mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-12-10 18:24:11 +01:00
574 lines
16 KiB
C
574 lines
16 KiB
C
/**
|
|
******************************************************************************
|
|
* @addtogroup OpenPilotModules OpenPilot Modules
|
|
* @{
|
|
* @addtogroup Sensors
|
|
* @brief Acquires sensor data
|
|
* Specifically updates the the @ref Gyros, @ref Accels, and @ref Magnetometer objects
|
|
* @{
|
|
*
|
|
* @file sensors.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
|
* @brief Module to handle all comms to the AHRS on a periodic basis.
|
|
*
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
******************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/**
|
|
* Input objects: None, takes sensor data via pios
|
|
* Output objects: @ref Gyros @ref Accels @ref Magnetometer
|
|
*
|
|
* The module executes in its own thread.
|
|
*
|
|
* UAVObjects are automatically generated by the UAVObjectGenerator from
|
|
* the object definition XML file.
|
|
*
|
|
* Modules have no API, all communication to other modules is done through UAVObjects.
|
|
* However modules may use the API exposed by shared libraries.
|
|
* See the OpenPilot wiki for more details.
|
|
* http://www.openpilot.org/OpenPilot_Application_Architecture
|
|
*
|
|
*/
|
|
|
|
#include "pios.h"
|
|
#include "homelocation.h"
|
|
#include "magnetometer.h"
|
|
#include "magbias.h"
|
|
#include "accels.h"
|
|
#include "gyros.h"
|
|
#include "gyrosbias.h"
|
|
#include "attitudeactual.h"
|
|
#include "attitudesettings.h"
|
|
#include "revocalibration.h"
|
|
#include "flightstatus.h"
|
|
#include "CoordinateConversions.h"
|
|
|
|
#include <pios_board_info.h>
|
|
|
|
// Private constants
|
|
#define STACK_SIZE_BYTES 1000
|
|
#define TASK_PRIORITY (tskIDLE_PRIORITY+3)
|
|
#define SENSOR_PERIOD 2
|
|
|
|
#define F_PI 3.14159265358979323846f
|
|
#define PI_MOD(x) (fmodf(x + F_PI, F_PI * 2) - F_PI)
|
|
// Private types
|
|
|
|
|
|
// Private functions
|
|
static void SensorsTask(void *parameters);
|
|
static void settingsUpdatedCb(UAVObjEvent * objEv);
|
|
static void magOffsetEstimation(MagnetometerData *mag);
|
|
|
|
// Private variables
|
|
static xTaskHandle sensorsTaskHandle;
|
|
RevoCalibrationData cal;
|
|
|
|
// These values are initialized by settings but can be updated by the attitude algorithm
|
|
static bool bias_correct_gyro = true;
|
|
|
|
static float mag_bias[3] = {0,0,0};
|
|
static float mag_scale[3] = {0,0,0};
|
|
static float accel_bias[3] = {0,0,0};
|
|
static float accel_scale[3] = {0,0,0};
|
|
|
|
static float R[3][3] = {{0}};
|
|
static int8_t rotate = 0;
|
|
|
|
/**
|
|
* API for sensor fusion algorithms:
|
|
* Configure(xQueueHandle gyro, xQueueHandle accel, xQueueHandle mag, xQueueHandle baro)
|
|
* Stores all the queues the algorithm will pull data from
|
|
* FinalizeSensors() -- before saving the sensors modifies them based on internal state (gyro bias)
|
|
* Update() -- queries queues and updates the attitude estiamte
|
|
*/
|
|
|
|
|
|
/**
|
|
* Initialise the module. Called before the start function
|
|
* \returns 0 on success or -1 if initialisation failed
|
|
*/
|
|
int32_t SensorsInitialize(void)
|
|
{
|
|
GyrosInitialize();
|
|
GyrosBiasInitialize();
|
|
AccelsInitialize();
|
|
MagnetometerInitialize();
|
|
MagBiasInitialize();
|
|
RevoCalibrationInitialize();
|
|
AttitudeSettingsInitialize();
|
|
|
|
rotate = 0;
|
|
|
|
RevoCalibrationConnectCallback(&settingsUpdatedCb);
|
|
AttitudeSettingsConnectCallback(&settingsUpdatedCb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Start the task. Expects all objects to be initialized by this point.
|
|
* \returns 0 on success or -1 if initialisation failed
|
|
*/
|
|
int32_t SensorsStart(void)
|
|
{
|
|
// Start main task
|
|
xTaskCreate(SensorsTask, (signed char *)"Sensors", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &sensorsTaskHandle);
|
|
TaskMonitorAdd(TASKINFO_RUNNING_SENSORS, sensorsTaskHandle);
|
|
PIOS_WDG_RegisterFlag(PIOS_WDG_SENSORS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
MODULE_INITCALL(SensorsInitialize, SensorsStart)
|
|
|
|
int32_t accel_test;
|
|
int32_t gyro_test;
|
|
int32_t mag_test;
|
|
//int32_t pressure_test;
|
|
|
|
|
|
/**
|
|
* The sensor task. This polls the gyros at 500 Hz and pumps that data to
|
|
* stabilization and to the attitude loop
|
|
*
|
|
* This function has a lot of if/defs right now to allow these configurations:
|
|
* 1. BMA180 accel and MPU6000 gyro
|
|
* 2. MPU6000 gyro and accel
|
|
* 3. BMA180 accel and L3GD20 gyro
|
|
*/
|
|
|
|
uint32_t sensor_dt_us;
|
|
static void SensorsTask(void *parameters)
|
|
{
|
|
portTickType lastSysTime;
|
|
uint32_t accel_samples = 0;
|
|
uint32_t gyro_samples = 0;
|
|
int32_t accel_accum[3] = {0, 0, 0};
|
|
int32_t gyro_accum[3] = {0,0,0};
|
|
float gyro_scaling = 0;
|
|
float accel_scaling = 0;
|
|
static int32_t timeval;
|
|
|
|
AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);
|
|
|
|
UAVObjEvent ev;
|
|
settingsUpdatedCb(&ev);
|
|
|
|
const struct pios_board_info * bdinfo = &pios_board_info_blob;
|
|
|
|
switch(bdinfo->board_rev) {
|
|
case 0x01:
|
|
#if defined(PIOS_INCLUDE_L3GD20)
|
|
gyro_test = PIOS_L3GD20_Test();
|
|
#endif
|
|
#if defined(PIOS_INCLUDE_BMA180)
|
|
accel_test = PIOS_BMA180_Test();
|
|
#endif
|
|
break;
|
|
case 0x02:
|
|
#if defined(PIOS_INCLUDE_MPU6000)
|
|
gyro_test = PIOS_MPU6000_Test();
|
|
accel_test = gyro_test;
|
|
#endif
|
|
break;
|
|
default:
|
|
PIOS_DEBUG_Assert(0);
|
|
}
|
|
|
|
#if defined(PIOS_INCLUDE_HMC5883)
|
|
mag_test = PIOS_HMC5883_Test();
|
|
#else
|
|
mag_test = 0;
|
|
#endif
|
|
|
|
if(accel_test < 0 || gyro_test < 0 || mag_test < 0) {
|
|
AlarmsSet(SYSTEMALARMS_ALARM_SENSORS, SYSTEMALARMS_ALARM_CRITICAL);
|
|
while(1) {
|
|
PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
|
|
vTaskDelay(10);
|
|
}
|
|
}
|
|
|
|
// Main task loop
|
|
lastSysTime = xTaskGetTickCount();
|
|
bool error = false;
|
|
uint32_t mag_update_time = PIOS_DELAY_GetRaw();
|
|
while (1) {
|
|
// TODO: add timeouts to the sensor reads and set an error if the fail
|
|
sensor_dt_us = PIOS_DELAY_DiffuS(timeval);
|
|
timeval = PIOS_DELAY_GetRaw();
|
|
|
|
if (error) {
|
|
PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
|
|
lastSysTime = xTaskGetTickCount();
|
|
vTaskDelayUntil(&lastSysTime, SENSOR_PERIOD / portTICK_RATE_MS);
|
|
AlarmsSet(SYSTEMALARMS_ALARM_SENSORS, SYSTEMALARMS_ALARM_CRITICAL);
|
|
error = false;
|
|
} else {
|
|
AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);
|
|
}
|
|
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
accel_accum[i] = 0;
|
|
gyro_accum[i] = 0;
|
|
}
|
|
accel_samples = 0;
|
|
gyro_samples = 0;
|
|
|
|
AccelsData accelsData;
|
|
GyrosData gyrosData;
|
|
|
|
switch(bdinfo->board_rev) {
|
|
case 0x01: // L3GD20 + BMA180 board
|
|
#if defined(PIOS_INCLUDE_BMA180)
|
|
{
|
|
struct pios_bma180_data accel;
|
|
|
|
int32_t read_good;
|
|
int32_t count;
|
|
|
|
count = 0;
|
|
while((read_good = PIOS_BMA180_ReadFifo(&accel)) != 0 && !error)
|
|
error = ((xTaskGetTickCount() - lastSysTime) > SENSOR_PERIOD) ? true : error;
|
|
if (error) {
|
|
// Unfortunately if the BMA180 ever misses getting read, then it will not
|
|
// trigger more interrupts. In this case we must force a read to kickstarts
|
|
// it.
|
|
struct pios_bma180_data data;
|
|
PIOS_BMA180_ReadAccels(&data);
|
|
continue;
|
|
}
|
|
while(read_good == 0) {
|
|
count++;
|
|
|
|
accel_accum[1] += accel.x;
|
|
accel_accum[0] += accel.y;
|
|
accel_accum[2] -= accel.z;
|
|
|
|
read_good = PIOS_BMA180_ReadFifo(&accel);
|
|
}
|
|
accel_samples = count;
|
|
accel_scaling = PIOS_BMA180_GetScale();
|
|
|
|
// Get temp from last reading
|
|
accelsData.temperature = 25.0f + ((float) accel.temperature - 2.0f) / 2.0f;
|
|
}
|
|
#endif
|
|
#if defined(PIOS_INCLUDE_L3GD20)
|
|
{
|
|
struct pios_l3gd20_data gyro;
|
|
gyro_samples = 0;
|
|
xQueueHandle gyro_queue = PIOS_L3GD20_GetQueue();
|
|
|
|
if(xQueueReceive(gyro_queue, (void *) &gyro, 4) == errQUEUE_EMPTY) {
|
|
error = true;
|
|
continue;
|
|
}
|
|
|
|
gyro_samples = 1;
|
|
gyro_accum[1] += gyro.gyro_x;
|
|
gyro_accum[0] += gyro.gyro_y;
|
|
gyro_accum[2] -= gyro.gyro_z;
|
|
|
|
gyro_scaling = PIOS_L3GD20_GetScale();
|
|
|
|
// Get temp from last reading
|
|
gyrosData.temperature = gyro.temperature;
|
|
}
|
|
#endif
|
|
break;
|
|
case 0x02: // MPU6000 board
|
|
case 0x03: // MPU6000 board
|
|
#if defined(PIOS_INCLUDE_MPU6000)
|
|
{
|
|
struct pios_mpu6000_data mpu6000_data;
|
|
xQueueHandle queue = PIOS_MPU6000_GetQueue();
|
|
|
|
while(xQueueReceive(queue, (void *) &mpu6000_data, gyro_samples == 0 ? 10 : 0) != errQUEUE_EMPTY)
|
|
{
|
|
gyro_accum[0] += mpu6000_data.gyro_x;
|
|
gyro_accum[1] += mpu6000_data.gyro_y;
|
|
gyro_accum[2] += mpu6000_data.gyro_z;
|
|
|
|
accel_accum[0] += mpu6000_data.accel_x;
|
|
accel_accum[1] += mpu6000_data.accel_y;
|
|
accel_accum[2] += mpu6000_data.accel_z;
|
|
|
|
gyro_samples ++;
|
|
accel_samples ++;
|
|
}
|
|
|
|
if (gyro_samples == 0) {
|
|
PIOS_MPU6000_ReadGyros(&mpu6000_data);
|
|
error = true;
|
|
continue;
|
|
}
|
|
|
|
gyro_scaling = PIOS_MPU6000_GetScale();
|
|
accel_scaling = PIOS_MPU6000_GetAccelScale();
|
|
|
|
gyrosData.temperature = 35.0f + ((float) mpu6000_data.temperature + 512.0f) / 340.0f;
|
|
accelsData.temperature = 35.0f + ((float) mpu6000_data.temperature + 512.0f) / 340.0f;
|
|
}
|
|
#endif /* PIOS_INCLUDE_MPU6000 */
|
|
break;
|
|
default:
|
|
PIOS_DEBUG_Assert(0);
|
|
}
|
|
|
|
// Scale the accels
|
|
float accels[3] = {(float) accel_accum[0] / accel_samples,
|
|
(float) accel_accum[1] / accel_samples,
|
|
(float) accel_accum[2] / accel_samples};
|
|
float accels_out[3] = {accels[0] * accel_scaling * accel_scale[0] - accel_bias[0],
|
|
accels[1] * accel_scaling * accel_scale[1] - accel_bias[1],
|
|
accels[2] * accel_scaling * accel_scale[2] - accel_bias[2]};
|
|
if (rotate) {
|
|
rot_mult(R, accels_out, accels);
|
|
accelsData.x = accels[0];
|
|
accelsData.y = accels[1];
|
|
accelsData.z = accels[2];
|
|
} else {
|
|
accelsData.x = accels_out[0];
|
|
accelsData.y = accels_out[1];
|
|
accelsData.z = accels_out[2];
|
|
}
|
|
AccelsSet(&accelsData);
|
|
|
|
// Scale the gyros
|
|
float gyros[3] = {(float) gyro_accum[0] / gyro_samples,
|
|
(float) gyro_accum[1] / gyro_samples,
|
|
(float) gyro_accum[2] / gyro_samples};
|
|
float gyros_out[3] = {gyros[0] * gyro_scaling,
|
|
gyros[1] * gyro_scaling,
|
|
gyros[2] * gyro_scaling};
|
|
if (rotate) {
|
|
rot_mult(R, gyros_out, gyros);
|
|
gyrosData.x = gyros[0];
|
|
gyrosData.y = gyros[1];
|
|
gyrosData.z = gyros[2];
|
|
} else {
|
|
gyrosData.x = gyros_out[0];
|
|
gyrosData.y = gyros_out[1];
|
|
gyrosData.z = gyros_out[2];
|
|
}
|
|
|
|
if (bias_correct_gyro) {
|
|
// Apply bias correction to the gyros from the state estimator
|
|
GyrosBiasData gyrosBias;
|
|
GyrosBiasGet(&gyrosBias);
|
|
gyrosData.x -= gyrosBias.x;
|
|
gyrosData.y -= gyrosBias.y;
|
|
gyrosData.z -= gyrosBias.z;
|
|
}
|
|
GyrosSet(&gyrosData);
|
|
|
|
// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
|
|
// and make it average zero (weakly)
|
|
|
|
#if defined(PIOS_INCLUDE_HMC5883)
|
|
MagnetometerData mag;
|
|
if (PIOS_HMC5883_NewDataAvailable() || PIOS_DELAY_DiffuS(mag_update_time) > 150000) {
|
|
int16_t values[3];
|
|
PIOS_HMC5883_ReadMag(values);
|
|
float mags[3] = {(float) values[1] * mag_scale[0] - mag_bias[0],
|
|
(float) values[0] * mag_scale[1] - mag_bias[1],
|
|
-(float) values[2] * mag_scale[2] - mag_bias[2]};
|
|
if (rotate) {
|
|
float mag_out[3];
|
|
rot_mult(R, mags, mag_out);
|
|
mag.x = mag_out[0];
|
|
mag.y = mag_out[1];
|
|
mag.z = mag_out[2];
|
|
} else {
|
|
mag.x = mags[0];
|
|
mag.y = mags[1];
|
|
mag.z = mags[2];
|
|
}
|
|
|
|
// Correct for mag bias and update if the rate is non zero
|
|
if(cal.MagBiasNullingRate > 0)
|
|
magOffsetEstimation(&mag);
|
|
|
|
MagnetometerSet(&mag);
|
|
mag_update_time = PIOS_DELAY_GetRaw();
|
|
}
|
|
#endif
|
|
|
|
PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
|
|
|
|
lastSysTime = xTaskGetTickCount();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform an update of the @ref MagBias based on
|
|
* Magnetometer Offset Cancellation: Theory and Implementation,
|
|
* revisited William Premerlani, October 14, 2011
|
|
*/
|
|
static void magOffsetEstimation(MagnetometerData *mag)
|
|
{
|
|
#if 0
|
|
// Constants, to possibly go into a UAVO
|
|
static const float MIN_NORM_DIFFERENCE = 50;
|
|
|
|
static float B2[3] = {0, 0, 0};
|
|
|
|
MagBiasData magBias;
|
|
MagBiasGet(&magBias);
|
|
|
|
// Remove the current estimate of the bias
|
|
mag->x -= magBias.x;
|
|
mag->y -= magBias.y;
|
|
mag->z -= magBias.z;
|
|
|
|
// First call
|
|
if (B2[0] == 0 && B2[1] == 0 && B2[2] == 0) {
|
|
B2[0] = mag->x;
|
|
B2[1] = mag->y;
|
|
B2[2] = mag->z;
|
|
return;
|
|
}
|
|
|
|
float B1[3] = {mag->x, mag->y, mag->z};
|
|
float norm_diff = sqrtf(powf(B2[0] - B1[0],2) + powf(B2[1] - B1[1],2) + powf(B2[2] - B1[2],2));
|
|
if (norm_diff > MIN_NORM_DIFFERENCE) {
|
|
float norm_b1 = sqrtf(B1[0]*B1[0] + B1[1]*B1[1] + B1[2]*B1[2]);
|
|
float norm_b2 = sqrtf(B2[0]*B2[0] + B2[1]*B2[1] + B2[2]*B2[2]);
|
|
float scale = cal.MagBiasNullingRate * (norm_b2 - norm_b1) / norm_diff;
|
|
float b_error[3] = {(B2[0] - B1[0]) * scale, (B2[1] - B1[1]) * scale, (B2[2] - B1[2]) * scale};
|
|
|
|
magBias.x += b_error[0];
|
|
magBias.y += b_error[1];
|
|
magBias.z += b_error[2];
|
|
|
|
MagBiasSet(&magBias);
|
|
|
|
// Store this value to compare against next update
|
|
B2[0] = B1[0]; B2[1] = B1[1]; B2[2] = B1[2];
|
|
}
|
|
#else
|
|
MagBiasData magBias;
|
|
MagBiasGet(&magBias);
|
|
|
|
// Remove the current estimate of the bias
|
|
mag->x -= magBias.x;
|
|
mag->y -= magBias.y;
|
|
mag->z -= magBias.z;
|
|
|
|
HomeLocationData homeLocation;
|
|
HomeLocationGet(&homeLocation);
|
|
|
|
AttitudeActualData attitude;
|
|
AttitudeActualGet(&attitude);
|
|
|
|
const float Rxy = sqrtf(homeLocation.Be[0]*homeLocation.Be[0] + homeLocation.Be[1]*homeLocation.Be[1]);
|
|
const float Rz = homeLocation.Be[2];
|
|
|
|
const float rate = cal.MagBiasNullingRate;
|
|
float R[3][3];
|
|
float B_e[3];
|
|
float xy[2];
|
|
float delta[3];
|
|
|
|
// Get the rotation matrix
|
|
Quaternion2R(&attitude.q1, R);
|
|
|
|
// Rotate the mag into the NED frame
|
|
B_e[0] = R[0][0] * mag->x + R[1][0] * mag->y + R[2][0] * mag->z;
|
|
B_e[1] = R[0][1] * mag->x + R[1][1] * mag->y + R[2][1] * mag->z;
|
|
B_e[2] = R[0][2] * mag->x + R[1][2] * mag->y + R[2][2] * mag->z;
|
|
|
|
float cy = cosf(attitude.Yaw * M_PI / 180.0f);
|
|
float sy = sinf(attitude.Yaw * M_PI / 180.0f);
|
|
|
|
xy[0] = cy * B_e[0] + sy * B_e[1];
|
|
xy[1] = -sy * B_e[0] + cy * B_e[1];
|
|
|
|
float xy_norm = sqrtf(xy[0]*xy[0] + xy[1]*xy[1]);
|
|
|
|
delta[0] = -rate * (xy[0] / xy_norm * Rxy - xy[0]);
|
|
delta[1] = -rate * (xy[1] / xy_norm * Rxy - xy[1]);
|
|
delta[2] = -rate * (Rz - B_e[2]);
|
|
|
|
if (delta[0] == delta[0] && delta[1] == delta[1] && delta[2] == delta[2]) {
|
|
magBias.x += delta[0];
|
|
magBias.y += delta[1];
|
|
magBias.z += delta[2];
|
|
MagBiasSet(&magBias);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Locally cache some variables from the AtttitudeSettings object
|
|
*/
|
|
static void settingsUpdatedCb(UAVObjEvent * objEv) {
|
|
RevoCalibrationGet(&cal);
|
|
|
|
mag_bias[0] = cal.mag_bias[REVOCALIBRATION_MAG_BIAS_X];
|
|
mag_bias[1] = cal.mag_bias[REVOCALIBRATION_MAG_BIAS_Y];
|
|
mag_bias[2] = cal.mag_bias[REVOCALIBRATION_MAG_BIAS_Z];
|
|
mag_scale[0] = cal.mag_scale[REVOCALIBRATION_MAG_SCALE_X];
|
|
mag_scale[1] = cal.mag_scale[REVOCALIBRATION_MAG_SCALE_Y];
|
|
mag_scale[2] = cal.mag_scale[REVOCALIBRATION_MAG_SCALE_Z];
|
|
accel_bias[0] = cal.accel_bias[REVOCALIBRATION_ACCEL_BIAS_X];
|
|
accel_bias[1] = cal.accel_bias[REVOCALIBRATION_ACCEL_BIAS_Y];
|
|
accel_bias[2] = cal.accel_bias[REVOCALIBRATION_ACCEL_BIAS_Z];
|
|
accel_scale[0] = cal.accel_scale[REVOCALIBRATION_ACCEL_SCALE_X];
|
|
accel_scale[1] = cal.accel_scale[REVOCALIBRATION_ACCEL_SCALE_Y];
|
|
accel_scale[2] = cal.accel_scale[REVOCALIBRATION_ACCEL_SCALE_Z];
|
|
// Do not store gyros_bias here as that comes from the state estimator and should be
|
|
// used from GyroBias directly
|
|
|
|
// Zero out any adaptive tracking
|
|
MagBiasData magBias;
|
|
MagBiasGet(&magBias);
|
|
magBias.x = 0;
|
|
magBias.y = 0;
|
|
magBias.z = 0;
|
|
MagBiasSet(&magBias);
|
|
|
|
|
|
AttitudeSettingsData attitudeSettings;
|
|
AttitudeSettingsGet(&attitudeSettings);
|
|
bias_correct_gyro = (cal.BiasCorrectedRaw == REVOCALIBRATION_BIASCORRECTEDRAW_TRUE);
|
|
|
|
// Indicates not to expend cycles on rotation
|
|
if(attitudeSettings.BoardRotation[0] == 0 && attitudeSettings.BoardRotation[1] == 0 &&
|
|
attitudeSettings.BoardRotation[2] == 0) {
|
|
rotate = 0;
|
|
} else {
|
|
float rotationQuat[4];
|
|
const float rpy[3] = {attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_ROLL],
|
|
attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_PITCH],
|
|
attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_YAW]};
|
|
RPY2Quaternion(rpy, rotationQuat);
|
|
Quaternion2R(rotationQuat, R);
|
|
rotate = 1;
|
|
}
|
|
|
|
}
|
|
/**
|
|
* @}
|
|
* @}
|
|
*/
|