gyrosData.z = rpy[2] * 180 / M_PI + rand_gauss();
RateDesiredData rateDesired;
RateDesiredGet(&rateDesired);
rpy[0] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
rpy[1] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
rpy[2] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
GyrosData gyrosData; // Skip get as we set all the fields
gyrosData.x = rpy[0] + rand_gauss();
gyrosData.y = rpy[1] + rand_gauss();
gyrosData.z = rpy[2] + rand_gauss();
GyrosSet(&gyrosData);
// Predict the attitude forward in time
float qdot[4];
qdot[0] = (-q[1] * rpy[0] - q[2] * rpy[1] - q[3] * rpy[2]) * dT * M_PI / 180 / 2;
qdot[1] = (q[0] * rpy[0] - q[3] * rpy[1] + q[2] * rpy[2]) * dT * M_PI / 180 / 2;
qdot[2] = (q[3] * rpy[0] + q[0] * rpy[1] - q[1] * rpy[2]) * dT * M_PI / 180 / 2;
qdot[3] = (-q[2] * rpy[0] + q[1] * rpy[1] + q[0] * rpy[2]) * dT * M_PI / 180 / 2;
// Take a time step
q[0] = q[0] + qdot[0];
q[1] = q[1] + qdot[1];
q[2] = q[2] + qdot[2];
q[3] = q[3] + qdot[3];
float qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
q[0] = q[0] / qmag;
q[1] = q[1] / qmag;
q[2] = q[2] / qmag;
q[3] = q[3] / qmag;
if(overideAttitude){
AttitudeActualData attitudeActual;
AttitudeActualGet(&attitudeActual);
attitudeActual.q1 = q[0];
attitudeActual.q2 = q[1];
attitudeActual.q3 = q[2];
attitudeActual.q4 = q[3];
AttitudeActualSet(&attitudeActual);
}
static float wind[3] = {0,0,0};
wind[0] = wind[0] * 0.95 + rand_gauss() / 10.0;
wind[1] = wind[1] * 0.95 + rand_gauss() / 10.0;
wind[2] = wind[2] * 0.95 + rand_gauss() / 10.0;
Quaternion2R(q,Rbe);
// Make thrust negative as down is positive
ned_accel[0] = -thrust * Rbe[2][0];
ned_accel[1] = -thrust * Rbe[2][1];
// Gravity causes acceleration of 9.81 in the down direction
ned_accel[2] = -thrust * Rbe[2][2] + GRAV;
// Apply acceleration based on velocity
ned_accel[0] -= K_FRICTION * (vel[0] - wind[0]);
ned_accel[1] -= K_FRICTION * (vel[1] - wind[1]);
ned_accel[2] -= K_FRICTION * (vel[2] - wind[2]);
// Predict the velocity forward in time
vel[0] = vel[0] + ned_accel[0] * dT;
vel[1] = vel[1] + ned_accel[1] * dT;
vel[2] = vel[2] + ned_accel[2] * dT;
// Predict the position forward in time
pos[0] = pos[0] + vel[0] * dT;
pos[1] = pos[1] + vel[1] * dT;
pos[2] = pos[2] + vel[2] * dT;
// Simulate hitting ground
if(pos[2] > 0) {
pos[2] = 0;
vel[2] = 0;
ned_accel[2] = 0;
}
// Sensor feels gravity (when not acceleration in ned frame e.g. ned_accel[2] = 0)
ned_accel[2] -= 9.81;
// Transform the accels back in to body frame
AccelsData accelsData; // Skip get as we set all the fields
accelsData.x = ned_accel[0] * Rbe[0][0] + ned_accel[1] * Rbe[0][1] + ned_accel[2] * Rbe[0][2] + accel_bias[0];
accelsData.y = ned_accel[0] * Rbe[1][0] + ned_accel[1] * Rbe[1][1] + ned_accel[2] * Rbe[1][2] + accel_bias[1];
accelsData.z = ned_accel[0] * Rbe[2][0] + ned_accel[1] * Rbe[2][1] + ned_accel[2] * Rbe[2][2] + accel_bias[2];
accelsData.temperature = 30;
AccelsSet(&accelsData);
if(baro_offset == 0) {
// Hacky initialization
baro_offset = 50;// * rand_gauss();
} else {
// Very small drift process
baro_offset += rand_gauss() / 100;
}
// Update baro periodically
static uint32_t last_baro_time = 0;
if(PIOS_DELAY_DiffuS(last_baro_time) / 1.0e6 > BARO_PERIOD) {
BaroAltitudeData baroAltitude;
BaroAltitudeGet(&baroAltitude);
baroAltitude.Altitude = -pos[2] + baro_offset;
BaroAltitudeSet(&baroAltitude);
last_baro_time = PIOS_DELAY_GetRaw();
}
HomeLocationData homeLocation;
HomeLocationGet(&homeLocation);
static float gps_vel_drift[3] = {0,0,0};
gps_vel_drift[0] = gps_vel_drift[0] * 0.65 + rand_gauss() / 5.0;
gps_vel_drift[1] = gps_vel_drift[1] * 0.65 + rand_gauss() / 5.0;
gps_vel_drift[2] = gps_vel_drift[2] * 0.65 + rand_gauss() / 5.0;
// Update GPS periodically
static uint32_t last_gps_time = 0;
if(PIOS_DELAY_DiffuS(last_gps_time) / 1.0e6 > GPS_PERIOD) {
// Use double precision here as simulating what GPS produces
double T[3];
T[0] = homeLocation.Altitude+6.378137E6f * M_PI / 180.0;
T[1] = cos(homeLocation.Latitude / 10e6 * M_PI / 180.0f)*(homeLocation.Altitude+6.378137E6) * M_PI / 180.0;
T[2] = -1.0;
static float gps_drift[3] = {0,0,0};
gps_drift[0] = gps_drift[0] * 0.95 + rand_gauss() / 10.0;
gps_drift[1] = gps_drift[1] * 0.95 + rand_gauss() / 10.0;
gps_drift[2] = gps_drift[2] * 0.95 + rand_gauss() / 10.0;
GPSPositionData gpsPosition;
GPSPositionGet(&gpsPosition);
gpsPosition.Latitude = homeLocation.Latitude + ((pos[0] + gps_drift[0]) / T[0] * 10.0e6);
gpsPosition.Longitude = homeLocation.Longitude + ((pos[1] + gps_drift[1])/ T[1] * 10.0e6);
gpsPosition.Altitude = homeLocation.Altitude + ((pos[2] + gps_drift[2]) / T[2]);
gpsPosition.Groundspeed = sqrt(pow(vel[0] + gps_vel_drift[0],2) + pow(vel[1] + gps_vel_drift[1],2));
gpsPosition.Heading = 180 / M_PI * atan2(vel[1] + gps_vel_drift[1],vel[0] + gps_vel_drift[0]);
gpsPosition.Satellites = 7;
gpsPosition.PDOP = 1;
GPSPositionSet(&gpsPosition);
last_gps_time = PIOS_DELAY_GetRaw();
}
// Update GPS Velocity measurements
static uint32_t last_gps_vel_time = 1000; // Delay by a millisecond
if(PIOS_DELAY_DiffuS(last_gps_vel_time) / 1.0e6 > GPS_PERIOD) {
GPSVelocityData gpsVelocity;
GPSVelocityGet(&gpsVelocity);
gpsVelocity.North = vel[0] + gps_vel_drift[0];
gpsVelocity.East = vel[1] + gps_vel_drift[1];
gpsVelocity.Down = vel[2] + gps_vel_drift[2];
GPSVelocitySet(&gpsVelocity);
last_gps_vel_time = PIOS_DELAY_GetRaw();
}
// Update mag periodically
static uint32_t last_mag_time = 0;
if(PIOS_DELAY_DiffuS(last_mag_time) / 1.0e6 > MAG_PERIOD) {
MagnetometerData mag;
mag.x = homeLocation.Be[0] * Rbe[0][0] + homeLocation.Be[1] * Rbe[0][1] + homeLocation.Be[2] * Rbe[0][2];
mag.y = homeLocation.Be[0] * Rbe[1][0] + homeLocation.Be[1] * Rbe[1][1] + homeLocation.Be[2] * Rbe[1][2];
mag.z = homeLocation.Be[0] * Rbe[2][0] + homeLocation.Be[1] * Rbe[2][1] + homeLocation.Be[2] * Rbe[2][2];
// Run the offset compensation algorithm from the firmware
magOffsetEstimation(&mag);
MagnetometerSet(&mag);
last_mag_time = PIOS_DELAY_GetRaw();
}
AttitudeSimulatedData attitudeSimulated;
AttitudeSimulatedGet(&attitudeSimulated);
attitudeSimulated.q1 = q[0];
attitudeSimulated.q2 = q[1];
attitudeSimulated.q3 = q[2];
attitudeSimulated.q4 = q[3];
Quaternion2RPY(q,&attitudeSimulated.Roll);
attitudeSimulated.Position[0] = pos[0];
attitudeSimulated.Position[1] = pos[1];
attitudeSimulated.Position[2] = pos[2];
attitudeSimulated.Velocity[0] = vel[0];
attitudeSimulated.Velocity[1] = vel[1];
attitudeSimulated.Velocity[2] = vel[2];
AttitudeSimulatedSet(&attitudeSimulated);
}
/**
* This method performs a simple simulation of a quadcopter
*
* It takes in the ActuatorDesired command to rotate the aircraft and performs
* a simple kinetic model where the throttle increases the energy and drag decreases
* it. Changing altitude moves energy from kinetic to potential.
*
* 1. Update attitude based on ActuatorDesired
* 2. Update position based on velocity
*/
static void simulateModelAirplane()
{
static double pos[3] = {0,0,0};
static double vel[3] = {0,0,0};
static double ned_accel[3] = {0,0,0};
static float q[4] = {1,0,0,0};
static float rpy[3] = {0,0,0}; // Low pass filtered actuator
static float baro_offset = 0.0f;
float Rbe[3][3];
const float LIFT_SPEED = 8; // (m/s) where achieve lift for zero pitch
const float ACTUATOR_ALPHA = 0.8;
const float MAX_THRUST = 9.81 * 2;
const float K_FRICTION = 0.2;
const float GPS_PERIOD = 0.1;
const float MAG_PERIOD = 1.0 / 75.0;
const float BARO_PERIOD = 1.0 / 20.0;
const float ROLL_HEADING_COUPLING = 0.1; // (deg/s) heading change per deg of roll
const float PITCH_THRUST_COUPLING = 0.2; // (m/s^2) of forward acceleration per deg of pitch
static uint32_t last_time;
float dT = (PIOS_DELAY_DiffuS(last_time) / 1e6);
if(dT < 1e-3)
dT = 2e-3;
last_time = PIOS_DELAY_GetRaw();
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
ActuatorDesiredData actuatorDesired;
ActuatorDesiredGet(&actuatorDesired);
float thrust = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) ? actuatorDesired.Throttle * MAX_THRUST : 0;
if (thrust < 0)
thrust = 0;
if (thrust != thrust)
thrust = 0;
// float control_scaling = thrust * thrustToDegs;
// // In rad/s
// rpy[0] = control_scaling * actuatorDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
// rpy[1] = control_scaling * actuatorDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
// rpy[2] = control_scaling * actuatorDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
//
// GyrosData gyrosData; // Skip get as we set all the fields
// gyrosData.x = rpy[0] * 180 / M_PI + rand_gauss();
// gyrosData.y = rpy[1] * 180 / M_PI + rand_gauss();
// gyrosData.z = rpy[2] * 180 / M_PI + rand_gauss();
/**** 1. Update attitude ****/
RateDesiredData rateDesired;
RateDesiredGet(&rateDesired);
// Need to get roll angle for easy cross coupling
AttitudeActualData attitudeActual;
AttitudeActualGet(&attitudeActual);
double roll = attitudeActual.Roll;
double pitch = attitudeActual.Pitch;
rpy[0] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA;
rpy[1] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA;
rpy[2] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA;
rpy[2] += roll * ROLL_HEADING_COUPLING;
GyrosData gyrosData; // Skip get as we set all the fields
gyrosData.x = rpy[0] + rand_gauss();
gyrosData.y = rpy[1] + rand_gauss();
gyrosData.z = rpy[2] + rand_gauss();
GyrosSet(&gyrosData);
// Predict the attitude forward in time
float qdot[4];
qdot[0] = (-q[1] * rpy[0] - q[2] * rpy[1] - q[3] * rpy[2]) * dT * M_PI / 180 / 2;
qdot[1] = (q[0] * rpy[0] - q[3] * rpy[1] + q[2] * rpy[2]) * dT * M_PI / 180 / 2;
qdot[2] = (q[3] * rpy[0] + q[0] * rpy[1] - q[1] * rpy[2]) * dT * M_PI / 180 / 2;
qdot[3] = (-q[2] * rpy[0] + q[1] * rpy[1] + q[0] * rpy[2]) * dT * M_PI / 180 / 2;
// Take a time step
q[0] = q[0] + qdot[0];
q[1] = q[1] + qdot[1];
q[2] = q[2] + qdot[2];
q[3] = q[3] + qdot[3];
float qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
q[0] = q[0] / qmag;
q[1] = q[1] / qmag;
q[2] = q[2] / qmag;
q[3] = q[3] / qmag;
if(overideAttitude){
AttitudeActualData attitudeActual;
AttitudeActualGet(&attitudeActual);
attitudeActual.q1 = q[0];
attitudeActual.q2 = q[1];
attitudeActual.q3 = q[2];
attitudeActual.q4 = q[3];
AttitudeActualSet(&attitudeActual);
}
/**** 2. Update position based on velocity ****/
static float wind[3] = {0,0,0};
wind[0] = wind[0] * 0.95 + rand_gauss() / 10.0;
wind[1] = wind[1] * 0.95 + rand_gauss() / 10.0;
wind[2] = wind[2] * 0.95 + rand_gauss() / 10.0;
wind[0] = 0;
wind[1] = 0;
wind[2] = 0;
// Rbe takes a vector from body to earth. If we take (1,0,0)^T through this and then dot with airspeed
// we get forward airspeed
Quaternion2R(q,Rbe);
double airspeed[3] = {vel[0] - wind[0], vel[1] - wind[1], vel[2] - wind[2]};
double forwardAirspeed = Rbe[0][0] * airspeed[0] + Rbe[0][1] * airspeed[1] + Rbe[0][2] * airspeed[2];
double sidewaysAirspeed = Rbe[1][0] * airspeed[0] + Rbe[1][1] * airspeed[1] + Rbe[1][2] * airspeed[2];
double downwardAirspeed = Rbe[2][0] * airspeed[0] + Rbe[2][1] * airspeed[1] + Rbe[2][2] * airspeed[2];
/* Compute aerodynamic forces in body referenced frame. Later use more sophisticated equations */
/* TODO: This should become more accurate. Use the force equations to calculate lift from the */
/* various surfaces based on AoA and airspeed. From that compute torques and forces. For later */
double forces[3]; // X, Y, Z
forces[0] = thrust - pitch * PITCH_THRUST_COUPLING - forwardAirspeed * K_FRICTION; // Friction is applied in all directions in NED
forces[1] = 0 - sidewaysAirspeed * K_FRICTION * 100; // No side slip
forces[2] = GRAV * (forwardAirspeed - LIFT_SPEED) + downwardAirspeed * K_FRICTION * 100; // Stupidly simple, always have gravity lift when straight and level
// Negate force[2] as NED defines down as possitive, aircraft convention is Z up is positive (?)
ned_accel[0] = forces[0] * Rbe[0][0] + forces[1] * Rbe[1][0] - forces[2] * Rbe[2][0];
ned_accel[1] = forces[0] * Rbe[0][1] + forces[1] * Rbe[1][1] - forces[2] * Rbe[2][1];
ned_accel[2] = forces[0] * Rbe[0][2] + forces[1] * Rbe[1][2] - forces[2] * Rbe[2][2];
// Gravity causes acceleration of 9.81 in the down direction
ned_accel[2] += 9.81;
// Apply acceleration based on velocity
ned_accel[0] -= K_FRICTION * (vel[0] - wind[0]);
ned_accel[1] -= K_FRICTION * (vel[1] - wind[1]);
ned_accel[2] -= K_FRICTION * (vel[2] - wind[2]);
// Predict the velocity forward in time
vel[0] = vel[0] + ned_accel[0] * dT;
vel[1] = vel[1] + ned_accel[1] * dT;
vel[2] = vel[2] + ned_accel[2] * dT;
// Predict the position forward in time
pos[0] = pos[0] + vel[0] * dT;
pos[1] = pos[1] + vel[1] * dT;
pos[2] = pos[2] + vel[2] * dT;
// Simulate hitting ground
if(pos[2] > 0) {
pos[2] = 0;
vel[2] = 0;
ned_accel[2] = 0;
}
// Sensor feels gravity (when not acceleration in ned frame e.g. ned_accel[2] = 0)
ned_accel[2] -= GRAV;
// Transform the accels back in to body frame
AccelsData accelsData; // Skip get as we set all the fields
accelsData.x = ned_accel[0] * Rbe[0][0] + ned_accel[1] * Rbe[0][1] + ned_accel[2] * Rbe[0][2] + accel_bias[0];
accelsData.y = ned_accel[0] * Rbe[1][0] + ned_accel[1] * Rbe[1][1] + ned_accel[2] * Rbe[1][2] + accel_bias[1];
accelsData.z = ned_accel[0] * Rbe[2][0] + ned_accel[1] * Rbe[2][1] + ned_accel[2] * Rbe[2][2] + accel_bias[2];
accelsData.temperature = 30;
AccelsSet(&accelsData);
if(baro_offset == 0) {
// Hacky initialization
baro_offset = 50;// * rand_gauss();
} else {
// Very small drift process
baro_offset += rand_gauss() / 100;
}
// Update baro periodically
static uint32_t last_baro_time = 0;
if(PIOS_DELAY_DiffuS(last_baro_time) / 1.0e6 > BARO_PERIOD) {
BaroAltitudeData baroAltitude;
BaroAltitudeGet(&baroAltitude);
baroAltitude.Altitude = -pos[2] + baro_offset;
BaroAltitudeSet(&baroAltitude);
last_baro_time = PIOS_DELAY_GetRaw();
}
// Update baro airpseed periodically
static uint32_t last_airspeed_time = 0;
if(PIOS_DELAY_DiffuS(last_airspeed_time) / 1.0e6 > BARO_PERIOD) {
BaroAirspeedData baroAirspeed;
baroAirspeed.Connected = BAROAIRSPEED_CONNECTED_TRUE;
baroAirspeed.ZeroPoint = 0;
baroAirspeed.Airspeed = forwardAirspeed;
BaroAirspeedSet(&baroAirspeed);
last_airspeed_time = PIOS_DELAY_GetRaw();
}
HomeLocationData homeLocation;
HomeLocationGet(&homeLocation);
static float gps_vel_drift[3] = {0,0,0};
gps_vel_drift[0] = gps_vel_drift[0] * 0.65 + rand_gauss() / 5.0;
gps_vel_drift[1] = gps_vel_drift[1] * 0.65 + rand_gauss() / 5.0;
gps_vel_drift[2] = gps_vel_drift[2] * 0.65 + rand_gauss() / 5.0;
// Update GPS periodically
static uint32_t last_gps_time = 0;
if(PIOS_DELAY_DiffuS(last_gps_time) / 1.0e6 > GPS_PERIOD) {
// Use double precision here as simulating what GPS produces
double T[3];
T[0] = homeLocation.Altitude+6.378137E6f * M_PI / 180.0;
T[1] = cos(homeLocation.Latitude / 10e6 * M_PI / 180.0f)*(homeLocation.Altitude+6.378137E6) * M_PI / 180.0;
T[2] = -1.0;
static float gps_drift[3] = {0,0,0};
gps_drift[0] = gps_drift[0] * 0.95 + rand_gauss() / 10.0;
gps_drift[1] = gps_drift[1] * 0.95 + rand_gauss() / 10.0;
gps_drift[2] = gps_drift[2] * 0.95 + rand_gauss() / 10.0;
GPSPositionData gpsPosition;
GPSPositionGet(&gpsPosition);
gpsPosition.Latitude = homeLocation.Latitude + ((pos[0] + gps_drift[0]) / T[0] * 10.0e6);
gpsPosition.Longitude = homeLocation.Longitude + ((pos[1] + gps_drift[1])/ T[1] * 10.0e6);
gpsPosition.Altitude = homeLocation.Altitude + ((pos[2] + gps_drift[2]) / T[2]);
gpsPosition.Groundspeed = sqrt(pow(vel[0] + gps_vel_drift[0],2) + pow(vel[1] + gps_vel_drift[1],2));
gpsPosition.Heading = 180 / M_PI * atan2(vel[1] + gps_vel_drift[1],vel[0] + gps_vel_drift[0]);
gpsPosition.Satellites = 7;
gpsPosition.PDOP = 1;
GPSPositionSet(&gpsPosition);
last_gps_time = PIOS_DELAY_GetRaw();
}
// Update GPS Velocity measurements
static uint32_t last_gps_vel_time = 1000; // Delay by a millisecond
if(PIOS_DELAY_DiffuS(last_gps_vel_time) / 1.0e6 > GPS_PERIOD) {
GPSVelocityData gpsVelocity;
GPSVelocityGet(&gpsVelocity);
gpsVelocity.North = vel[0] + gps_vel_drift[0];
gpsVelocity.East = vel[1] + gps_vel_drift[1];
gpsVelocity.Down = vel[2] + gps_vel_drift[2];
GPSVelocitySet(&gpsVelocity);
last_gps_vel_time = PIOS_DELAY_GetRaw();
}
// Update mag periodically
static uint32_t last_mag_time = 0;
if(PIOS_DELAY_DiffuS(last_mag_time) / 1.0e6 > MAG_PERIOD) {
MagnetometerData mag;
mag.x = 100+homeLocation.Be[0] * Rbe[0][0] + homeLocation.Be[1] * Rbe[0][1] + homeLocation.Be[2] * Rbe[0][2];
mag.y = 100+homeLocation.Be[0] * Rbe[1][0] + homeLocation.Be[1] * Rbe[1][1] + homeLocation.Be[2] * Rbe[1][2];
mag.z = 100+homeLocation.Be[0] * Rbe[2][0] + homeLocation.Be[1] * Rbe[2][1] + homeLocation.Be[2] * Rbe[2][2];
magOffsetEstimation(&mag);
MagnetometerSet(&mag);
last_mag_time = PIOS_DELAY_GetRaw();
}
AttitudeSimulatedData attitudeSimulated;
AttitudeSimulatedGet(&attitudeSimulated);
attitudeSimulated.q1 = q[0];
attitudeSimulated.q2 = q[1];
attitudeSimulated.q3 = q[2];
attitudeSimulated.q4 = q[3];
Quaternion2RPY(q,&attitudeSimulated.Roll);
attitudeSimulated.Position[0] = pos[0];
attitudeSimulated.Position[1] = pos[1];
attitudeSimulated.Position[2] = pos[2];
attitudeSimulated.Velocity[0] = vel[0];
attitudeSimulated.Velocity[1] = vel[1];
attitudeSimulated.Velocity[2] = vel[2];
AttitudeSimulatedSet(&attitudeSimulated);
}
static float rand_gauss (void) {
float v1,v2,s;
do {
v1 = 2.0 * ((float) rand()/RAND_MAX) - 1;
v2 = 2.0 * ((float) rand()/RAND_MAX) - 1;
s = v1*v1 + v2*v2;
} while ( s >= 1.0 );
if (s == 0.0)
return 0.0;
else
return (v1*sqrt(-2.0 * log(s) / s));
}
/**
* Perform an update of the @ref MagBias based on
* Magnetometer Offset Cancellation: Theory and Implementation,
* revisited William Premerlani, October 14, 2011
*/
static void magOffsetEstimation(MagnetometerData *mag)
{
#if 0
RevoCalibrationData cal;
RevoCalibrationGet(&cal);
// Constants, to possibly go into a UAVO
static const float MIN_NORM_DIFFERENCE = 50;
static float B2[3] = {0, 0, 0};
MagBiasData magBias;
MagBiasGet(&magBias);
// Remove the current estimate of the bias
mag->x -= magBias.x;
mag->y -= magBias.y;
mag->z -= magBias.z;
// First call
if (B2[0] == 0 && B2[1] == 0 && B2[2] == 0) {
B2[0] = mag->x;
B2[1] = mag->y;
B2[2] = mag->z;
return;
}
float B1[3] = {mag->x, mag->y, mag->z};
float norm_diff = sqrtf(powf(B2[0] - B1[0],2) + powf(B2[1] - B1[1],2) + powf(B2[2] - B1[2],2));
if (norm_diff > MIN_NORM_DIFFERENCE) {
float norm_b1 = sqrtf(B1[0]*B1[0] + B1[1]*B1[1] + B1[2]*B1[2]);
float norm_b2 = sqrtf(B2[0]*B2[0] + B2[1]*B2[1] + B2[2]*B2[2]);
float scale = cal.MagBiasNullingRate * (norm_b2 - norm_b1) / norm_diff;
float b_error[3] = {(B2[0] - B1[0]) * scale, (B2[1] - B1[1]) * scale, (B2[2] - B1[2]) * scale};
magBias.x += b_error[0];
magBias.y += b_error[1];
magBias.z += b_error[2];
MagBiasSet(&magBias);
// Store this value to compare against next update
B2[0] = B1[0]; B2[1] = B1[1]; B2[2] = B1[2];
}
#else
HomeLocationData homeLocation;
HomeLocationGet(&homeLocation);
AttitudeActualData attitude;
AttitudeActualGet(&attitude);
MagBiasData magBias;
MagBiasGet(&magBias);
// Remove the current estimate of the bias
mag->x -= magBias.x;
mag->y -= magBias.y;
mag->z -= magBias.z;
const float Rxy = sqrtf(homeLocation.Be[0]*homeLocation.Be[0] + homeLocation.Be[1]*homeLocation.Be[1]);
const float Rz = homeLocation.Be[2];
const float rate = 0.01;
float R[3][3];
float B_e[3];
float xy[2];
float delta[3];
// Get the rotation matrix
Quaternion2R(&attitude.q1, R);
// Rotate the mag into the NED frame
B_e[0] = R[0][0] * mag->x + R[1][0] * mag->y + R[2][0] * mag->z;
B_e[1] = R[0][1] * mag->x + R[1][1] * mag->y + R[2][1] * mag->z;
B_e[2] = R[0][2] * mag->x + R[1][2] * mag->y + R[2][2] * mag->z;
float cy = cosf(attitude.Yaw * M_PI / 180.0f);
float sy = sinf(attitude.Yaw * M_PI / 180.0f);
xy[0] = cy * B_e[0] + sy * B_e[1];
xy[1] = -sy * B_e[0] + cy * B_e[1];
float xy_norm = sqrtf(xy[0]*xy[0] + xy[1]*xy[1]);
delta[0] = -rate * (xy[0] / xy_norm * Rxy - xy[0]);
delta[1] = -rate * (xy[1] / xy_norm * Rxy - xy[1]);
delta[2] = -rate * (Rz - B_e[2]);
magBias.x += delta[0];
magBias.y += delta[1];
magBias.z += delta[2];
MagBiasSet(&magBias);
#endif
}
/**
* @}
* @}
*/