1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-19 04:52:12 +01:00

233 lines
7.8 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup BatteryModule Battery Module
* @brief Measures battery voltage and current
* Updates the FlightBatteryState object
* @{
*
* @file battery.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Module to read the battery Voltage and Current periodically and set alarms appropriately.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Output object: FlightBatteryState
*
* This module will periodically generate information on the battery state.
*
* UAVObjects are automatically generated by the UAVObjectGenerator from
* the object definition XML file.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include "openpilot.h"
#include "flightbatterystate.h"
#include "flightbatterysettings.h"
#include "hwsettings.h"
//
// Configuration
//
#define SAMPLE_PERIOD_MS 500
#define BATTERY_BOARD_VOLTAGE_WARNING 4.5
#define BATTERY_BOARD_VOLTAGE_CRITICAL 3.5
#define BATTERY_BOARD_VOLTAGE_ERROR 1.0
// Private types
// Private variables
static bool batteryEnabled = false;
// Private functions
static void onTimer(UAVObjEvent* ev);
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t BatteryInitialize(void)
{
#ifdef MODULE_BATTERY_BUILTIN
batteryEnabled = true;
#else
uint8_t optionalModules[HWSETTINGS_OPTIONALMODULES_NUMELEM];
HwSettingsOptionalModulesGet(optionalModules);
if (optionalModules[HWSETTINGS_OPTIONALMODULES_BATTERY] == HWSETTINGS_OPTIONALMODULES_ENABLED)
batteryEnabled = true;
else
batteryEnabled = false;
#endif
if (batteryEnabled) {
FlightBatteryStateInitialize();
FlightBatterySettingsInitialize();
static UAVObjEvent ev;
memset(&ev,0,sizeof(UAVObjEvent));
EventPeriodicCallbackCreate(&ev, onTimer, SAMPLE_PERIOD_MS / portTICK_RATE_MS);
}
return 0;
}
MODULE_INITCALL(BatteryInitialize, 0)
#define HAS_SENSOR(x) batterySettings.SensorType[x]==FLIGHTBATTERYSETTINGS_SENSORTYPE_ENABLED
static void onTimer(UAVObjEvent* ev)
{
static FlightBatteryStateData flightBatteryData;
static bool BoardPowerWarning= false;
// prevent that the initial ramp up of the power supply rail is identified as a power failure.
static bool BoardPowerOk = false;
FlightBatterySettingsData batterySettings;
FlightBatterySettingsGet(&batterySettings);
static float dT = SAMPLE_PERIOD_MS / 1000.0;
float energyRemaining;
if(HAS_SENSOR(FLIGHTBATTERYSETTINGS_SENSORTYPE_BOARDVOLTAGE) )
flightBatteryData.BoardSupplyVoltage=((float)PIOS_ADC_PinGet(4)) * PIOS_ADC_VOLTAGE_SCALE * 6.1;
else
flightBatteryData.BoardSupplyVoltage = -1;
//calculate the battery parameters
if(HAS_SENSOR(FLIGHTBATTERYSETTINGS_SENSORTYPE_BATTERYVOLTAGE) )
flightBatteryData.Voltage = ((float)PIOS_ADC_PinGet(0)) * PIOS_ADC_VOLTAGE_SCALE * batterySettings.SensorCalibrations[FLIGHTBATTERYSETTINGS_SENSORCALIBRATIONS_VOLTAGEFACTOR]; //in Volts
else
flightBatteryData.Voltage = -1;
if(HAS_SENSOR(FLIGHTBATTERYSETTINGS_SENSORTYPE_BATTERYCURRENT))
{
flightBatteryData.Current = ((float)PIOS_ADC_PinGet(1)) * PIOS_ADC_VOLTAGE_SCALE * batterySettings.SensorCalibrations[FLIGHTBATTERYSETTINGS_SENSORCALIBRATIONS_CURRENTFACTOR]; //in Amps
flightBatteryData.ConsumedEnergy += (flightBatteryData.Current * 1000.0f * dT / 3600.0f) ;//in mAh
if (flightBatteryData.Current > flightBatteryData.PeakCurrent)
flightBatteryData.PeakCurrent = flightBatteryData.Current; //in Amps
flightBatteryData.AvgCurrent=(flightBatteryData.AvgCurrent*0.8)+(flightBatteryData.Current*0.2); //in Amps
//sanity checks
if (flightBatteryData.AvgCurrent<0)
flightBatteryData.AvgCurrent=0.0;
if (flightBatteryData.PeakCurrent<0)
flightBatteryData.PeakCurrent=0.0;
if (flightBatteryData.ConsumedEnergy<0)
flightBatteryData.ConsumedEnergy=0.0;
energyRemaining = batterySettings.Capacity - flightBatteryData.ConsumedEnergy; // in mAh
flightBatteryData.EstimatedFlightTime = ((energyRemaining / (flightBatteryData.AvgCurrent*1000.0))*3600.0);//in Sec
}
else
if(flightBatteryData.Current != -1)
{
flightBatteryData.Current = -1;
flightBatteryData.EstimatedFlightTime = 0;
flightBatteryData.AvgCurrent = 0;
flightBatteryData.ConsumedEnergy = 0;
}
//Check for battery inputs disconnection (don't think this really works. Do we need pull down on inputs?).
if (flightBatteryData.Voltage == 0 ||
flightBatteryData.Current == 0 )
{
AlarmsSet(SYSTEMALARMS_ALARM_BATTERY, SYSTEMALARMS_ALARM_ERROR);
AlarmsSet(SYSTEMALARMS_ALARM_FLIGHTTIME, SYSTEMALARMS_ALARM_ERROR);
}
else
{
if(HAS_SENSOR(FLIGHTBATTERYSETTINGS_SENSORTYPE_BATTERYCURRENT))
{
if (flightBatteryData.EstimatedFlightTime < 30)
AlarmsSet(SYSTEMALARMS_ALARM_FLIGHTTIME, SYSTEMALARMS_ALARM_CRITICAL);
else
if (flightBatteryData.EstimatedFlightTime < 60)
AlarmsSet(SYSTEMALARMS_ALARM_FLIGHTTIME, SYSTEMALARMS_ALARM_WARNING);
else
AlarmsClear(SYSTEMALARMS_ALARM_FLIGHTTIME);
}
// FIXME: should make the battery voltage detection dependent on battery type.
if(HAS_SENSOR(FLIGHTBATTERYSETTINGS_SENSORTYPE_BATTERYVOLTAGE)){
if (flightBatteryData.Voltage < batterySettings.VoltageThresholds[FLIGHTBATTERYSETTINGS_VOLTAGETHRESHOLDS_ALARM] )
AlarmsSet(SYSTEMALARMS_ALARM_BATTERY, SYSTEMALARMS_ALARM_CRITICAL);
else
if (flightBatteryData.Voltage < batterySettings.VoltageThresholds[FLIGHTBATTERYSETTINGS_VOLTAGETHRESHOLDS_WARNING])
AlarmsSet(SYSTEMALARMS_ALARM_BATTERY, SYSTEMALARMS_ALARM_WARNING);
else
AlarmsClear(SYSTEMALARMS_ALARM_BATTERY);
}
}
if(HAS_SENSOR(FLIGHTBATTERYSETTINGS_SENSORTYPE_BOARDVOLTAGE) )
{
// power ia disconnected from the board (it is powered by usb)
if(flightBatteryData.BoardSupplyVoltage!= -1 && flightBatteryData.BoardSupplyVoltage < BATTERY_BOARD_VOLTAGE_ERROR)
{
AlarmsSet(SYSTEMALARMS_ALARM_POWER, SYSTEMALARMS_ALARM_ERROR);
BoardPowerWarning=false;
BoardPowerOk = false;
}
else
{
if(BoardPowerOk && flightBatteryData.BoardSupplyVoltage < BATTERY_BOARD_VOLTAGE_CRITICAL)
{
AlarmsSet(SYSTEMALARMS_ALARM_POWER, SYSTEMALARMS_ALARM_CRITICAL);
BoardPowerWarning=true;
}
else if (BoardPowerOk && flightBatteryData.BoardSupplyVoltage < BATTERY_BOARD_VOLTAGE_WARNING)
{
AlarmsSet(SYSTEMALARMS_ALARM_POWER, SYSTEMALARMS_ALARM_WARNING);
BoardPowerWarning=true;
}
else
{
// if there was any previous warning/critical condition, notify the problem leaving the warning
if(BoardPowerWarning)
AlarmsSet(SYSTEMALARMS_ALARM_POWER, SYSTEMALARMS_ALARM_WARNING);
else
AlarmsClear(SYSTEMALARMS_ALARM_POWER);
BoardPowerOk |= flightBatteryData.BoardSupplyVoltage > BATTERY_BOARD_VOLTAGE_WARNING;
}
}
}
FlightBatteryStateSet(&flightBatteryData);
}
/**
* @}
*/
/**
* @}
*/