1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-09 20:46:07 +01:00
LibrePilot/ground/openpilotgcs/src/plugins/config/configrevowidget.cpp
James Cotton 8ded4618ef Only perform six point calibration on the mag. This code is #ifdef'd out
because we might still want the option or need it for factory calibration.  I
usually find the accel scale is reproducibly at 0.98.
2012-06-13 12:28:59 -05:00

801 lines
29 KiB
C++

/**
******************************************************************************
*
* @file ConfigRevoWidget.h
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @addtogroup GCSPlugins GCS Plugins
* @{
* @addtogroup ConfigPlugin Config Plugin
* @{
* @brief The Configuration Gadget used to update settings in the firmware
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "configrevowidget.h"
#include "math.h"
#include <QDebug>
#include <QTimer>
#include <QStringList>
#include <QtGui/QWidget>
#include <QtGui/QTextEdit>
#include <QtGui/QVBoxLayout>
#include <QtGui/QPushButton>
#include <QMessageBox>
#include <QThread>
#include <QErrorMessage>
#include <iostream>
#include <QDesktopServices>
#include <QUrl>
#include <revocalibration.h>
#include <homelocation.h>
#include <accels.h>
#include <gyros.h>
#include <magnetometer.h>
#define GRAVITY 9.81f
#include "assertions.h"
#include "calibration.h"
#define sign(x) ((x < 0) ? -1 : 1)
#define SIX_POINT_CAL_ACCEL 0
const double ConfigRevoWidget::maxVarValue = 0.1;
// *****************
class Thread : public QThread
{
public:
static void usleep(unsigned long usecs)
{
QThread::usleep(usecs);
}
};
// *****************
ConfigRevoWidget::ConfigRevoWidget(QWidget *parent) :
ConfigTaskWidget(parent),
collectingData(false),
position(-1),
m_ui(new Ui_RevoSensorsWidget())
{
m_ui->setupUi(this);
// Initialization of the Paper plane widget
m_ui->sixPointsHelp->setScene(new QGraphicsScene(this));
paperplane = new QGraphicsSvgItem();
paperplane->setSharedRenderer(new QSvgRenderer());
paperplane->renderer()->load(QString(":/configgadget/images/paper-plane.svg"));
paperplane->setElementId("plane-horizontal");
m_ui->sixPointsHelp->scene()->addItem(paperplane);
m_ui->sixPointsHelp->setSceneRect(paperplane->boundingRect());
// Initialization of the Revo sensor noise bargraph graph
m_ui->ahrsBargraph->setScene(new QGraphicsScene(this));
QSvgRenderer *renderer = new QSvgRenderer();
ahrsbargraph = new QGraphicsSvgItem();
renderer->load(QString(":/configgadget/images/ahrs-calib.svg"));
ahrsbargraph->setSharedRenderer(renderer);
ahrsbargraph->setElementId("background");
ahrsbargraph->setObjectName("background");
m_ui->ahrsBargraph->scene()->addItem(ahrsbargraph);
m_ui->ahrsBargraph->setSceneRect(ahrsbargraph->boundingRect());
// Initialize the 9 bargraph values:
QMatrix lineMatrix = renderer->matrixForElement("accel_x");
QRectF rect = lineMatrix.mapRect(renderer->boundsOnElement("accel_x"));
qreal startX = rect.x();
qreal startY = rect.y()+ rect.height();
// maxBarHeight will be used for scaling it later.
maxBarHeight = rect.height();
// Then once we have the initial location, we can put it
// into a QGraphicsSvgItem which we will display at the same
// place: we do this so that the heading scale can be clipped to
// the compass dial region.
accel_x = new QGraphicsSvgItem();
accel_x->setSharedRenderer(renderer);
accel_x->setElementId("accel_x");
m_ui->ahrsBargraph->scene()->addItem(accel_x);
accel_x->setPos(startX, startY);
accel_x->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("accel_y");
rect = lineMatrix.mapRect(renderer->boundsOnElement("accel_y"));
startX = rect.x();
startY = rect.y()+ rect.height();
accel_y = new QGraphicsSvgItem();
accel_y->setSharedRenderer(renderer);
accel_y->setElementId("accel_y");
m_ui->ahrsBargraph->scene()->addItem(accel_y);
accel_y->setPos(startX,startY);
accel_y->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("accel_z");
rect = lineMatrix.mapRect(renderer->boundsOnElement("accel_z"));
startX = rect.x();
startY = rect.y()+ rect.height();
accel_z = new QGraphicsSvgItem();
accel_z->setSharedRenderer(renderer);
accel_z->setElementId("accel_z");
m_ui->ahrsBargraph->scene()->addItem(accel_z);
accel_z->setPos(startX,startY);
accel_z->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("gyro_x");
rect = lineMatrix.mapRect(renderer->boundsOnElement("gyro_x"));
startX = rect.x();
startY = rect.y()+ rect.height();
gyro_x = new QGraphicsSvgItem();
gyro_x->setSharedRenderer(renderer);
gyro_x->setElementId("gyro_x");
m_ui->ahrsBargraph->scene()->addItem(gyro_x);
gyro_x->setPos(startX,startY);
gyro_x->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("gyro_y");
rect = lineMatrix.mapRect(renderer->boundsOnElement("gyro_y"));
startX = rect.x();
startY = rect.y()+ rect.height();
gyro_y = new QGraphicsSvgItem();
gyro_y->setSharedRenderer(renderer);
gyro_y->setElementId("gyro_y");
m_ui->ahrsBargraph->scene()->addItem(gyro_y);
gyro_y->setPos(startX,startY);
gyro_y->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("gyro_z");
rect = lineMatrix.mapRect(renderer->boundsOnElement("gyro_z"));
startX = rect.x();
startY = rect.y()+ rect.height();
gyro_z = new QGraphicsSvgItem();
gyro_z->setSharedRenderer(renderer);
gyro_z->setElementId("gyro_z");
m_ui->ahrsBargraph->scene()->addItem(gyro_z);
gyro_z->setPos(startX,startY);
gyro_z->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("mag_x");
rect = lineMatrix.mapRect(renderer->boundsOnElement("mag_x"));
startX = rect.x();
startY = rect.y()+ rect.height();
mag_x = new QGraphicsSvgItem();
mag_x->setSharedRenderer(renderer);
mag_x->setElementId("mag_x");
m_ui->ahrsBargraph->scene()->addItem(mag_x);
mag_x->setPos(startX,startY);
mag_x->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("mag_y");
rect = lineMatrix.mapRect(renderer->boundsOnElement("mag_y"));
startX = rect.x();
startY = rect.y()+ rect.height();
mag_y = new QGraphicsSvgItem();
mag_y->setSharedRenderer(renderer);
mag_y->setElementId("mag_y");
m_ui->ahrsBargraph->scene()->addItem(mag_y);
mag_y->setPos(startX,startY);
mag_y->setTransform(QTransform::fromScale(1,0),true);
lineMatrix = renderer->matrixForElement("mag_z");
rect = lineMatrix.mapRect(renderer->boundsOnElement("mag_z"));
startX = rect.x();
startY = rect.y()+ rect.height();
mag_z = new QGraphicsSvgItem();
mag_z->setSharedRenderer(renderer);
mag_z->setElementId("mag_z");
m_ui->ahrsBargraph->scene()->addItem(mag_z);
mag_z->setPos(startX,startY);
mag_z->setTransform(QTransform::fromScale(1,0),true);
// Connect the signals
connect(m_ui->accelBiasStart, SIGNAL(clicked()), this, SLOT(launchAccelBiasCalibration()));
RevoCalibration * revoCalibration = RevoCalibration::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
connect(revoCalibration, SIGNAL(objectUpdated(UAVObject*)), this, SLOT(refreshValues()));
connect(m_ui->ahrsSettingsSaveRAM, SIGNAL(clicked()), this, SLOT(SettingsToRAM()));
connect(m_ui->ahrsSettingsSaveSD, SIGNAL(clicked()), this, SLOT(SettingsToFlash()));
connect(m_ui->sixPointsStart, SIGNAL(clicked()), this, SLOT(sixPointCalibrationMode()));
connect(m_ui->sixPointsSave, SIGNAL(clicked()), this, SLOT(savePositionData()));
// Leave this timer permanently connected. The timer itself is started and stopped.
connect(&progressBarTimer, SIGNAL(timeout()), this, SLOT(incrementProgress()));
// Order is important: 1st request the settings (it will also enable the controls)
// then explicitely disable them. They will be re-enabled right afterwards by the
// configgadgetwidget if the autopilot is actually connected.
refreshValues();
// when the AHRS Widget is instanciated, the autopilot is always connected // enableControls(false);
connect(parent, SIGNAL(autopilotConnected()),this, SLOT(onAutopilotConnect()));
connect(parent, SIGNAL(autopilotDisconnected()), this, SLOT(onAutopilotDisconnect()));
// Connect the help button
connect(m_ui->ahrsHelp, SIGNAL(clicked()), this, SLOT(openHelp()));
}
ConfigRevoWidget::~ConfigRevoWidget()
{
// Do nothing
}
void ConfigRevoWidget::showEvent(QShowEvent *event)
{
Q_UNUSED(event)
// Thit fitInView method should only be called now, once the
// widget is shown, otherwise it cannot compute its values and
// the result is usually a ahrsbargraph that is way too small.
m_ui->ahrsBargraph->fitInView(ahrsbargraph, Qt::KeepAspectRatio);
m_ui->sixPointsHelp->fitInView(paperplane,Qt::KeepAspectRatio);
}
void ConfigRevoWidget::resizeEvent(QResizeEvent *event)
{
Q_UNUSED(event)
m_ui->ahrsBargraph->fitInView(ahrsbargraph, Qt::KeepAspectRatio);
m_ui->sixPointsHelp->fitInView(paperplane,Qt::KeepAspectRatio);
}
void ConfigRevoWidget::enableControls(bool enable)
{
//m_ui->ahrsSettingsSaveRAM->setEnabled(enable);
m_ui->ahrsSettingsSaveSD->setEnabled(enable);
}
/**
Starts an accelerometer bias calibration.
*/
void ConfigRevoWidget::launchAccelBiasCalibration()
{
m_ui->accelBiasStart->setEnabled(false);
m_ui->accelBiasProgress->setValue(0);
RevoCalibration * revoCalibration = RevoCalibration::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData();
revoCalibrationData.BiasCorrectedRaw = RevoCalibration::BIASCORRECTEDRAW_FALSE;
revoCalibration->setData(revoCalibrationData);
revoCalibration->updated();
accel_accum_x.clear();
accel_accum_y.clear();
accel_accum_z.clear();
/* Need to get as many AttitudeRaw updates as possible */
Accels * accels = Accels::GetInstance(getObjectManager());
Q_ASSERT(accels);
initialMdata = accels->getMetadata();
UAVObject::Metadata mdata = initialMdata;
UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC);
mdata.flightTelemetryUpdatePeriod = 100;
accels->setMetadata(mdata);
// Now connect to the accels and mag updates, gather for 100 samples
collectingData = true;
connect(accels, SIGNAL(objectUpdated(UAVObject*)), this, SLOT(accelBiasattitudeRawUpdated(UAVObject*)));
}
/**
Updates the accel bias raw values
*/
void ConfigRevoWidget::accelBiasattitudeRawUpdated(UAVObject *obj)
{
Q_UNUSED(obj);
Accels * accels = Accels::GetInstance(getObjectManager());
Q_ASSERT(accels);
Accels::DataFields accelsData = accels->getData();
// This is necessary to prevent a race condition on disconnect signal and another update
if (collectingData == true) {
accel_accum_x.append(accelsData.x);
accel_accum_y.append(accelsData.y);
accel_accum_z.append(accelsData.z);
}
m_ui->accelBiasProgress->setValue(m_ui->accelBiasProgress->value()+1);
if(accel_accum_x.size() >= 100 && collectingData == true) {
collectingData = false;
disconnect(accels,SIGNAL(objectUpdated(UAVObject*)),this,SLOT(accelBiasattitudeRawUpdated(UAVObject*)));
m_ui->accelBiasStart->setEnabled(true);
RevoCalibration * revoCalibration = RevoCalibration::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData();
revoCalibrationData.BiasCorrectedRaw = RevoCalibration::BIASCORRECTEDRAW_TRUE;
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_X] -= listMean(accel_accum_x);
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Y] -= listMean(accel_accum_y);
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Z] -= GRAVITY + listMean(accel_accum_z);
revoCalibration->setData(revoCalibrationData);
revoCalibration->updated();
accels->setMetadata(initialMdata);
}
}
/**
Increment progress bar for noise measurements (not really based on feedback)
*/
void ConfigRevoWidget::incrementProgress()
{
m_ui->calibProgress->setValue(m_ui->calibProgress->value()+1);
if (m_ui->calibProgress->value() >= m_ui->calibProgress->maximum()) {
progressBarTimer.stop();
RevoCalibration * revoCalibration = RevoCalibration::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
disconnect(revoCalibration, SIGNAL(objectUpdated(UAVObject*)), this, SLOT(noiseMeasured()));
collectingData = false;
QErrorMessage err(this);
err.showMessage("Noise measurement timed out. State undetermined. Please power cycle.");
err.exec();
}
}
void ConfigRevoWidget::sensorsUpdated(UAVObject * obj)
{
QMutexLocker lock(&attitudeRawUpdateLock);
// This is necessary to prevent a race condition on disconnect signal and another update
if (collectingData == true) {
if( obj->getObjID() == Accels::OBJID ) {
#ifdef SIX_POINT_CAL_ACCEL
Accels * accels = Accels::GetInstance(getObjectManager());
Q_ASSERT(accels);
Accels::DataFields accelsData = accels->getData();
accel_accum_x.append(accelsData.x);
accel_accum_y.append(accelsData.y);
accel_accum_z.append(accelsData.z);
#endif
} else if( obj->getObjID() == Magnetometer::OBJID ) {
qDebug() << "Mag";
Magnetometer * mag = Magnetometer::GetInstance(getObjectManager());
Q_ASSERT(mag);
Magnetometer::DataFields magData = mag->getData();
mag_accum_x.append(magData.x);
mag_accum_y.append(magData.y);
mag_accum_z.append(magData.z);
} else {
Q_ASSERT(0);
}
}
#ifdef SIX_POINT_CAL_ACCEL
if(accel_accum_x.size() >= 20 && mag_accum_x.size() >= 20 && collectingData == true) {
#else
if(mag_accum_x.size() >= 20 && collectingData == true) {
#endif
collectingData = false;
Accels * accels = Accels::GetInstance(getObjectManager());
Q_ASSERT(accels);
Magnetometer * mag = Magnetometer::GetInstance(getObjectManager());
Q_ASSERT(mag);
disconnect(accels,SIGNAL(objectUpdated(UAVObject*)),this,SLOT(sensorsUpdated(UAVObject*)));
disconnect(mag,SIGNAL(objectUpdated(UAVObject*)),this,SLOT(sensorsUpdated(UAVObject*)));
m_ui->sixPointsSave->setEnabled(true);
#ifdef SIX_POINT_CAL_ACCEL
accel_data_x[position] = listMean(accel_accum_x);
accel_data_y[position] = listMean(accel_accum_y);
accel_data_z[position] = listMean(accel_accum_z);
#endif
mag_data_x[position] = listMean(mag_accum_x);
mag_data_y[position] = listMean(mag_accum_y);
mag_data_z[position] = listMean(mag_accum_z);
position = (position + 1) % 6;
if(position == 1) {
m_ui->sixPointCalibInstructions->append("Place with left side down and click save position...");
displayPlane("plane-left");
}
if(position == 2) {
m_ui->sixPointCalibInstructions->append("Place upside down and click save position...");
displayPlane("plane-flip");
}
if(position == 3) {
m_ui->sixPointCalibInstructions->append("Place with right side down and click save position...");
displayPlane("plane-right");
}
if(position == 4) {
m_ui->sixPointCalibInstructions->append("Place with nose up and click save position...");
displayPlane("plane-up");
}
if(position == 5) {
m_ui->sixPointCalibInstructions->append("Place with nose down and click save position...");
displayPlane("plane-down");
}
if(position == 0) {
computeScaleBias();
m_ui->sixPointsStart->setEnabled(true);
m_ui->sixPointsSave->setEnabled(false);
/* Cleanup original settings */
accels->setMetadata(initialMdata);
mag->setMetadata(initialMdata);
}
}
}
/**
* Saves the data from the aircraft in one of six positions
*/
void ConfigRevoWidget::savePositionData()
{
QMutexLocker lock(&attitudeRawUpdateLock);
m_ui->sixPointsSave->setEnabled(false);
accel_accum_x.clear();
accel_accum_y.clear();
accel_accum_z.clear();
mag_accum_x.clear();
mag_accum_y.clear();
mag_accum_z.clear();
gyro_accum_x.clear();
gyro_accum_y.clear();
gyro_accum_z.clear();
collectingData = true;
Accels * accels = Accels::GetInstance(getObjectManager());
Q_ASSERT(accels);
Magnetometer * mag = Magnetometer::GetInstance(getObjectManager());
Q_ASSERT(mag);
connect(accels, SIGNAL(objectUpdated(UAVObject*)), this, SLOT(sensorsUpdated(UAVObject*)));
connect(mag, SIGNAL(objectUpdated(UAVObject*)), this, SLOT(sensorsUpdated(UAVObject*)));
m_ui->sixPointCalibInstructions->append("Hold...");
}
int LinearEquationsSolving(int nDim, double* pfMatr, double* pfVect, double* pfSolution)
{
double fMaxElem;
double fAcc;
int i , j, k, m;
for(k=0; k<(nDim-1); k++) // base row of matrix
{
// search of line with max element
fMaxElem = fabs( pfMatr[k*nDim + k] );
m = k;
for(i=k+1; i<nDim; i++)
{
if(fMaxElem < fabs(pfMatr[i*nDim + k]) )
{
fMaxElem = pfMatr[i*nDim + k];
m = i;
}
}
// permutation of base line (index k) and max element line(index m)
if(m != k)
{
for(i=k; i<nDim; i++)
{
fAcc = pfMatr[k*nDim + i];
pfMatr[k*nDim + i] = pfMatr[m*nDim + i];
pfMatr[m*nDim + i] = fAcc;
}
fAcc = pfVect[k];
pfVect[k] = pfVect[m];
pfVect[m] = fAcc;
}
if( pfMatr[k*nDim + k] == 0.) return 0; // needs improvement !!!
// triangulation of matrix with coefficients
for(j=(k+1); j<nDim; j++) // current row of matrix
{
fAcc = - pfMatr[j*nDim + k] / pfMatr[k*nDim + k];
for(i=k; i<nDim; i++)
{
pfMatr[j*nDim + i] = pfMatr[j*nDim + i] + fAcc*pfMatr[k*nDim + i];
}
pfVect[j] = pfVect[j] + fAcc*pfVect[k]; // free member recalculation
}
}
for(k=(nDim-1); k>=0; k--)
{
pfSolution[k] = pfVect[k];
for(i=(k+1); i<nDim; i++)
{
pfSolution[k] -= (pfMatr[k*nDim + i]*pfSolution[i]);
}
pfSolution[k] = pfSolution[k] / pfMatr[k*nDim + k];
}
return 1;
}
int SixPointInConstFieldCal( double ConstMag, double x[6], double y[6], double z[6], double S[3], double b[3] )
{
int i;
double A[5][5];
double f[5], c[5];
double xp, yp, zp, Sx;
// Fill in matrix A -
// write six difference-in-magnitude equations of the form
// Sx^2(x2^2-x1^2) + 2*Sx*bx*(x2-x1) + Sy^2(y2^2-y1^2) + 2*Sy*by*(y2-y1) + Sz^2(z2^2-z1^2) + 2*Sz*bz*(z2-z1) = 0
// or in other words
// 2*Sx*bx*(x2-x1)/Sx^2 + Sy^2(y2^2-y1^2)/Sx^2 + 2*Sy*by*(y2-y1)/Sx^2 + Sz^2(z2^2-z1^2)/Sx^2 + 2*Sz*bz*(z2-z1)/Sx^2 = (x1^2-x2^2)
for (i=0;i<5;i++){
A[i][0] = 2.0 * (x[i+1] - x[i]);
A[i][1] = y[i+1]*y[i+1] - y[i]*y[i];
A[i][2] = 2.0 * (y[i+1] - y[i]);
A[i][3] = z[i+1]*z[i+1] - z[i]*z[i];
A[i][4] = 2.0 * (z[i+1] - z[i]);
f[i] = x[i]*x[i] - x[i+1]*x[i+1];
}
// solve for c0=bx/Sx, c1=Sy^2/Sx^2; c2=Sy*by/Sx^2, c3=Sz^2/Sx^2, c4=Sz*bz/Sx^2
if ( !LinearEquationsSolving( 5, (double *)A, f, c) ) return 0;
// use one magnitude equation and c's to find Sx - doesn't matter which - all give the same answer
xp = x[0]; yp = y[0]; zp = z[0];
Sx = sqrt(ConstMag*ConstMag / (xp*xp + 2*c[0]*xp + c[0]*c[0] + c[1]*yp*yp + 2*c[2]*yp + c[2]*c[2]/c[1] + c[3]*zp*zp + 2*c[4]*zp + c[4]*c[4]/c[3]));
S[0] = Sx;
b[0] = Sx*c[0];
S[1] = sqrt(c[1]*Sx*Sx);
b[1] = c[2]*Sx*Sx/S[1];
S[2] = sqrt(c[3]*Sx*Sx);
b[2] = c[4]*Sx*Sx/S[2];
return 1;
}
void ConfigRevoWidget::computeScaleBias()
{
double S[3], b[3];
double Be_lenght;
RevoCalibration * revoCalibration = RevoCalibration::GetInstance(getObjectManager());
HomeLocation * homeLocation = HomeLocation::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
Q_ASSERT(homeLocation);
RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData();
HomeLocation::DataFields homeLocationData = homeLocation->getData();
#ifdef SIX_POINT_CAL_ACCEL
// Calibration accel
SixPointInConstFieldCal( homeLocationData.g_e, accel_data_x, accel_data_y, accel_data_z, S, b);
revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_X] = fabs(S[0]);
revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_Y] = fabs(S[1]);
revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_Z] = fabs(S[2]);
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_X] = -sign(S[0]) * b[0];
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Y] = -sign(S[1]) * b[1];
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Z] = -sign(S[2]) * b[2];
#endif
// Calibration mag
Be_lenght = sqrt(pow(homeLocationData.Be[0],2)+pow(homeLocationData.Be[1],2)+pow(homeLocationData.Be[2],2));
SixPointInConstFieldCal( Be_lenght, mag_data_x, mag_data_y, mag_data_z, S, b);
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_X] = fabs(S[0]);
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Y] = fabs(S[1]);
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Z] = fabs(S[2]);
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X] = -sign(S[0]) * b[0];
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y] = -sign(S[1]) * b[1];
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z] = -sign(S[2]) * b[2];
revoCalibration->setData(revoCalibrationData);
position = -1; //set to run again
#ifdef SIX_POINT_CAL_ACCEL
m_ui->sixPointCalibInstructions->append("Computed accel and mag scale and bias...");
#else
m_ui->sixPointCalibInstructions->append("Computed mag scale and bias...");
#endif
}
/**
Six point calibration mode
*/
void ConfigRevoWidget::sixPointCalibrationMode()
{
RevoCalibration * revoCalibration = RevoCalibration::GetInstance(getObjectManager());
HomeLocation * homeLocation = HomeLocation::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
Q_ASSERT(homeLocation);
RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData();
HomeLocation::DataFields homeLocationData = homeLocation->getData();
//check if Homelocation is set
if(!homeLocationData.Set)
{
QMessageBox msgBox;
msgBox.setInformativeText(tr("<p>HomeLocation not SET.</p><p>Please set your HomeLocation and try again. Aborting calibration!</p>"));
msgBox.setStandardButtons(QMessageBox::Ok);
msgBox.setDefaultButton(QMessageBox::Ok);
msgBox.setIcon(QMessageBox::Information);
msgBox.exec();
return;
}
#ifdef SIX_POINT_CAL_ACCEL
// Calibration accel
revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_X] = 1;
revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_Y] = 1;
revoCalibrationData.accel_scale[RevoCalibration::ACCEL_SCALE_Z] = 1;
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_X] = 0;
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Y] = 0;
revoCalibrationData.accel_bias[RevoCalibration::ACCEL_BIAS_Z] = 0;
accel_accum_x.clear();
accel_accum_y.clear();
accel_accum_z.clear();
#endif
// Calibration mag
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_X] = 1;
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Y] = 1;
revoCalibrationData.mag_scale[RevoCalibration::MAG_SCALE_Z] = 1;
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X] = 0;
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y] = 0;
revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z] = 0;
revoCalibration->setData(revoCalibrationData);
Thread::usleep(100000);
gyro_accum_x.clear();
gyro_accum_y.clear();
gyro_accum_z.clear();
mag_accum_x.clear();
mag_accum_y.clear();
mag_accum_z.clear();
/* Need to get as many accel and mag updates as possible */
Accels * accels = Accels::GetInstance(getObjectManager());
Q_ASSERT(accels);
Magnetometer * mag = Magnetometer::GetInstance(getObjectManager());
Q_ASSERT(mag);
initialMdata = accels->getMetadata();
UAVObject::Metadata mdata = initialMdata;
UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC);
mdata.flightTelemetryUpdatePeriod = 100;
accels->setMetadata(mdata);
mdata = mag->getMetadata();
UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC);
mdata.flightTelemetryUpdatePeriod = 100;
mag->setMetadata(mdata);
/* Show instructions and enable controls */
m_ui->sixPointCalibInstructions->clear();
m_ui->sixPointCalibInstructions->append("Place horizontally and click save position...");
displayPlane("plane-horizontal");
m_ui->sixPointsStart->setEnabled(false);
m_ui->sixPointsSave->setEnabled(true);
position = 0;
qDebug() << "Starting";
}
/**
Rotate the paper plane
*/
void ConfigRevoWidget::displayPlane(QString elementID)
{
paperplane->setElementId(elementID);
m_ui->sixPointsHelp->setSceneRect(paperplane->boundingRect());
m_ui->sixPointsHelp->fitInView(paperplane,Qt::KeepAspectRatio);
}
/**
Draws the sensor variances bargraph
*/
void ConfigRevoWidget::drawVariancesGraph()
{
RevoCalibration * revoCalibration = RevoCalibration::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData();
// The expected range is from 1E-6 to 1E-1
double steps = 6; // 6 bars on the graph
float accel_x_var = -1/steps*(1+steps+log10(revoCalibrationData.accel_var[RevoCalibration::ACCEL_VAR_X]));
accel_x->setTransform(QTransform::fromScale(1,accel_x_var),false);
float accel_y_var = -1/steps*(1+steps+log10(revoCalibrationData.accel_var[RevoCalibration::ACCEL_VAR_Y]));
accel_y->setTransform(QTransform::fromScale(1,accel_y_var),false);
float accel_z_var = -1/steps*(1+steps+log10(revoCalibrationData.accel_var[RevoCalibration::ACCEL_VAR_Z]));
accel_z->setTransform(QTransform::fromScale(1,accel_z_var),false);
float gyro_x_var = -1/steps*(1+steps+log10(revoCalibrationData.gyro_var[RevoCalibration::GYRO_VAR_X]));
gyro_x->setTransform(QTransform::fromScale(1,gyro_x_var),false);
float gyro_y_var = -1/steps*(1+steps+log10(revoCalibrationData.gyro_var[RevoCalibration::GYRO_VAR_Y]));
gyro_y->setTransform(QTransform::fromScale(1,gyro_y_var),false);
float gyro_z_var = -1/steps*(1+steps+log10(revoCalibrationData.gyro_var[RevoCalibration::GYRO_VAR_Z]));
gyro_z->setTransform(QTransform::fromScale(1,gyro_z_var),false);
// Scale by 1e-3 because mag vars are much higher.
float mag_x_var = -1/steps*(1+steps+log10(1e-3*revoCalibrationData.mag_var[RevoCalibration::MAG_VAR_X]));
mag_x->setTransform(QTransform::fromScale(1,mag_x_var),false);
float mag_y_var = -1/steps*(1+steps+log10(1e-3*revoCalibrationData.mag_var[RevoCalibration::MAG_VAR_Y]));
mag_y->setTransform(QTransform::fromScale(1,mag_y_var),false);
float mag_z_var = -1/steps*(1+steps+log10(1e-3*revoCalibrationData.mag_var[RevoCalibration::MAG_VAR_Z]));
mag_z->setTransform(QTransform::fromScale(1,mag_z_var),false);
}
/**
Request current settings from the AHRS
*/
void ConfigRevoWidget::refreshValues()
{
drawVariancesGraph();
m_ui->ahrsCalibStart->setEnabled(true);
m_ui->sixPointsStart->setEnabled(true);
m_ui->accelBiasStart->setEnabled(true);
m_ui->startDriftCalib->setEnabled(true);
m_ui->calibInstructions->setText(QString("Press \"Start\" above to calibrate."));
}
/**
Save current settings to RAM
*/
void ConfigRevoWidget::SettingsToRAM()
{
RevoCalibration * revoCalibration = RevoCalibration::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
revoCalibration->updated();
}
/**
Save Revo calibration settings to flash
*/
void ConfigRevoWidget::SettingsToFlash()
{
SettingsToRAM();
RevoCalibration * revoCalibration = RevoCalibration::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
saveObjectToSD(revoCalibration);
}
void ConfigRevoWidget::openHelp()
{
QDesktopServices::openUrl( QUrl("http://wiki.openpilot.org/display/Doc/Revo+Configuration", QUrl::StrictMode) );
}
/**
@}
@}
*/