mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-12-05 13:24:11 +01:00
1630 lines
59 KiB
C
1630 lines
59 KiB
C
/**
|
|
******************************************************************************
|
|
* @addtogroup AHRS
|
|
* @{
|
|
* @addtogroup INSGPS
|
|
* @{
|
|
* @brief INSGPS is a joint attitude and position estimation EKF
|
|
*
|
|
* @file insgps.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
|
* @brief An INS/GPS algorithm implemented with an EKF.
|
|
*
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
*****************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include "insgps.h"
|
|
#include "mex.h"
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
|
|
// constants/macros/typdefs
|
|
#define NUMX 13 // number of states, X is the state vector
|
|
#define NUMW 9 // number of plant noise inputs, w is disturbance noise vector
|
|
#define NUMV 10 // number of measurements, v is the measurement noise vector
|
|
#define NUMU 6 // number of deterministic inputs, U is the input vector
|
|
|
|
// Nav structure containing current solution
|
|
struct NavStruct {
|
|
float Pos[3]; // Position in meters and relative to a local NED frame
|
|
float Vel[3]; // Velocity in meters and in NED
|
|
float q[4]; // unit quaternion rotation relative to NED
|
|
} Nav;
|
|
|
|
#if defined(GENERAL_COV)
|
|
// This might trick people so I have a note here. There is a slower but bigger version of the
|
|
// code here but won't fit when debugging disabled (requires -Os)
|
|
#define COVARIANCE_PREDICTION_GENERAL
|
|
#endif
|
|
|
|
// Private functions
|
|
void INSCorrection(float mag_data[3], float Pos[3], float Vel[3],
|
|
float BaroAlt, uint16_t SensorsUsed);
|
|
void CovariancePrediction(float F[NUMX][NUMX], float G[NUMX][NUMW],
|
|
float Q[NUMW], float dT, float P[NUMX][NUMX]);
|
|
void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
|
|
float Y[NUMV], float P[NUMX][NUMX], float X[NUMX],
|
|
uint16_t SensorsUsed);
|
|
void RungeKutta(float X[NUMX], float U[NUMU], float dT);
|
|
void StateEq(float X[NUMX], float U[NUMU], float Xdot[NUMX]);
|
|
void LinearizeFG(float X[NUMX], float U[NUMU], float F[NUMX][NUMX],
|
|
float G[NUMX][NUMW]);
|
|
void MeasurementEq(float X[NUMX], float Be[3], float Y[NUMV]);
|
|
void LinearizeH(float X[NUMX], float Be[3], float H[NUMV][NUMX]);
|
|
|
|
// Private variables
|
|
float F[NUMX][NUMX], G[NUMX][NUMW], H[NUMV][NUMX]; // linearized system matrices
|
|
// global to init to zero and maintain zero elements
|
|
float Be[3]; // local magnetic unit vector in NED frame
|
|
float P[NUMX][NUMX], X[NUMX]; // covariance matrix and state vector
|
|
float Q[NUMW], R[NUMV]; // input noise and measurement noise variances
|
|
float K[NUMX][NUMV]; // feedback gain matrix
|
|
|
|
// ************* Exposed Functions ****************
|
|
// *************************************************
|
|
void INSGPSInit() //pretty much just a place holder for now
|
|
{
|
|
uint8_t i,j;
|
|
|
|
Be[0] = 1;
|
|
Be[1] = 0;
|
|
Be[2] = 0; // local magnetic unit vector
|
|
|
|
for (i = 0; i < NUMX; i++) {
|
|
for (j = 0; j < NUMX; j++) {
|
|
P[i][j] = 0; // zero all terms
|
|
}
|
|
}
|
|
|
|
P[0][0] = P[1][1] = P[2][2] = 25; // initial position variance (m^2)
|
|
P[3][3] = P[4][4] = P[5][5] = 5; // initial velocity variance (m/s)^2
|
|
P[6][6] = P[7][7] = P[8][8] = P[9][9] = 1e-5; // initial quaternion variance
|
|
P[10][10] = P[11][11] = P[12][12] = 1e-5; // initial gyro bias variance (rad/s)^2
|
|
|
|
X[0] = X[1] = X[2] = X[3] = X[4] = X[5] = 0; // initial pos and vel (m)
|
|
X[6] = 1;
|
|
X[7] = X[8] = X[9] = 0; // initial quaternion (level and North) (m/s)
|
|
X[10] = X[11] = X[12] = 0; // initial gyro bias (rad/s)
|
|
|
|
Q[0] = Q[1] = Q[2] = 50e-8; // gyro noise variance (rad/s)^2
|
|
Q[3] = Q[4] = Q[5] = 0.01; // accelerometer noise variance (m/s^2)^2
|
|
Q[6] = Q[7] = Q[8] = 2e-6; // gyro bias random walk variance (rad/s^2)^2
|
|
|
|
R[0] = R[1] = 0.004; // High freq GPS horizontal position noise variance (m^2)
|
|
R[2] = 0.036; // High freq GPS vertical position noise variance (m^2)
|
|
R[3] = R[4] = 0.004; // High freq GPS horizontal velocity noise variance (m/s)^2
|
|
R[5] = 100; // High freq GPS vertical velocity noise variance (m/s)^2
|
|
R[6] = R[7] = R[8] = 0.005; // magnetometer unit vector noise variance
|
|
R[9] = .05; // High freq altimeter noise variance (m^2)
|
|
}
|
|
|
|
void INSPosVelReset(float pos[3], float vel[3])
|
|
{
|
|
uint8_t i, j;
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
for(j = i; j < NUMX; j++) {
|
|
P[i][j] = 0; // zero the first 6 rows and columns
|
|
P[j][i] = 0;
|
|
}
|
|
}
|
|
|
|
P[0][0] = P[1][1] = P[2][2] = 25; // initial position variance (m^2)
|
|
P[3][3] = P[4][4] = P[5][5] = 5; // initial velocity variance (m/s)^2
|
|
|
|
X[0] = pos[0];
|
|
X[1] = pos[1];
|
|
X[2] = pos[2];
|
|
X[3] = vel[0];
|
|
X[4] = vel[1];
|
|
X[5] = vel[2];
|
|
}
|
|
|
|
void INSSetPosVelVar(float PosVar)
|
|
{
|
|
R[0] = PosVar;
|
|
R[1] = PosVar;
|
|
R[2] = PosVar;
|
|
R[3] = PosVar;
|
|
R[4] = PosVar;
|
|
// R[5] = PosVar; // Don't change vertical velocity, not measured
|
|
}
|
|
|
|
void INSSetGyroBias(float gyro_bias[3])
|
|
{
|
|
X[10] = gyro_bias[0];
|
|
X[11] = gyro_bias[1];
|
|
X[12] = gyro_bias[2];
|
|
}
|
|
|
|
void INSSetAccelVar(float accel_var[3])
|
|
{
|
|
Q[3] = accel_var[0];
|
|
Q[4] = accel_var[1];
|
|
Q[5] = accel_var[2];
|
|
}
|
|
|
|
void INSSetGyroVar(float gyro_var[3])
|
|
{
|
|
Q[0] = gyro_var[0];
|
|
Q[1] = gyro_var[1];
|
|
Q[2] = gyro_var[2];
|
|
}
|
|
|
|
void INSSetMagVar(float scaled_mag_var[3])
|
|
{
|
|
R[6] = scaled_mag_var[0];
|
|
R[7] = scaled_mag_var[1];
|
|
R[8] = scaled_mag_var[2];
|
|
}
|
|
|
|
void INSSetMagNorth(float B[3])
|
|
{
|
|
Be[0] = B[0];
|
|
Be[1] = B[1];
|
|
Be[2] = B[2];
|
|
}
|
|
|
|
void INSStatePrediction(float gyro_data[3], float accel_data[3], float dT)
|
|
{
|
|
float U[6];
|
|
float qmag;
|
|
|
|
// rate gyro inputs in units of rad/s
|
|
U[0] = gyro_data[0];
|
|
U[1] = gyro_data[1];
|
|
U[2] = gyro_data[2];
|
|
|
|
// accelerometer inputs in units of m/s
|
|
U[3] = accel_data[0];
|
|
U[4] = accel_data[1];
|
|
U[5] = accel_data[2];
|
|
|
|
// EKF prediction step
|
|
LinearizeFG(X, U, F, G);
|
|
RungeKutta(X, U, dT);
|
|
qmag = sqrt(X[6] * X[6] + X[7] * X[7] + X[8] * X[8] + X[9] * X[9]);
|
|
X[6] /= qmag;
|
|
X[7] /= qmag;
|
|
X[8] /= qmag;
|
|
X[9] /= qmag;
|
|
//CovariancePrediction(F,G,Q,dT,P);
|
|
|
|
// Update Nav solution structure
|
|
Nav.Pos[0] = X[0];
|
|
Nav.Pos[1] = X[1];
|
|
Nav.Pos[2] = X[2];
|
|
Nav.Vel[0] = X[3];
|
|
Nav.Vel[1] = X[4];
|
|
Nav.Vel[2] = X[5];
|
|
Nav.q[0] = X[6];
|
|
Nav.q[1] = X[7];
|
|
Nav.q[2] = X[8];
|
|
Nav.q[3] = X[9];
|
|
}
|
|
|
|
void INSCovariancePrediction(float dT)
|
|
{
|
|
CovariancePrediction(F, G, Q, dT, P);
|
|
}
|
|
|
|
float zeros[3] = { 0, 0, 0 };
|
|
|
|
void MagCorrection(float mag_data[3])
|
|
{
|
|
INSCorrection(mag_data, zeros, zeros, zeros[0], MAG_SENSORS);
|
|
}
|
|
|
|
void BaroCorrection(float baro)
|
|
{
|
|
INSCorrection(zeros, zeros, zeros, baro, BARO_SENSOR);
|
|
}
|
|
void GpsCorrection(float Pos[3], float Vel[3])
|
|
{
|
|
INSCorrection(zeros, Pos, Vel, zeros[0],
|
|
POS_SENSORS); // | HORIZ_SENSORS | VERT_SENSORS);
|
|
}
|
|
|
|
|
|
void MagVelBaroCorrection(float mag_data[3], float Vel[3], float BaroAlt)
|
|
{
|
|
INSCorrection(mag_data, zeros, Vel, BaroAlt,
|
|
MAG_SENSORS | HORIZ_SENSORS | VERT_SENSORS |
|
|
BARO_SENSOR);
|
|
}
|
|
|
|
void GpsBaroCorrection(float Pos[3], float Vel[3], float BaroAlt)
|
|
{
|
|
INSCorrection(zeros, Pos, Vel, BaroAlt,
|
|
POS_SENSORS | HORIZ_SENSORS | VERT_SENSORS | BARO_SENSOR);
|
|
}
|
|
|
|
void FullCorrection(float mag_data[3], float Pos[3], float Vel[3],
|
|
float BaroAlt)
|
|
{
|
|
INSCorrection(mag_data, Pos, Vel, BaroAlt, FULL_SENSORS);
|
|
}
|
|
|
|
void GpsMagCorrection(float mag_data[3], float Pos[3], float Vel[3])
|
|
{
|
|
INSCorrection(mag_data, Pos, Vel, zeros[0],
|
|
POS_SENSORS | HORIZ_SENSORS | MAG_SENSORS);
|
|
}
|
|
|
|
void VelBaroCorrection(float Vel[3], float BaroAlt)
|
|
{
|
|
INSCorrection(zeros, zeros, Vel, BaroAlt,
|
|
HORIZ_SENSORS | VERT_SENSORS | BARO_SENSOR);
|
|
}
|
|
|
|
void INSCorrection(float mag_data[3], float Pos[3], float Vel[3],
|
|
float BaroAlt, uint16_t SensorsUsed)
|
|
{
|
|
float Z[10], Y[10];
|
|
float Bmag, qmag;
|
|
|
|
// GPS Position in meters and in local NED frame
|
|
Z[0] = Pos[0];
|
|
Z[1] = Pos[1];
|
|
Z[2] = Pos[2];
|
|
|
|
// GPS Velocity in meters and in local NED frame
|
|
Z[3] = Vel[0];
|
|
Z[4] = Vel[1];
|
|
Z[5] = Vel[2];
|
|
|
|
// magnetometer data in any units (use unit vector) and in body frame
|
|
Bmag =
|
|
sqrt(mag_data[0] * mag_data[0] + mag_data[1] * mag_data[1] +
|
|
mag_data[2] * mag_data[2]);
|
|
Z[6] = mag_data[0] / Bmag;
|
|
Z[7] = mag_data[1] / Bmag;
|
|
Z[8] = mag_data[2] / Bmag;
|
|
|
|
|
|
// barometric altimeter in meters and in local NED frame
|
|
Z[9] = BaroAlt;
|
|
|
|
// EKF correction step
|
|
LinearizeH(X, Be, H);
|
|
MeasurementEq(X, Be, Y);
|
|
SerialUpdate(H, R, Z, Y, P, X, SensorsUsed);
|
|
qmag = sqrt(X[6] * X[6] + X[7] * X[7] + X[8] * X[8] + X[9] * X[9]);
|
|
X[6] /= qmag;
|
|
X[7] /= qmag;
|
|
X[8] /= qmag;
|
|
X[9] /= qmag;
|
|
|
|
// Update Nav solution structure
|
|
Nav.Pos[0] = X[0];
|
|
Nav.Pos[1] = X[1];
|
|
Nav.Pos[2] = X[2];
|
|
Nav.Vel[0] = X[3];
|
|
Nav.Vel[1] = X[4];
|
|
Nav.Vel[2] = X[5];
|
|
Nav.q[0] = X[6];
|
|
Nav.q[1] = X[7];
|
|
Nav.q[2] = X[8];
|
|
Nav.q[3] = X[9];
|
|
}
|
|
|
|
// ************* CovariancePrediction *************
|
|
// Does the prediction step of the Kalman filter for the covariance matrix
|
|
// Output, Pnew, overwrites P, the input covariance
|
|
// Pnew = (I+F*T)*P*(I+F*T)' + T^2*G*Q*G'
|
|
// Q is the discrete time covariance of process noise
|
|
// Q is vector of the diagonal for a square matrix with
|
|
// dimensions equal to the number of disturbance noise variables
|
|
// The General Method is very inefficient,not taking advantage of the sparse F and G
|
|
// The first Method is very specific to this implementation
|
|
// ************************************************
|
|
|
|
#ifdef COVARIANCE_PREDICTION_GENERAL
|
|
|
|
void CovariancePrediction(float F[NUMX][NUMX], float G[NUMX][NUMW],
|
|
float Q[NUMW], float dT, float P[NUMX][NUMX])
|
|
{
|
|
float Dummy[NUMX][NUMX], dTsq;
|
|
uint8_t i, j, k;
|
|
|
|
// Pnew = (I+F*T)*P*(I+F*T)' + T^2*G*Q*G' = T^2[(P/T + F*P)*(I/T + F') + G*Q*G')]
|
|
|
|
dTsq = dT * dT;
|
|
|
|
for (i = 0; i < NUMX; i++) // Calculate Dummy = (P/T +F*P)
|
|
for (j = 0; j < NUMX; j++) {
|
|
Dummy[i][j] = P[i][j] / dT;
|
|
for (k = 0; k < NUMX; k++)
|
|
Dummy[i][j] += F[i][k] * P[k][j];
|
|
}
|
|
for (i = 0; i < NUMX; i++) // Calculate Pnew = Dummy/T + Dummy*F' + G*Qw*G'
|
|
for (j = i; j < NUMX; j++) { // Use symmetry, ie only find upper triangular
|
|
P[i][j] = Dummy[i][j] / dT;
|
|
for (k = 0; k < NUMX; k++)
|
|
P[i][j] += Dummy[i][k] * F[j][k]; // P = Dummy/T + Dummy*F'
|
|
for (k = 0; k < NUMW; k++)
|
|
P[i][j] += Q[k] * G[i][k] * G[j][k]; // P = Dummy/T + Dummy*F' + G*Q*G'
|
|
P[j][i] = P[i][j] = P[i][j] * dTsq; // Pnew = T^2*P and fill in lower triangular;
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
void CovariancePrediction(float F[NUMX][NUMX], float G[NUMX][NUMW],
|
|
float Q[NUMW], float dT, float P[NUMX][NUMX])
|
|
{
|
|
float D[NUMX][NUMX], T, Tsq;
|
|
uint8_t i, j;
|
|
|
|
// Pnew = (I+F*T)*P*(I+F*T)' + T^2*G*Q*G' = scalar expansion from symbolic manipulator
|
|
|
|
T = dT;
|
|
Tsq = dT * dT;
|
|
|
|
for (i = 0; i < NUMX; i++) // Create a copy of the upper triangular of P
|
|
for (j = i; j < NUMX; j++)
|
|
D[i][j] = P[i][j];
|
|
|
|
// Brute force calculation of the elements of P
|
|
P[0][0] = D[3][3] * Tsq + (2 * D[0][3]) * T + D[0][0];
|
|
P[0][1] = P[1][0] =
|
|
D[3][4] * Tsq + (D[0][4] + D[1][3]) * T + D[0][1];
|
|
P[0][2] = P[2][0] =
|
|
D[3][5] * Tsq + (D[0][5] + D[2][3]) * T + D[0][2];
|
|
P[0][3] = P[3][0] =
|
|
(F[3][6] * D[3][6] + F[3][7] * D[3][7] + F[3][8] * D[3][8] +
|
|
F[3][9] * D[3][9]) * Tsq + (D[3][3] + F[3][6] * D[0][6] +
|
|
F[3][7] * D[0][7] +
|
|
F[3][8] * D[0][8] +
|
|
F[3][9] * D[0][9]) * T + D[0][3];
|
|
P[0][4] = P[4][0] =
|
|
(F[4][6] * D[3][6] + F[4][7] * D[3][7] + F[4][8] * D[3][8] +
|
|
F[4][9] * D[3][9]) * Tsq + (D[3][4] + F[4][6] * D[0][6] +
|
|
F[4][7] * D[0][7] +
|
|
F[4][8] * D[0][8] +
|
|
F[4][9] * D[0][9]) * T + D[0][4];
|
|
P[0][5] = P[5][0] =
|
|
(F[5][6] * D[3][6] + F[5][7] * D[3][7] + F[5][8] * D[3][8] +
|
|
F[5][9] * D[3][9]) * Tsq + (D[3][5] + F[5][6] * D[0][6] +
|
|
F[5][7] * D[0][7] +
|
|
F[5][8] * D[0][8] +
|
|
F[5][9] * D[0][9]) * T + D[0][5];
|
|
P[0][6] = P[6][0] =
|
|
(F[6][7] * D[3][7] + F[6][8] * D[3][8] + F[6][9] * D[3][9] +
|
|
F[6][10] * D[3][10] + F[6][11] * D[3][11] +
|
|
F[6][12] * D[3][12]) * Tsq + (D[3][6] + F[6][7] * D[0][7] +
|
|
F[6][8] * D[0][8] +
|
|
F[6][9] * D[0][9] +
|
|
F[6][10] * D[0][10] +
|
|
F[6][11] * D[0][11] +
|
|
F[6][12] * D[0][12]) * T +
|
|
D[0][6];
|
|
P[0][7] = P[7][0] =
|
|
(F[7][6] * D[3][6] + F[7][8] * D[3][8] + F[7][9] * D[3][9] +
|
|
F[7][10] * D[3][10] + F[7][11] * D[3][11] +
|
|
F[7][12] * D[3][12]) * Tsq + (D[3][7] + F[7][6] * D[0][6] +
|
|
F[7][8] * D[0][8] +
|
|
F[7][9] * D[0][9] +
|
|
F[7][10] * D[0][10] +
|
|
F[7][11] * D[0][11] +
|
|
F[7][12] * D[0][12]) * T +
|
|
D[0][7];
|
|
P[0][8] = P[8][0] =
|
|
(F[8][6] * D[3][6] + F[8][7] * D[3][7] + F[8][9] * D[3][9] +
|
|
F[8][10] * D[3][10] + F[8][11] * D[3][11] +
|
|
F[8][12] * D[3][12]) * Tsq + (D[3][8] + F[8][6] * D[0][6] +
|
|
F[8][7] * D[0][7] +
|
|
F[8][9] * D[0][9] +
|
|
F[8][10] * D[0][10] +
|
|
F[8][11] * D[0][11] +
|
|
F[8][12] * D[0][12]) * T +
|
|
D[0][8];
|
|
P[0][9] = P[9][0] =
|
|
(F[9][6] * D[3][6] + F[9][7] * D[3][7] + F[9][8] * D[3][8] +
|
|
F[9][10] * D[3][10] + F[9][11] * D[3][11] +
|
|
F[9][12] * D[3][12]) * Tsq + (D[3][9] + F[9][6] * D[0][6] +
|
|
F[9][7] * D[0][7] +
|
|
F[9][8] * D[0][8] +
|
|
F[9][10] * D[0][10] +
|
|
F[9][11] * D[0][11] +
|
|
F[9][12] * D[0][12]) * T +
|
|
D[0][9];
|
|
P[0][10] = P[10][0] = D[3][10] * T + D[0][10];
|
|
P[0][11] = P[11][0] = D[3][11] * T + D[0][11];
|
|
P[0][12] = P[12][0] = D[3][12] * T + D[0][12];
|
|
P[1][1] = D[4][4] * Tsq + (2 * D[1][4]) * T + D[1][1];
|
|
P[1][2] = P[2][1] =
|
|
D[4][5] * Tsq + (D[1][5] + D[2][4]) * T + D[1][2];
|
|
P[1][3] = P[3][1] =
|
|
(F[3][6] * D[4][6] + F[3][7] * D[4][7] + F[3][8] * D[4][8] +
|
|
F[3][9] * D[4][9]) * Tsq + (D[3][4] + F[3][6] * D[1][6] +
|
|
F[3][7] * D[1][7] +
|
|
F[3][8] * D[1][8] +
|
|
F[3][9] * D[1][9]) * T + D[1][3];
|
|
P[1][4] = P[4][1] =
|
|
(F[4][6] * D[4][6] + F[4][7] * D[4][7] + F[4][8] * D[4][8] +
|
|
F[4][9] * D[4][9]) * Tsq + (D[4][4] + F[4][6] * D[1][6] +
|
|
F[4][7] * D[1][7] +
|
|
F[4][8] * D[1][8] +
|
|
F[4][9] * D[1][9]) * T + D[1][4];
|
|
P[1][5] = P[5][1] =
|
|
(F[5][6] * D[4][6] + F[5][7] * D[4][7] + F[5][8] * D[4][8] +
|
|
F[5][9] * D[4][9]) * Tsq + (D[4][5] + F[5][6] * D[1][6] +
|
|
F[5][7] * D[1][7] +
|
|
F[5][8] * D[1][8] +
|
|
F[5][9] * D[1][9]) * T + D[1][5];
|
|
P[1][6] = P[6][1] =
|
|
(F[6][7] * D[4][7] + F[6][8] * D[4][8] + F[6][9] * D[4][9] +
|
|
F[6][10] * D[4][10] + F[6][11] * D[4][11] +
|
|
F[6][12] * D[4][12]) * Tsq + (D[4][6] + F[6][7] * D[1][7] +
|
|
F[6][8] * D[1][8] +
|
|
F[6][9] * D[1][9] +
|
|
F[6][10] * D[1][10] +
|
|
F[6][11] * D[1][11] +
|
|
F[6][12] * D[1][12]) * T +
|
|
D[1][6];
|
|
P[1][7] = P[7][1] =
|
|
(F[7][6] * D[4][6] + F[7][8] * D[4][8] + F[7][9] * D[4][9] +
|
|
F[7][10] * D[4][10] + F[7][11] * D[4][11] +
|
|
F[7][12] * D[4][12]) * Tsq + (D[4][7] + F[7][6] * D[1][6] +
|
|
F[7][8] * D[1][8] +
|
|
F[7][9] * D[1][9] +
|
|
F[7][10] * D[1][10] +
|
|
F[7][11] * D[1][11] +
|
|
F[7][12] * D[1][12]) * T +
|
|
D[1][7];
|
|
P[1][8] = P[8][1] =
|
|
(F[8][6] * D[4][6] + F[8][7] * D[4][7] + F[8][9] * D[4][9] +
|
|
F[8][10] * D[4][10] + F[8][11] * D[4][11] +
|
|
F[8][12] * D[4][12]) * Tsq + (D[4][8] + F[8][6] * D[1][6] +
|
|
F[8][7] * D[1][7] +
|
|
F[8][9] * D[1][9] +
|
|
F[8][10] * D[1][10] +
|
|
F[8][11] * D[1][11] +
|
|
F[8][12] * D[1][12]) * T +
|
|
D[1][8];
|
|
P[1][9] = P[9][1] =
|
|
(F[9][6] * D[4][6] + F[9][7] * D[4][7] + F[9][8] * D[4][8] +
|
|
F[9][10] * D[4][10] + F[9][11] * D[4][11] +
|
|
F[9][12] * D[4][12]) * Tsq + (D[4][9] + F[9][6] * D[1][6] +
|
|
F[9][7] * D[1][7] +
|
|
F[9][8] * D[1][8] +
|
|
F[9][10] * D[1][10] +
|
|
F[9][11] * D[1][11] +
|
|
F[9][12] * D[1][12]) * T +
|
|
D[1][9];
|
|
P[1][10] = P[10][1] = D[4][10] * T + D[1][10];
|
|
P[1][11] = P[11][1] = D[4][11] * T + D[1][11];
|
|
P[1][12] = P[12][1] = D[4][12] * T + D[1][12];
|
|
P[2][2] = D[5][5] * Tsq + (2 * D[2][5]) * T + D[2][2];
|
|
P[2][3] = P[3][2] =
|
|
(F[3][6] * D[5][6] + F[3][7] * D[5][7] + F[3][8] * D[5][8] +
|
|
F[3][9] * D[5][9]) * Tsq + (D[3][5] + F[3][6] * D[2][6] +
|
|
F[3][7] * D[2][7] +
|
|
F[3][8] * D[2][8] +
|
|
F[3][9] * D[2][9]) * T + D[2][3];
|
|
P[2][4] = P[4][2] =
|
|
(F[4][6] * D[5][6] + F[4][7] * D[5][7] + F[4][8] * D[5][8] +
|
|
F[4][9] * D[5][9]) * Tsq + (D[4][5] + F[4][6] * D[2][6] +
|
|
F[4][7] * D[2][7] +
|
|
F[4][8] * D[2][8] +
|
|
F[4][9] * D[2][9]) * T + D[2][4];
|
|
P[2][5] = P[5][2] =
|
|
(F[5][6] * D[5][6] + F[5][7] * D[5][7] + F[5][8] * D[5][8] +
|
|
F[5][9] * D[5][9]) * Tsq + (D[5][5] + F[5][6] * D[2][6] +
|
|
F[5][7] * D[2][7] +
|
|
F[5][8] * D[2][8] +
|
|
F[5][9] * D[2][9]) * T + D[2][5];
|
|
P[2][6] = P[6][2] =
|
|
(F[6][7] * D[5][7] + F[6][8] * D[5][8] + F[6][9] * D[5][9] +
|
|
F[6][10] * D[5][10] + F[6][11] * D[5][11] +
|
|
F[6][12] * D[5][12]) * Tsq + (D[5][6] + F[6][7] * D[2][7] +
|
|
F[6][8] * D[2][8] +
|
|
F[6][9] * D[2][9] +
|
|
F[6][10] * D[2][10] +
|
|
F[6][11] * D[2][11] +
|
|
F[6][12] * D[2][12]) * T +
|
|
D[2][6];
|
|
P[2][7] = P[7][2] =
|
|
(F[7][6] * D[5][6] + F[7][8] * D[5][8] + F[7][9] * D[5][9] +
|
|
F[7][10] * D[5][10] + F[7][11] * D[5][11] +
|
|
F[7][12] * D[5][12]) * Tsq + (D[5][7] + F[7][6] * D[2][6] +
|
|
F[7][8] * D[2][8] +
|
|
F[7][9] * D[2][9] +
|
|
F[7][10] * D[2][10] +
|
|
F[7][11] * D[2][11] +
|
|
F[7][12] * D[2][12]) * T +
|
|
D[2][7];
|
|
P[2][8] = P[8][2] =
|
|
(F[8][6] * D[5][6] + F[8][7] * D[5][7] + F[8][9] * D[5][9] +
|
|
F[8][10] * D[5][10] + F[8][11] * D[5][11] +
|
|
F[8][12] * D[5][12]) * Tsq + (D[5][8] + F[8][6] * D[2][6] +
|
|
F[8][7] * D[2][7] +
|
|
F[8][9] * D[2][9] +
|
|
F[8][10] * D[2][10] +
|
|
F[8][11] * D[2][11] +
|
|
F[8][12] * D[2][12]) * T +
|
|
D[2][8];
|
|
P[2][9] = P[9][2] =
|
|
(F[9][6] * D[5][6] + F[9][7] * D[5][7] + F[9][8] * D[5][8] +
|
|
F[9][10] * D[5][10] + F[9][11] * D[5][11] +
|
|
F[9][12] * D[5][12]) * Tsq + (D[5][9] + F[9][6] * D[2][6] +
|
|
F[9][7] * D[2][7] +
|
|
F[9][8] * D[2][8] +
|
|
F[9][10] * D[2][10] +
|
|
F[9][11] * D[2][11] +
|
|
F[9][12] * D[2][12]) * T +
|
|
D[2][9];
|
|
P[2][10] = P[10][2] = D[5][10] * T + D[2][10];
|
|
P[2][11] = P[11][2] = D[5][11] * T + D[2][11];
|
|
P[2][12] = P[12][2] = D[5][12] * T + D[2][12];
|
|
P[3][3] =
|
|
(Q[3] * G[3][3] * G[3][3] + Q[4] * G[3][4] * G[3][4] +
|
|
Q[5] * G[3][5] * G[3][5] + F[3][9] * (F[3][9] * D[9][9] +
|
|
F[3][6] * D[6][9] +
|
|
F[3][7] * D[7][9] +
|
|
F[3][8] * D[8][9]) +
|
|
F[3][6] * (F[3][6] * D[6][6] + F[3][7] * D[6][7] +
|
|
F[3][8] * D[6][8] + F[3][9] * D[6][9]) +
|
|
F[3][7] * (F[3][6] * D[6][7] + F[3][7] * D[7][7] +
|
|
F[3][8] * D[7][8] + F[3][9] * D[7][9]) +
|
|
F[3][8] * (F[3][6] * D[6][8] + F[3][7] * D[7][8] +
|
|
F[3][8] * D[8][8] + F[3][9] * D[8][9])) * Tsq +
|
|
(2 * F[3][6] * D[3][6] + 2 * F[3][7] * D[3][7] +
|
|
2 * F[3][8] * D[3][8] + 2 * F[3][9] * D[3][9]) * T + D[3][3];
|
|
P[3][4] = P[4][3] =
|
|
(F[4][9] *
|
|
(F[3][9] * D[9][9] + F[3][6] * D[6][9] + F[3][7] * D[7][9] +
|
|
F[3][8] * D[8][9]) + F[4][6] * (F[3][6] * D[6][6] +
|
|
F[3][7] * D[6][7] +
|
|
F[3][8] * D[6][8] +
|
|
F[3][9] * D[6][9]) +
|
|
F[4][7] * (F[3][6] * D[6][7] + F[3][7] * D[7][7] +
|
|
F[3][8] * D[7][8] + F[3][9] * D[7][9]) +
|
|
F[4][8] * (F[3][6] * D[6][8] + F[3][7] * D[7][8] +
|
|
F[3][8] * D[8][8] + F[3][9] * D[8][9]) +
|
|
G[3][3] * G[4][3] * Q[3] + G[3][4] * G[4][4] * Q[4] +
|
|
G[3][5] * G[4][5] * Q[5]) * Tsq + (F[3][6] * D[4][6] +
|
|
F[4][6] * D[3][6] +
|
|
F[3][7] * D[4][7] +
|
|
F[4][7] * D[3][7] +
|
|
F[3][8] * D[4][8] +
|
|
F[4][8] * D[3][8] +
|
|
F[3][9] * D[4][9] +
|
|
F[4][9] * D[3][9]) * T +
|
|
D[3][4];
|
|
P[3][5] = P[5][3] =
|
|
(F[5][9] *
|
|
(F[3][9] * D[9][9] + F[3][6] * D[6][9] + F[3][7] * D[7][9] +
|
|
F[3][8] * D[8][9]) + F[5][6] * (F[3][6] * D[6][6] +
|
|
F[3][7] * D[6][7] +
|
|
F[3][8] * D[6][8] +
|
|
F[3][9] * D[6][9]) +
|
|
F[5][7] * (F[3][6] * D[6][7] + F[3][7] * D[7][7] +
|
|
F[3][8] * D[7][8] + F[3][9] * D[7][9]) +
|
|
F[5][8] * (F[3][6] * D[6][8] + F[3][7] * D[7][8] +
|
|
F[3][8] * D[8][8] + F[3][9] * D[8][9]) +
|
|
G[3][3] * G[5][3] * Q[3] + G[3][4] * G[5][4] * Q[4] +
|
|
G[3][5] * G[5][5] * Q[5]) * Tsq + (F[3][6] * D[5][6] +
|
|
F[5][6] * D[3][6] +
|
|
F[3][7] * D[5][7] +
|
|
F[5][7] * D[3][7] +
|
|
F[3][8] * D[5][8] +
|
|
F[5][8] * D[3][8] +
|
|
F[3][9] * D[5][9] +
|
|
F[5][9] * D[3][9]) * T +
|
|
D[3][5];
|
|
P[3][6] = P[6][3] =
|
|
(F[6][9] *
|
|
(F[3][9] * D[9][9] + F[3][6] * D[6][9] + F[3][7] * D[7][9] +
|
|
F[3][8] * D[8][9]) + F[6][10] * (F[3][9] * D[9][10] +
|
|
F[3][6] * D[6][10] +
|
|
F[3][7] * D[7][10] +
|
|
F[3][8] * D[8][10]) +
|
|
F[6][11] * (F[3][9] * D[9][11] + F[3][6] * D[6][11] +
|
|
F[3][7] * D[7][11] + F[3][8] * D[8][11]) +
|
|
F[6][12] * (F[3][9] * D[9][12] + F[3][6] * D[6][12] +
|
|
F[3][7] * D[7][12] + F[3][8] * D[8][12]) +
|
|
F[6][7] * (F[3][6] * D[6][7] + F[3][7] * D[7][7] +
|
|
F[3][8] * D[7][8] + F[3][9] * D[7][9]) +
|
|
F[6][8] * (F[3][6] * D[6][8] + F[3][7] * D[7][8] +
|
|
F[3][8] * D[8][8] + F[3][9] * D[8][9])) * Tsq +
|
|
(F[3][6] * D[6][6] + F[3][7] * D[6][7] + F[6][7] * D[3][7] +
|
|
F[3][8] * D[6][8] + F[6][8] * D[3][8] + F[3][9] * D[6][9] +
|
|
F[6][9] * D[3][9] + F[6][10] * D[3][10] +
|
|
F[6][11] * D[3][11] + F[6][12] * D[3][12]) * T + D[3][6];
|
|
P[3][7] = P[7][3] =
|
|
(F[7][9] *
|
|
(F[3][9] * D[9][9] + F[3][6] * D[6][9] + F[3][7] * D[7][9] +
|
|
F[3][8] * D[8][9]) + F[7][10] * (F[3][9] * D[9][10] +
|
|
F[3][6] * D[6][10] +
|
|
F[3][7] * D[7][10] +
|
|
F[3][8] * D[8][10]) +
|
|
F[7][11] * (F[3][9] * D[9][11] + F[3][6] * D[6][11] +
|
|
F[3][7] * D[7][11] + F[3][8] * D[8][11]) +
|
|
F[7][12] * (F[3][9] * D[9][12] + F[3][6] * D[6][12] +
|
|
F[3][7] * D[7][12] + F[3][8] * D[8][12]) +
|
|
F[7][6] * (F[3][6] * D[6][6] + F[3][7] * D[6][7] +
|
|
F[3][8] * D[6][8] + F[3][9] * D[6][9]) +
|
|
F[7][8] * (F[3][6] * D[6][8] + F[3][7] * D[7][8] +
|
|
F[3][8] * D[8][8] + F[3][9] * D[8][9])) * Tsq +
|
|
(F[3][6] * D[6][7] + F[7][6] * D[3][6] + F[3][7] * D[7][7] +
|
|
F[3][8] * D[7][8] + F[7][8] * D[3][8] + F[3][9] * D[7][9] +
|
|
F[7][9] * D[3][9] + F[7][10] * D[3][10] +
|
|
F[7][11] * D[3][11] + F[7][12] * D[3][12]) * T + D[3][7];
|
|
P[3][8] = P[8][3] =
|
|
(F[8][9] *
|
|
(F[3][9] * D[9][9] + F[3][6] * D[6][9] + F[3][7] * D[7][9] +
|
|
F[3][8] * D[8][9]) + F[8][10] * (F[3][9] * D[9][10] +
|
|
F[3][6] * D[6][10] +
|
|
F[3][7] * D[7][10] +
|
|
F[3][8] * D[8][10]) +
|
|
F[8][11] * (F[3][9] * D[9][11] + F[3][6] * D[6][11] +
|
|
F[3][7] * D[7][11] + F[3][8] * D[8][11]) +
|
|
F[8][12] * (F[3][9] * D[9][12] + F[3][6] * D[6][12] +
|
|
F[3][7] * D[7][12] + F[3][8] * D[8][12]) +
|
|
F[8][6] * (F[3][6] * D[6][6] + F[3][7] * D[6][7] +
|
|
F[3][8] * D[6][8] + F[3][9] * D[6][9]) +
|
|
F[8][7] * (F[3][6] * D[6][7] + F[3][7] * D[7][7] +
|
|
F[3][8] * D[7][8] + F[3][9] * D[7][9])) * Tsq +
|
|
(F[3][6] * D[6][8] + F[3][7] * D[7][8] + F[8][6] * D[3][6] +
|
|
F[8][7] * D[3][7] + F[3][8] * D[8][8] + F[3][9] * D[8][9] +
|
|
F[8][9] * D[3][9] + F[8][10] * D[3][10] +
|
|
F[8][11] * D[3][11] + F[8][12] * D[3][12]) * T + D[3][8];
|
|
P[3][9] = P[9][3] =
|
|
(F[9][10] *
|
|
(F[3][9] * D[9][10] + F[3][6] * D[6][10] +
|
|
F[3][7] * D[7][10] + F[3][8] * D[8][10]) +
|
|
F[9][11] * (F[3][9] * D[9][11] + F[3][6] * D[6][11] +
|
|
F[3][7] * D[7][11] + F[3][8] * D[8][11]) +
|
|
F[9][12] * (F[3][9] * D[9][12] + F[3][6] * D[6][12] +
|
|
F[3][7] * D[7][12] + F[3][8] * D[8][12]) +
|
|
F[9][6] * (F[3][6] * D[6][6] + F[3][7] * D[6][7] +
|
|
F[3][8] * D[6][8] + F[3][9] * D[6][9]) +
|
|
F[9][7] * (F[3][6] * D[6][7] + F[3][7] * D[7][7] +
|
|
F[3][8] * D[7][8] + F[3][9] * D[7][9]) +
|
|
F[9][8] * (F[3][6] * D[6][8] + F[3][7] * D[7][8] +
|
|
F[3][8] * D[8][8] + F[3][9] * D[8][9])) * Tsq +
|
|
(F[9][6] * D[3][6] + F[9][7] * D[3][7] + F[9][8] * D[3][8] +
|
|
F[3][9] * D[9][9] + F[9][10] * D[3][10] +
|
|
F[9][11] * D[3][11] + F[9][12] * D[3][12] +
|
|
F[3][6] * D[6][9] + F[3][7] * D[7][9] +
|
|
F[3][8] * D[8][9]) * T + D[3][9];
|
|
P[3][10] = P[10][3] =
|
|
(F[3][9] * D[9][10] + F[3][6] * D[6][10] + F[3][7] * D[7][10] +
|
|
F[3][8] * D[8][10]) * T + D[3][10];
|
|
P[3][11] = P[11][3] =
|
|
(F[3][9] * D[9][11] + F[3][6] * D[6][11] + F[3][7] * D[7][11] +
|
|
F[3][8] * D[8][11]) * T + D[3][11];
|
|
P[3][12] = P[12][3] =
|
|
(F[3][9] * D[9][12] + F[3][6] * D[6][12] + F[3][7] * D[7][12] +
|
|
F[3][8] * D[8][12]) * T + D[3][12];
|
|
P[4][4] =
|
|
(Q[3] * G[4][3] * G[4][3] + Q[4] * G[4][4] * G[4][4] +
|
|
Q[5] * G[4][5] * G[4][5] + F[4][9] * (F[4][9] * D[9][9] +
|
|
F[4][6] * D[6][9] +
|
|
F[4][7] * D[7][9] +
|
|
F[4][8] * D[8][9]) +
|
|
F[4][6] * (F[4][6] * D[6][6] + F[4][7] * D[6][7] +
|
|
F[4][8] * D[6][8] + F[4][9] * D[6][9]) +
|
|
F[4][7] * (F[4][6] * D[6][7] + F[4][7] * D[7][7] +
|
|
F[4][8] * D[7][8] + F[4][9] * D[7][9]) +
|
|
F[4][8] * (F[4][6] * D[6][8] + F[4][7] * D[7][8] +
|
|
F[4][8] * D[8][8] + F[4][9] * D[8][9])) * Tsq +
|
|
(2 * F[4][6] * D[4][6] + 2 * F[4][7] * D[4][7] +
|
|
2 * F[4][8] * D[4][8] + 2 * F[4][9] * D[4][9]) * T + D[4][4];
|
|
P[4][5] = P[5][4] =
|
|
(F[5][9] *
|
|
(F[4][9] * D[9][9] + F[4][6] * D[6][9] + F[4][7] * D[7][9] +
|
|
F[4][8] * D[8][9]) + F[5][6] * (F[4][6] * D[6][6] +
|
|
F[4][7] * D[6][7] +
|
|
F[4][8] * D[6][8] +
|
|
F[4][9] * D[6][9]) +
|
|
F[5][7] * (F[4][6] * D[6][7] + F[4][7] * D[7][7] +
|
|
F[4][8] * D[7][8] + F[4][9] * D[7][9]) +
|
|
F[5][8] * (F[4][6] * D[6][8] + F[4][7] * D[7][8] +
|
|
F[4][8] * D[8][8] + F[4][9] * D[8][9]) +
|
|
G[4][3] * G[5][3] * Q[3] + G[4][4] * G[5][4] * Q[4] +
|
|
G[4][5] * G[5][5] * Q[5]) * Tsq + (F[4][6] * D[5][6] +
|
|
F[5][6] * D[4][6] +
|
|
F[4][7] * D[5][7] +
|
|
F[5][7] * D[4][7] +
|
|
F[4][8] * D[5][8] +
|
|
F[5][8] * D[4][8] +
|
|
F[4][9] * D[5][9] +
|
|
F[5][9] * D[4][9]) * T +
|
|
D[4][5];
|
|
P[4][6] = P[6][4] =
|
|
(F[6][9] *
|
|
(F[4][9] * D[9][9] + F[4][6] * D[6][9] + F[4][7] * D[7][9] +
|
|
F[4][8] * D[8][9]) + F[6][10] * (F[4][9] * D[9][10] +
|
|
F[4][6] * D[6][10] +
|
|
F[4][7] * D[7][10] +
|
|
F[4][8] * D[8][10]) +
|
|
F[6][11] * (F[4][9] * D[9][11] + F[4][6] * D[6][11] +
|
|
F[4][7] * D[7][11] + F[4][8] * D[8][11]) +
|
|
F[6][12] * (F[4][9] * D[9][12] + F[4][6] * D[6][12] +
|
|
F[4][7] * D[7][12] + F[4][8] * D[8][12]) +
|
|
F[6][7] * (F[4][6] * D[6][7] + F[4][7] * D[7][7] +
|
|
F[4][8] * D[7][8] + F[4][9] * D[7][9]) +
|
|
F[6][8] * (F[4][6] * D[6][8] + F[4][7] * D[7][8] +
|
|
F[4][8] * D[8][8] + F[4][9] * D[8][9])) * Tsq +
|
|
(F[4][6] * D[6][6] + F[4][7] * D[6][7] + F[6][7] * D[4][7] +
|
|
F[4][8] * D[6][8] + F[6][8] * D[4][8] + F[4][9] * D[6][9] +
|
|
F[6][9] * D[4][9] + F[6][10] * D[4][10] +
|
|
F[6][11] * D[4][11] + F[6][12] * D[4][12]) * T + D[4][6];
|
|
P[4][7] = P[7][4] =
|
|
(F[7][9] *
|
|
(F[4][9] * D[9][9] + F[4][6] * D[6][9] + F[4][7] * D[7][9] +
|
|
F[4][8] * D[8][9]) + F[7][10] * (F[4][9] * D[9][10] +
|
|
F[4][6] * D[6][10] +
|
|
F[4][7] * D[7][10] +
|
|
F[4][8] * D[8][10]) +
|
|
F[7][11] * (F[4][9] * D[9][11] + F[4][6] * D[6][11] +
|
|
F[4][7] * D[7][11] + F[4][8] * D[8][11]) +
|
|
F[7][12] * (F[4][9] * D[9][12] + F[4][6] * D[6][12] +
|
|
F[4][7] * D[7][12] + F[4][8] * D[8][12]) +
|
|
F[7][6] * (F[4][6] * D[6][6] + F[4][7] * D[6][7] +
|
|
F[4][8] * D[6][8] + F[4][9] * D[6][9]) +
|
|
F[7][8] * (F[4][6] * D[6][8] + F[4][7] * D[7][8] +
|
|
F[4][8] * D[8][8] + F[4][9] * D[8][9])) * Tsq +
|
|
(F[4][6] * D[6][7] + F[7][6] * D[4][6] + F[4][7] * D[7][7] +
|
|
F[4][8] * D[7][8] + F[7][8] * D[4][8] + F[4][9] * D[7][9] +
|
|
F[7][9] * D[4][9] + F[7][10] * D[4][10] +
|
|
F[7][11] * D[4][11] + F[7][12] * D[4][12]) * T + D[4][7];
|
|
P[4][8] = P[8][4] =
|
|
(F[8][9] *
|
|
(F[4][9] * D[9][9] + F[4][6] * D[6][9] + F[4][7] * D[7][9] +
|
|
F[4][8] * D[8][9]) + F[8][10] * (F[4][9] * D[9][10] +
|
|
F[4][6] * D[6][10] +
|
|
F[4][7] * D[7][10] +
|
|
F[4][8] * D[8][10]) +
|
|
F[8][11] * (F[4][9] * D[9][11] + F[4][6] * D[6][11] +
|
|
F[4][7] * D[7][11] + F[4][8] * D[8][11]) +
|
|
F[8][12] * (F[4][9] * D[9][12] + F[4][6] * D[6][12] +
|
|
F[4][7] * D[7][12] + F[4][8] * D[8][12]) +
|
|
F[8][6] * (F[4][6] * D[6][6] + F[4][7] * D[6][7] +
|
|
F[4][8] * D[6][8] + F[4][9] * D[6][9]) +
|
|
F[8][7] * (F[4][6] * D[6][7] + F[4][7] * D[7][7] +
|
|
F[4][8] * D[7][8] + F[4][9] * D[7][9])) * Tsq +
|
|
(F[4][6] * D[6][8] + F[4][7] * D[7][8] + F[8][6] * D[4][6] +
|
|
F[8][7] * D[4][7] + F[4][8] * D[8][8] + F[4][9] * D[8][9] +
|
|
F[8][9] * D[4][9] + F[8][10] * D[4][10] +
|
|
F[8][11] * D[4][11] + F[8][12] * D[4][12]) * T + D[4][8];
|
|
P[4][9] = P[9][4] =
|
|
(F[9][10] *
|
|
(F[4][9] * D[9][10] + F[4][6] * D[6][10] +
|
|
F[4][7] * D[7][10] + F[4][8] * D[8][10]) +
|
|
F[9][11] * (F[4][9] * D[9][11] + F[4][6] * D[6][11] +
|
|
F[4][7] * D[7][11] + F[4][8] * D[8][11]) +
|
|
F[9][12] * (F[4][9] * D[9][12] + F[4][6] * D[6][12] +
|
|
F[4][7] * D[7][12] + F[4][8] * D[8][12]) +
|
|
F[9][6] * (F[4][6] * D[6][6] + F[4][7] * D[6][7] +
|
|
F[4][8] * D[6][8] + F[4][9] * D[6][9]) +
|
|
F[9][7] * (F[4][6] * D[6][7] + F[4][7] * D[7][7] +
|
|
F[4][8] * D[7][8] + F[4][9] * D[7][9]) +
|
|
F[9][8] * (F[4][6] * D[6][8] + F[4][7] * D[7][8] +
|
|
F[4][8] * D[8][8] + F[4][9] * D[8][9])) * Tsq +
|
|
(F[9][6] * D[4][6] + F[9][7] * D[4][7] + F[9][8] * D[4][8] +
|
|
F[4][9] * D[9][9] + F[9][10] * D[4][10] +
|
|
F[9][11] * D[4][11] + F[9][12] * D[4][12] +
|
|
F[4][6] * D[6][9] + F[4][7] * D[7][9] +
|
|
F[4][8] * D[8][9]) * T + D[4][9];
|
|
P[4][10] = P[10][4] =
|
|
(F[4][9] * D[9][10] + F[4][6] * D[6][10] + F[4][7] * D[7][10] +
|
|
F[4][8] * D[8][10]) * T + D[4][10];
|
|
P[4][11] = P[11][4] =
|
|
(F[4][9] * D[9][11] + F[4][6] * D[6][11] + F[4][7] * D[7][11] +
|
|
F[4][8] * D[8][11]) * T + D[4][11];
|
|
P[4][12] = P[12][4] =
|
|
(F[4][9] * D[9][12] + F[4][6] * D[6][12] + F[4][7] * D[7][12] +
|
|
F[4][8] * D[8][12]) * T + D[4][12];
|
|
P[5][5] =
|
|
(Q[3] * G[5][3] * G[5][3] + Q[4] * G[5][4] * G[5][4] +
|
|
Q[5] * G[5][5] * G[5][5] + F[5][9] * (F[5][9] * D[9][9] +
|
|
F[5][6] * D[6][9] +
|
|
F[5][7] * D[7][9] +
|
|
F[5][8] * D[8][9]) +
|
|
F[5][6] * (F[5][6] * D[6][6] + F[5][7] * D[6][7] +
|
|
F[5][8] * D[6][8] + F[5][9] * D[6][9]) +
|
|
F[5][7] * (F[5][6] * D[6][7] + F[5][7] * D[7][7] +
|
|
F[5][8] * D[7][8] + F[5][9] * D[7][9]) +
|
|
F[5][8] * (F[5][6] * D[6][8] + F[5][7] * D[7][8] +
|
|
F[5][8] * D[8][8] + F[5][9] * D[8][9])) * Tsq +
|
|
(2 * F[5][6] * D[5][6] + 2 * F[5][7] * D[5][7] +
|
|
2 * F[5][8] * D[5][8] + 2 * F[5][9] * D[5][9]) * T + D[5][5];
|
|
P[5][6] = P[6][5] =
|
|
(F[6][9] *
|
|
(F[5][9] * D[9][9] + F[5][6] * D[6][9] + F[5][7] * D[7][9] +
|
|
F[5][8] * D[8][9]) + F[6][10] * (F[5][9] * D[9][10] +
|
|
F[5][6] * D[6][10] +
|
|
F[5][7] * D[7][10] +
|
|
F[5][8] * D[8][10]) +
|
|
F[6][11] * (F[5][9] * D[9][11] + F[5][6] * D[6][11] +
|
|
F[5][7] * D[7][11] + F[5][8] * D[8][11]) +
|
|
F[6][12] * (F[5][9] * D[9][12] + F[5][6] * D[6][12] +
|
|
F[5][7] * D[7][12] + F[5][8] * D[8][12]) +
|
|
F[6][7] * (F[5][6] * D[6][7] + F[5][7] * D[7][7] +
|
|
F[5][8] * D[7][8] + F[5][9] * D[7][9]) +
|
|
F[6][8] * (F[5][6] * D[6][8] + F[5][7] * D[7][8] +
|
|
F[5][8] * D[8][8] + F[5][9] * D[8][9])) * Tsq +
|
|
(F[5][6] * D[6][6] + F[5][7] * D[6][7] + F[6][7] * D[5][7] +
|
|
F[5][8] * D[6][8] + F[6][8] * D[5][8] + F[5][9] * D[6][9] +
|
|
F[6][9] * D[5][9] + F[6][10] * D[5][10] +
|
|
F[6][11] * D[5][11] + F[6][12] * D[5][12]) * T + D[5][6];
|
|
P[5][7] = P[7][5] =
|
|
(F[7][9] *
|
|
(F[5][9] * D[9][9] + F[5][6] * D[6][9] + F[5][7] * D[7][9] +
|
|
F[5][8] * D[8][9]) + F[7][10] * (F[5][9] * D[9][10] +
|
|
F[5][6] * D[6][10] +
|
|
F[5][7] * D[7][10] +
|
|
F[5][8] * D[8][10]) +
|
|
F[7][11] * (F[5][9] * D[9][11] + F[5][6] * D[6][11] +
|
|
F[5][7] * D[7][11] + F[5][8] * D[8][11]) +
|
|
F[7][12] * (F[5][9] * D[9][12] + F[5][6] * D[6][12] +
|
|
F[5][7] * D[7][12] + F[5][8] * D[8][12]) +
|
|
F[7][6] * (F[5][6] * D[6][6] + F[5][7] * D[6][7] +
|
|
F[5][8] * D[6][8] + F[5][9] * D[6][9]) +
|
|
F[7][8] * (F[5][6] * D[6][8] + F[5][7] * D[7][8] +
|
|
F[5][8] * D[8][8] + F[5][9] * D[8][9])) * Tsq +
|
|
(F[5][6] * D[6][7] + F[7][6] * D[5][6] + F[5][7] * D[7][7] +
|
|
F[5][8] * D[7][8] + F[7][8] * D[5][8] + F[5][9] * D[7][9] +
|
|
F[7][9] * D[5][9] + F[7][10] * D[5][10] +
|
|
F[7][11] * D[5][11] + F[7][12] * D[5][12]) * T + D[5][7];
|
|
P[5][8] = P[8][5] =
|
|
(F[8][9] *
|
|
(F[5][9] * D[9][9] + F[5][6] * D[6][9] + F[5][7] * D[7][9] +
|
|
F[5][8] * D[8][9]) + F[8][10] * (F[5][9] * D[9][10] +
|
|
F[5][6] * D[6][10] +
|
|
F[5][7] * D[7][10] +
|
|
F[5][8] * D[8][10]) +
|
|
F[8][11] * (F[5][9] * D[9][11] + F[5][6] * D[6][11] +
|
|
F[5][7] * D[7][11] + F[5][8] * D[8][11]) +
|
|
F[8][12] * (F[5][9] * D[9][12] + F[5][6] * D[6][12] +
|
|
F[5][7] * D[7][12] + F[5][8] * D[8][12]) +
|
|
F[8][6] * (F[5][6] * D[6][6] + F[5][7] * D[6][7] +
|
|
F[5][8] * D[6][8] + F[5][9] * D[6][9]) +
|
|
F[8][7] * (F[5][6] * D[6][7] + F[5][7] * D[7][7] +
|
|
F[5][8] * D[7][8] + F[5][9] * D[7][9])) * Tsq +
|
|
(F[5][6] * D[6][8] + F[5][7] * D[7][8] + F[8][6] * D[5][6] +
|
|
F[8][7] * D[5][7] + F[5][8] * D[8][8] + F[5][9] * D[8][9] +
|
|
F[8][9] * D[5][9] + F[8][10] * D[5][10] +
|
|
F[8][11] * D[5][11] + F[8][12] * D[5][12]) * T + D[5][8];
|
|
P[5][9] = P[9][5] =
|
|
(F[9][10] *
|
|
(F[5][9] * D[9][10] + F[5][6] * D[6][10] +
|
|
F[5][7] * D[7][10] + F[5][8] * D[8][10]) +
|
|
F[9][11] * (F[5][9] * D[9][11] + F[5][6] * D[6][11] +
|
|
F[5][7] * D[7][11] + F[5][8] * D[8][11]) +
|
|
F[9][12] * (F[5][9] * D[9][12] + F[5][6] * D[6][12] +
|
|
F[5][7] * D[7][12] + F[5][8] * D[8][12]) +
|
|
F[9][6] * (F[5][6] * D[6][6] + F[5][7] * D[6][7] +
|
|
F[5][8] * D[6][8] + F[5][9] * D[6][9]) +
|
|
F[9][7] * (F[5][6] * D[6][7] + F[5][7] * D[7][7] +
|
|
F[5][8] * D[7][8] + F[5][9] * D[7][9]) +
|
|
F[9][8] * (F[5][6] * D[6][8] + F[5][7] * D[7][8] +
|
|
F[5][8] * D[8][8] + F[5][9] * D[8][9])) * Tsq +
|
|
(F[9][6] * D[5][6] + F[9][7] * D[5][7] + F[9][8] * D[5][8] +
|
|
F[5][9] * D[9][9] + F[9][10] * D[5][10] +
|
|
F[9][11] * D[5][11] + F[9][12] * D[5][12] +
|
|
F[5][6] * D[6][9] + F[5][7] * D[7][9] +
|
|
F[5][8] * D[8][9]) * T + D[5][9];
|
|
P[5][10] = P[10][5] =
|
|
(F[5][9] * D[9][10] + F[5][6] * D[6][10] + F[5][7] * D[7][10] +
|
|
F[5][8] * D[8][10]) * T + D[5][10];
|
|
P[5][11] = P[11][5] =
|
|
(F[5][9] * D[9][11] + F[5][6] * D[6][11] + F[5][7] * D[7][11] +
|
|
F[5][8] * D[8][11]) * T + D[5][11];
|
|
P[5][12] = P[12][5] =
|
|
(F[5][9] * D[9][12] + F[5][6] * D[6][12] + F[5][7] * D[7][12] +
|
|
F[5][8] * D[8][12]) * T + D[5][12];
|
|
P[6][6] =
|
|
(Q[0] * G[6][0] * G[6][0] + Q[1] * G[6][1] * G[6][1] +
|
|
Q[2] * G[6][2] * G[6][2] + F[6][9] * (F[6][9] * D[9][9] +
|
|
F[6][10] * D[9][10] +
|
|
F[6][11] * D[9][11] +
|
|
F[6][12] * D[9][12] +
|
|
F[6][7] * D[7][9] +
|
|
F[6][8] * D[8][9]) +
|
|
F[6][10] * (F[6][9] * D[9][10] + F[6][10] * D[10][10] +
|
|
F[6][11] * D[10][11] + F[6][12] * D[10][12] +
|
|
F[6][7] * D[7][10] + F[6][8] * D[8][10]) +
|
|
F[6][11] * (F[6][9] * D[9][11] + F[6][10] * D[10][11] +
|
|
F[6][11] * D[11][11] + F[6][12] * D[11][12] +
|
|
F[6][7] * D[7][11] + F[6][8] * D[8][11]) +
|
|
F[6][12] * (F[6][9] * D[9][12] + F[6][10] * D[10][12] +
|
|
F[6][11] * D[11][12] + F[6][12] * D[12][12] +
|
|
F[6][7] * D[7][12] + F[6][8] * D[8][12]) +
|
|
F[6][7] * (F[6][7] * D[7][7] + F[6][8] * D[7][8] +
|
|
F[6][9] * D[7][9] + F[6][10] * D[7][10] +
|
|
F[6][11] * D[7][11] + F[6][12] * D[7][12]) +
|
|
F[6][8] * (F[6][7] * D[7][8] + F[6][8] * D[8][8] +
|
|
F[6][9] * D[8][9] + F[6][10] * D[8][10] +
|
|
F[6][11] * D[8][11] + F[6][12] * D[8][12])) * Tsq +
|
|
(2 * F[6][7] * D[6][7] + 2 * F[6][8] * D[6][8] +
|
|
2 * F[6][9] * D[6][9] + 2 * F[6][10] * D[6][10] +
|
|
2 * F[6][11] * D[6][11] + 2 * F[6][12] * D[6][12]) * T +
|
|
D[6][6];
|
|
P[6][7] = P[7][6] =
|
|
(F[7][9] *
|
|
(F[6][9] * D[9][9] + F[6][10] * D[9][10] +
|
|
F[6][11] * D[9][11] + F[6][12] * D[9][12] +
|
|
F[6][7] * D[7][9] + F[6][8] * D[8][9]) +
|
|
F[7][10] * (F[6][9] * D[9][10] + F[6][10] * D[10][10] +
|
|
F[6][11] * D[10][11] + F[6][12] * D[10][12] +
|
|
F[6][7] * D[7][10] + F[6][8] * D[8][10]) +
|
|
F[7][11] * (F[6][9] * D[9][11] + F[6][10] * D[10][11] +
|
|
F[6][11] * D[11][11] + F[6][12] * D[11][12] +
|
|
F[6][7] * D[7][11] + F[6][8] * D[8][11]) +
|
|
F[7][12] * (F[6][9] * D[9][12] + F[6][10] * D[10][12] +
|
|
F[6][11] * D[11][12] + F[6][12] * D[12][12] +
|
|
F[6][7] * D[7][12] + F[6][8] * D[8][12]) +
|
|
F[7][6] * (F[6][7] * D[6][7] + F[6][8] * D[6][8] +
|
|
F[6][9] * D[6][9] + F[6][10] * D[6][10] +
|
|
F[6][11] * D[6][11] + F[6][12] * D[6][12]) +
|
|
F[7][8] * (F[6][7] * D[7][8] + F[6][8] * D[8][8] +
|
|
F[6][9] * D[8][9] + F[6][10] * D[8][10] +
|
|
F[6][11] * D[8][11] + F[6][12] * D[8][12]) +
|
|
G[6][0] * G[7][0] * Q[0] + G[6][1] * G[7][1] * Q[1] +
|
|
G[6][2] * G[7][2] * Q[2]) * Tsq + (F[7][6] * D[6][6] +
|
|
F[6][7] * D[7][7] +
|
|
F[6][8] * D[7][8] +
|
|
F[7][8] * D[6][8] +
|
|
F[6][9] * D[7][9] +
|
|
F[7][9] * D[6][9] +
|
|
F[6][10] * D[7][10] +
|
|
F[7][10] * D[6][10] +
|
|
F[6][11] * D[7][11] +
|
|
F[7][11] * D[6][11] +
|
|
F[6][12] * D[7][12] +
|
|
F[7][12] * D[6][12]) * T +
|
|
D[6][7];
|
|
P[6][8] = P[8][6] =
|
|
(F[8][9] *
|
|
(F[6][9] * D[9][9] + F[6][10] * D[9][10] +
|
|
F[6][11] * D[9][11] + F[6][12] * D[9][12] +
|
|
F[6][7] * D[7][9] + F[6][8] * D[8][9]) +
|
|
F[8][10] * (F[6][9] * D[9][10] + F[6][10] * D[10][10] +
|
|
F[6][11] * D[10][11] + F[6][12] * D[10][12] +
|
|
F[6][7] * D[7][10] + F[6][8] * D[8][10]) +
|
|
F[8][11] * (F[6][9] * D[9][11] + F[6][10] * D[10][11] +
|
|
F[6][11] * D[11][11] + F[6][12] * D[11][12] +
|
|
F[6][7] * D[7][11] + F[6][8] * D[8][11]) +
|
|
F[8][12] * (F[6][9] * D[9][12] + F[6][10] * D[10][12] +
|
|
F[6][11] * D[11][12] + F[6][12] * D[12][12] +
|
|
F[6][7] * D[7][12] + F[6][8] * D[8][12]) +
|
|
F[8][6] * (F[6][7] * D[6][7] + F[6][8] * D[6][8] +
|
|
F[6][9] * D[6][9] + F[6][10] * D[6][10] +
|
|
F[6][11] * D[6][11] + F[6][12] * D[6][12]) +
|
|
F[8][7] * (F[6][7] * D[7][7] + F[6][8] * D[7][8] +
|
|
F[6][9] * D[7][9] + F[6][10] * D[7][10] +
|
|
F[6][11] * D[7][11] + F[6][12] * D[7][12]) +
|
|
G[6][0] * G[8][0] * Q[0] + G[6][1] * G[8][1] * Q[1] +
|
|
G[6][2] * G[8][2] * Q[2]) * Tsq + (F[6][7] * D[7][8] +
|
|
F[8][6] * D[6][6] +
|
|
F[8][7] * D[6][7] +
|
|
F[6][8] * D[8][8] +
|
|
F[6][9] * D[8][9] +
|
|
F[8][9] * D[6][9] +
|
|
F[6][10] * D[8][10] +
|
|
F[8][10] * D[6][10] +
|
|
F[6][11] * D[8][11] +
|
|
F[8][11] * D[6][11] +
|
|
F[6][12] * D[8][12] +
|
|
F[8][12] * D[6][12]) * T +
|
|
D[6][8];
|
|
P[6][9] = P[9][6] =
|
|
(F[9][10] *
|
|
(F[6][9] * D[9][10] + F[6][10] * D[10][10] +
|
|
F[6][11] * D[10][11] + F[6][12] * D[10][12] +
|
|
F[6][7] * D[7][10] + F[6][8] * D[8][10]) +
|
|
F[9][11] * (F[6][9] * D[9][11] + F[6][10] * D[10][11] +
|
|
F[6][11] * D[11][11] + F[6][12] * D[11][12] +
|
|
F[6][7] * D[7][11] + F[6][8] * D[8][11]) +
|
|
F[9][12] * (F[6][9] * D[9][12] + F[6][10] * D[10][12] +
|
|
F[6][11] * D[11][12] + F[6][12] * D[12][12] +
|
|
F[6][7] * D[7][12] + F[6][8] * D[8][12]) +
|
|
F[9][6] * (F[6][7] * D[6][7] + F[6][8] * D[6][8] +
|
|
F[6][9] * D[6][9] + F[6][10] * D[6][10] +
|
|
F[6][11] * D[6][11] + F[6][12] * D[6][12]) +
|
|
F[9][7] * (F[6][7] * D[7][7] + F[6][8] * D[7][8] +
|
|
F[6][9] * D[7][9] + F[6][10] * D[7][10] +
|
|
F[6][11] * D[7][11] + F[6][12] * D[7][12]) +
|
|
F[9][8] * (F[6][7] * D[7][8] + F[6][8] * D[8][8] +
|
|
F[6][9] * D[8][9] + F[6][10] * D[8][10] +
|
|
F[6][11] * D[8][11] + F[6][12] * D[8][12]) +
|
|
G[9][0] * G[6][0] * Q[0] + G[9][1] * G[6][1] * Q[1] +
|
|
G[9][2] * G[6][2] * Q[2]) * Tsq + (F[9][6] * D[6][6] +
|
|
F[9][7] * D[6][7] +
|
|
F[9][8] * D[6][8] +
|
|
F[6][9] * D[9][9] +
|
|
F[9][10] * D[6][10] +
|
|
F[6][10] * D[9][10] +
|
|
F[9][11] * D[6][11] +
|
|
F[6][11] * D[9][11] +
|
|
F[9][12] * D[6][12] +
|
|
F[6][12] * D[9][12] +
|
|
F[6][7] * D[7][9] +
|
|
F[6][8] * D[8][9]) * T +
|
|
D[6][9];
|
|
P[6][10] = P[10][6] =
|
|
(F[6][9] * D[9][10] + F[6][10] * D[10][10] +
|
|
F[6][11] * D[10][11] + F[6][12] * D[10][12] +
|
|
F[6][7] * D[7][10] + F[6][8] * D[8][10]) * T + D[6][10];
|
|
P[6][11] = P[11][6] =
|
|
(F[6][9] * D[9][11] + F[6][10] * D[10][11] +
|
|
F[6][11] * D[11][11] + F[6][12] * D[11][12] +
|
|
F[6][7] * D[7][11] + F[6][8] * D[8][11]) * T + D[6][11];
|
|
P[6][12] = P[12][6] =
|
|
(F[6][9] * D[9][12] + F[6][10] * D[10][12] +
|
|
F[6][11] * D[11][12] + F[6][12] * D[12][12] +
|
|
F[6][7] * D[7][12] + F[6][8] * D[8][12]) * T + D[6][12];
|
|
P[7][7] =
|
|
(Q[0] * G[7][0] * G[7][0] + Q[1] * G[7][1] * G[7][1] +
|
|
Q[2] * G[7][2] * G[7][2] + F[7][9] * (F[7][9] * D[9][9] +
|
|
F[7][10] * D[9][10] +
|
|
F[7][11] * D[9][11] +
|
|
F[7][12] * D[9][12] +
|
|
F[7][6] * D[6][9] +
|
|
F[7][8] * D[8][9]) +
|
|
F[7][10] * (F[7][9] * D[9][10] + F[7][10] * D[10][10] +
|
|
F[7][11] * D[10][11] + F[7][12] * D[10][12] +
|
|
F[7][6] * D[6][10] + F[7][8] * D[8][10]) +
|
|
F[7][11] * (F[7][9] * D[9][11] + F[7][10] * D[10][11] +
|
|
F[7][11] * D[11][11] + F[7][12] * D[11][12] +
|
|
F[7][6] * D[6][11] + F[7][8] * D[8][11]) +
|
|
F[7][12] * (F[7][9] * D[9][12] + F[7][10] * D[10][12] +
|
|
F[7][11] * D[11][12] + F[7][12] * D[12][12] +
|
|
F[7][6] * D[6][12] + F[7][8] * D[8][12]) +
|
|
F[7][6] * (F[7][6] * D[6][6] + F[7][8] * D[6][8] +
|
|
F[7][9] * D[6][9] + F[7][10] * D[6][10] +
|
|
F[7][11] * D[6][11] + F[7][12] * D[6][12]) +
|
|
F[7][8] * (F[7][6] * D[6][8] + F[7][8] * D[8][8] +
|
|
F[7][9] * D[8][9] + F[7][10] * D[8][10] +
|
|
F[7][11] * D[8][11] + F[7][12] * D[8][12])) * Tsq +
|
|
(2 * F[7][6] * D[6][7] + 2 * F[7][8] * D[7][8] +
|
|
2 * F[7][9] * D[7][9] + 2 * F[7][10] * D[7][10] +
|
|
2 * F[7][11] * D[7][11] + 2 * F[7][12] * D[7][12]) * T +
|
|
D[7][7];
|
|
P[7][8] = P[8][7] =
|
|
(F[8][9] *
|
|
(F[7][9] * D[9][9] + F[7][10] * D[9][10] +
|
|
F[7][11] * D[9][11] + F[7][12] * D[9][12] +
|
|
F[7][6] * D[6][9] + F[7][8] * D[8][9]) +
|
|
F[8][10] * (F[7][9] * D[9][10] + F[7][10] * D[10][10] +
|
|
F[7][11] * D[10][11] + F[7][12] * D[10][12] +
|
|
F[7][6] * D[6][10] + F[7][8] * D[8][10]) +
|
|
F[8][11] * (F[7][9] * D[9][11] + F[7][10] * D[10][11] +
|
|
F[7][11] * D[11][11] + F[7][12] * D[11][12] +
|
|
F[7][6] * D[6][11] + F[7][8] * D[8][11]) +
|
|
F[8][12] * (F[7][9] * D[9][12] + F[7][10] * D[10][12] +
|
|
F[7][11] * D[11][12] + F[7][12] * D[12][12] +
|
|
F[7][6] * D[6][12] + F[7][8] * D[8][12]) +
|
|
F[8][6] * (F[7][6] * D[6][6] + F[7][8] * D[6][8] +
|
|
F[7][9] * D[6][9] + F[7][10] * D[6][10] +
|
|
F[7][11] * D[6][11] + F[7][12] * D[6][12]) +
|
|
F[8][7] * (F[7][6] * D[6][7] + F[7][8] * D[7][8] +
|
|
F[7][9] * D[7][9] + F[7][10] * D[7][10] +
|
|
F[7][11] * D[7][11] + F[7][12] * D[7][12]) +
|
|
G[7][0] * G[8][0] * Q[0] + G[7][1] * G[8][1] * Q[1] +
|
|
G[7][2] * G[8][2] * Q[2]) * Tsq + (F[7][6] * D[6][8] +
|
|
F[8][6] * D[6][7] +
|
|
F[8][7] * D[7][7] +
|
|
F[7][8] * D[8][8] +
|
|
F[7][9] * D[8][9] +
|
|
F[8][9] * D[7][9] +
|
|
F[7][10] * D[8][10] +
|
|
F[8][10] * D[7][10] +
|
|
F[7][11] * D[8][11] +
|
|
F[8][11] * D[7][11] +
|
|
F[7][12] * D[8][12] +
|
|
F[8][12] * D[7][12]) * T +
|
|
D[7][8];
|
|
P[7][9] = P[9][7] =
|
|
(F[9][10] *
|
|
(F[7][9] * D[9][10] + F[7][10] * D[10][10] +
|
|
F[7][11] * D[10][11] + F[7][12] * D[10][12] +
|
|
F[7][6] * D[6][10] + F[7][8] * D[8][10]) +
|
|
F[9][11] * (F[7][9] * D[9][11] + F[7][10] * D[10][11] +
|
|
F[7][11] * D[11][11] + F[7][12] * D[11][12] +
|
|
F[7][6] * D[6][11] + F[7][8] * D[8][11]) +
|
|
F[9][12] * (F[7][9] * D[9][12] + F[7][10] * D[10][12] +
|
|
F[7][11] * D[11][12] + F[7][12] * D[12][12] +
|
|
F[7][6] * D[6][12] + F[7][8] * D[8][12]) +
|
|
F[9][6] * (F[7][6] * D[6][6] + F[7][8] * D[6][8] +
|
|
F[7][9] * D[6][9] + F[7][10] * D[6][10] +
|
|
F[7][11] * D[6][11] + F[7][12] * D[6][12]) +
|
|
F[9][7] * (F[7][6] * D[6][7] + F[7][8] * D[7][8] +
|
|
F[7][9] * D[7][9] + F[7][10] * D[7][10] +
|
|
F[7][11] * D[7][11] + F[7][12] * D[7][12]) +
|
|
F[9][8] * (F[7][6] * D[6][8] + F[7][8] * D[8][8] +
|
|
F[7][9] * D[8][9] + F[7][10] * D[8][10] +
|
|
F[7][11] * D[8][11] + F[7][12] * D[8][12]) +
|
|
G[9][0] * G[7][0] * Q[0] + G[9][1] * G[7][1] * Q[1] +
|
|
G[9][2] * G[7][2] * Q[2]) * Tsq + (F[9][6] * D[6][7] +
|
|
F[9][7] * D[7][7] +
|
|
F[9][8] * D[7][8] +
|
|
F[7][9] * D[9][9] +
|
|
F[9][10] * D[7][10] +
|
|
F[7][10] * D[9][10] +
|
|
F[9][11] * D[7][11] +
|
|
F[7][11] * D[9][11] +
|
|
F[9][12] * D[7][12] +
|
|
F[7][12] * D[9][12] +
|
|
F[7][6] * D[6][9] +
|
|
F[7][8] * D[8][9]) * T +
|
|
D[7][9];
|
|
P[7][10] = P[10][7] =
|
|
(F[7][9] * D[9][10] + F[7][10] * D[10][10] +
|
|
F[7][11] * D[10][11] + F[7][12] * D[10][12] +
|
|
F[7][6] * D[6][10] + F[7][8] * D[8][10]) * T + D[7][10];
|
|
P[7][11] = P[11][7] =
|
|
(F[7][9] * D[9][11] + F[7][10] * D[10][11] +
|
|
F[7][11] * D[11][11] + F[7][12] * D[11][12] +
|
|
F[7][6] * D[6][11] + F[7][8] * D[8][11]) * T + D[7][11];
|
|
P[7][12] = P[12][7] =
|
|
(F[7][9] * D[9][12] + F[7][10] * D[10][12] +
|
|
F[7][11] * D[11][12] + F[7][12] * D[12][12] +
|
|
F[7][6] * D[6][12] + F[7][8] * D[8][12]) * T + D[7][12];
|
|
P[8][8] =
|
|
(Q[0] * G[8][0] * G[8][0] + Q[1] * G[8][1] * G[8][1] +
|
|
Q[2] * G[8][2] * G[8][2] + F[8][9] * (F[8][9] * D[9][9] +
|
|
F[8][10] * D[9][10] +
|
|
F[8][11] * D[9][11] +
|
|
F[8][12] * D[9][12] +
|
|
F[8][6] * D[6][9] +
|
|
F[8][7] * D[7][9]) +
|
|
F[8][10] * (F[8][9] * D[9][10] + F[8][10] * D[10][10] +
|
|
F[8][11] * D[10][11] + F[8][12] * D[10][12] +
|
|
F[8][6] * D[6][10] + F[8][7] * D[7][10]) +
|
|
F[8][11] * (F[8][9] * D[9][11] + F[8][10] * D[10][11] +
|
|
F[8][11] * D[11][11] + F[8][12] * D[11][12] +
|
|
F[8][6] * D[6][11] + F[8][7] * D[7][11]) +
|
|
F[8][12] * (F[8][9] * D[9][12] + F[8][10] * D[10][12] +
|
|
F[8][11] * D[11][12] + F[8][12] * D[12][12] +
|
|
F[8][6] * D[6][12] + F[8][7] * D[7][12]) +
|
|
F[8][6] * (F[8][6] * D[6][6] + F[8][7] * D[6][7] +
|
|
F[8][9] * D[6][9] + F[8][10] * D[6][10] +
|
|
F[8][11] * D[6][11] + F[8][12] * D[6][12]) +
|
|
F[8][7] * (F[8][6] * D[6][7] + F[8][7] * D[7][7] +
|
|
F[8][9] * D[7][9] + F[8][10] * D[7][10] +
|
|
F[8][11] * D[7][11] + F[8][12] * D[7][12])) * Tsq +
|
|
(2 * F[8][6] * D[6][8] + 2 * F[8][7] * D[7][8] +
|
|
2 * F[8][9] * D[8][9] + 2 * F[8][10] * D[8][10] +
|
|
2 * F[8][11] * D[8][11] + 2 * F[8][12] * D[8][12]) * T +
|
|
D[8][8];
|
|
P[8][9] = P[9][8] =
|
|
(F[9][10] *
|
|
(F[8][9] * D[9][10] + F[8][10] * D[10][10] +
|
|
F[8][11] * D[10][11] + F[8][12] * D[10][12] +
|
|
F[8][6] * D[6][10] + F[8][7] * D[7][10]) +
|
|
F[9][11] * (F[8][9] * D[9][11] + F[8][10] * D[10][11] +
|
|
F[8][11] * D[11][11] + F[8][12] * D[11][12] +
|
|
F[8][6] * D[6][11] + F[8][7] * D[7][11]) +
|
|
F[9][12] * (F[8][9] * D[9][12] + F[8][10] * D[10][12] +
|
|
F[8][11] * D[11][12] + F[8][12] * D[12][12] +
|
|
F[8][6] * D[6][12] + F[8][7] * D[7][12]) +
|
|
F[9][6] * (F[8][6] * D[6][6] + F[8][7] * D[6][7] +
|
|
F[8][9] * D[6][9] + F[8][10] * D[6][10] +
|
|
F[8][11] * D[6][11] + F[8][12] * D[6][12]) +
|
|
F[9][7] * (F[8][6] * D[6][7] + F[8][7] * D[7][7] +
|
|
F[8][9] * D[7][9] + F[8][10] * D[7][10] +
|
|
F[8][11] * D[7][11] + F[8][12] * D[7][12]) +
|
|
F[9][8] * (F[8][6] * D[6][8] + F[8][7] * D[7][8] +
|
|
F[8][9] * D[8][9] + F[8][10] * D[8][10] +
|
|
F[8][11] * D[8][11] + F[8][12] * D[8][12]) +
|
|
G[9][0] * G[8][0] * Q[0] + G[9][1] * G[8][1] * Q[1] +
|
|
G[9][2] * G[8][2] * Q[2]) * Tsq + (F[9][6] * D[6][8] +
|
|
F[9][7] * D[7][8] +
|
|
F[9][8] * D[8][8] +
|
|
F[8][9] * D[9][9] +
|
|
F[9][10] * D[8][10] +
|
|
F[8][10] * D[9][10] +
|
|
F[9][11] * D[8][11] +
|
|
F[8][11] * D[9][11] +
|
|
F[9][12] * D[8][12] +
|
|
F[8][12] * D[9][12] +
|
|
F[8][6] * D[6][9] +
|
|
F[8][7] * D[7][9]) * T +
|
|
D[8][9];
|
|
P[8][10] = P[10][8] =
|
|
(F[8][9] * D[9][10] + F[8][10] * D[10][10] +
|
|
F[8][11] * D[10][11] + F[8][12] * D[10][12] +
|
|
F[8][6] * D[6][10] + F[8][7] * D[7][10]) * T + D[8][10];
|
|
P[8][11] = P[11][8] =
|
|
(F[8][9] * D[9][11] + F[8][10] * D[10][11] +
|
|
F[8][11] * D[11][11] + F[8][12] * D[11][12] +
|
|
F[8][6] * D[6][11] + F[8][7] * D[7][11]) * T + D[8][11];
|
|
P[8][12] = P[12][8] =
|
|
(F[8][9] * D[9][12] + F[8][10] * D[10][12] +
|
|
F[8][11] * D[11][12] + F[8][12] * D[12][12] +
|
|
F[8][6] * D[6][12] + F[8][7] * D[7][12]) * T + D[8][12];
|
|
P[9][9] =
|
|
(Q[0] * G[9][0] * G[9][0] + Q[1] * G[9][1] * G[9][1] +
|
|
Q[2] * G[9][2] * G[9][2] + F[9][10] * (F[9][10] * D[10][10] +
|
|
F[9][11] * D[10][11] +
|
|
F[9][12] * D[10][12] +
|
|
F[9][6] * D[6][10] +
|
|
F[9][7] * D[7][10] +
|
|
F[9][8] * D[8][10]) +
|
|
F[9][11] * (F[9][10] * D[10][11] + F[9][11] * D[11][11] +
|
|
F[9][12] * D[11][12] + F[9][6] * D[6][11] +
|
|
F[9][7] * D[7][11] + F[9][8] * D[8][11]) +
|
|
F[9][12] * (F[9][10] * D[10][12] + F[9][11] * D[11][12] +
|
|
F[9][12] * D[12][12] + F[9][6] * D[6][12] +
|
|
F[9][7] * D[7][12] + F[9][8] * D[8][12]) +
|
|
F[9][6] * (F[9][6] * D[6][6] + F[9][7] * D[6][7] +
|
|
F[9][8] * D[6][8] + F[9][10] * D[6][10] +
|
|
F[9][11] * D[6][11] + F[9][12] * D[6][12]) +
|
|
F[9][7] * (F[9][6] * D[6][7] + F[9][7] * D[7][7] +
|
|
F[9][8] * D[7][8] + F[9][10] * D[7][10] +
|
|
F[9][11] * D[7][11] + F[9][12] * D[7][12]) +
|
|
F[9][8] * (F[9][6] * D[6][8] + F[9][7] * D[7][8] +
|
|
F[9][8] * D[8][8] + F[9][10] * D[8][10] +
|
|
F[9][11] * D[8][11] + F[9][12] * D[8][12])) * Tsq +
|
|
(2 * F[9][10] * D[9][10] + 2 * F[9][11] * D[9][11] +
|
|
2 * F[9][12] * D[9][12] + 2 * F[9][6] * D[6][9] +
|
|
2 * F[9][7] * D[7][9] + 2 * F[9][8] * D[8][9]) * T + D[9][9];
|
|
P[9][10] = P[10][9] =
|
|
(F[9][10] * D[10][10] + F[9][11] * D[10][11] +
|
|
F[9][12] * D[10][12] + F[9][6] * D[6][10] +
|
|
F[9][7] * D[7][10] + F[9][8] * D[8][10]) * T + D[9][10];
|
|
P[9][11] = P[11][9] =
|
|
(F[9][10] * D[10][11] + F[9][11] * D[11][11] +
|
|
F[9][12] * D[11][12] + F[9][6] * D[6][11] +
|
|
F[9][7] * D[7][11] + F[9][8] * D[8][11]) * T + D[9][11];
|
|
P[9][12] = P[12][9] =
|
|
(F[9][10] * D[10][12] + F[9][11] * D[11][12] +
|
|
F[9][12] * D[12][12] + F[9][6] * D[6][12] +
|
|
F[9][7] * D[7][12] + F[9][8] * D[8][12]) * T + D[9][12];
|
|
P[10][10] = Q[6] * Tsq + D[10][10];
|
|
P[10][11] = P[11][10] = D[10][11];
|
|
P[10][12] = P[12][10] = D[10][12];
|
|
P[11][11] = Q[7] * Tsq + D[11][11];
|
|
P[11][12] = P[12][11] = D[11][12];
|
|
P[12][12] = Q[8] * Tsq + D[12][12];
|
|
}
|
|
#endif
|
|
|
|
// ************* SerialUpdate *******************
|
|
// Does the update step of the Kalman filter for the covariance and estimate
|
|
// Outputs are Xnew & Pnew, and are written over P and X
|
|
// Z is actual measurement, Y is predicted measurement
|
|
// Xnew = X + K*(Z-Y), Pnew=(I-K*H)*P,
|
|
// where K=P*H'*inv[H*P*H'+R]
|
|
// NOTE the algorithm assumes R (measurement covariance matrix) is diagonal
|
|
// i.e. the measurment noises are uncorrelated.
|
|
// It therefore uses a serial update that requires no matrix inversion by
|
|
// processing the measurements one at a time.
|
|
// Algorithm - see Grewal and Andrews, "Kalman Filtering,2nd Ed" p.121 & p.253
|
|
// - or see Simon, "Optimal State Estimation," 1st Ed, p.150
|
|
// The SensorsUsed variable is a bitwise mask indicating which sensors
|
|
// should be used in the update.
|
|
// ************************************************
|
|
|
|
void SerialUpdate(float H[NUMV][NUMX], float R[NUMV], float Z[NUMV],
|
|
float Y[NUMV], float P[NUMX][NUMX], float X[NUMX],
|
|
uint16_t SensorsUsed)
|
|
{
|
|
float HP[NUMX], HPHR, Error;
|
|
uint8_t i, j, k, m;
|
|
|
|
for (m = 0; m < NUMV; m++) {
|
|
|
|
if (SensorsUsed & (0x01 << m)) { // use this sensor for update
|
|
|
|
for (j = 0; j < NUMX; j++) { // Find Hp = H*P
|
|
HP[j] = 0;
|
|
for (k = 0; k < NUMX; k++)
|
|
HP[j] += H[m][k] * P[k][j];
|
|
}
|
|
HPHR = R[m]; // Find HPHR = H*P*H' + R
|
|
for (k = 0; k < NUMX; k++)
|
|
HPHR += HP[k] * H[m][k];
|
|
|
|
for (k = 0; k < NUMX; k++)
|
|
K[k][m] = HP[k] / HPHR; // find K = HP/HPHR
|
|
|
|
for (i = 0; i < NUMX; i++) { // Find P(m)= P(m-1) + K*HP
|
|
for (j = i; j < NUMX; j++)
|
|
P[i][j] = P[j][i] =
|
|
P[i][j] - K[i][m] * HP[j];
|
|
}
|
|
|
|
Error = Z[m] - Y[m];
|
|
for (i = 0; i < NUMX; i++) // Find X(m)= X(m-1) + K*Error
|
|
X[i] = X[i] + K[i][m] * Error;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
// ************* RungeKutta **********************
|
|
// Does a 4th order Runge Kutta numerical integration step
|
|
// Output, Xnew, is written over X
|
|
// NOTE the algorithm assumes time invariant state equations and
|
|
// constant inputs over integration step
|
|
// ************************************************
|
|
|
|
void RungeKutta(float X[NUMX], float U[NUMU], float dT)
|
|
{
|
|
|
|
float dT2 =
|
|
dT / 2, K1[NUMX], K2[NUMX], K3[NUMX], K4[NUMX], Xlast[NUMX];
|
|
uint8_t i;
|
|
|
|
for (i = 0; i < NUMX; i++)
|
|
Xlast[i] = X[i]; // make a working copy
|
|
|
|
StateEq(X, U, K1); // k1 = f(x,u)
|
|
for (i = 0; i < NUMX; i++)
|
|
X[i] = Xlast[i] + dT2 * K1[i];
|
|
StateEq(X, U, K2); // k2 = f(x+0.5*dT*k1,u)
|
|
for (i = 0; i < NUMX; i++)
|
|
X[i] = Xlast[i] + dT2 * K2[i];
|
|
StateEq(X, U, K3); // k3 = f(x+0.5*dT*k2,u)
|
|
for (i = 0; i < NUMX; i++)
|
|
X[i] = Xlast[i] + dT * K3[i];
|
|
StateEq(X, U, K4); // k4 = f(x+dT*k3,u)
|
|
|
|
// Xnew = X + dT*(k1+2*k2+2*k3+k4)/6
|
|
for (i = 0; i < NUMX; i++)
|
|
X[i] =
|
|
Xlast[i] + dT * (K1[i] + 2 * K2[i] + 2 * K3[i] +
|
|
K4[i]) / 6;
|
|
}
|
|
|
|
// ************* Model Specific Stuff ***************************
|
|
// *** StateEq, MeasurementEq, LinerizeFG, and LinearizeH ********
|
|
//
|
|
// State Variables = [Pos Vel Quaternion GyroBias NO-AccelBias]
|
|
// Deterministic Inputs = [AngularVel Accel]
|
|
// Disturbance Noise = [GyroNoise AccelNoise GyroRandomWalkNoise NO-AccelRandomWalkNoise]
|
|
//
|
|
// Measurement Variables = [Pos Vel BodyFrameMagField Altimeter]
|
|
// Inputs to Measurement = [EarthFrameMagField]
|
|
//
|
|
// Notes: Pos and Vel in earth frame
|
|
// AngularVel and Accel in body frame
|
|
// MagFields are unit vectors
|
|
// Xdot is output of StateEq()
|
|
// F and G are outputs of LinearizeFG(), all elements not set should be zero
|
|
// y is output of OutputEq()
|
|
// H is output of LinearizeH(), all elements not set should be zero
|
|
// ************************************************
|
|
|
|
void StateEq(float X[NUMX], float U[NUMU], float Xdot[NUMX])
|
|
{
|
|
float ax, ay, az, wx, wy, wz, q0, q1, q2, q3;
|
|
|
|
// ax=U[3]-X[13]; ay=U[4]-X[14]; az=U[5]-X[15]; // subtract the biases on accels
|
|
ax = U[3];
|
|
ay = U[4];
|
|
az = U[5]; // NO BIAS STATES ON ACCELS
|
|
wx = U[0] - X[10];
|
|
wy = U[1] - X[11];
|
|
wz = U[2] - X[12]; // subtract the biases on gyros
|
|
q0 = X[6];
|
|
q1 = X[7];
|
|
q2 = X[8];
|
|
q3 = X[9];
|
|
|
|
// Pdot = V
|
|
Xdot[0] = X[3];
|
|
Xdot[1] = X[4];
|
|
Xdot[2] = X[5];
|
|
|
|
// Vdot = Reb*a
|
|
Xdot[3] =
|
|
(q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) * ax + 2 * (q1 * q2 -
|
|
q0 * q3) *
|
|
ay + 2 * (q1 * q3 + q0 * q2) * az;
|
|
Xdot[4] =
|
|
2 * (q1 * q2 + q0 * q3) * ax + (q0 * q0 - q1 * q1 + q2 * q2 -
|
|
q3 * q3) * ay + 2 * (q2 * q3 -
|
|
q0 * q1) *
|
|
az;
|
|
Xdot[5] =
|
|
2 * (q1 * q3 - q0 * q2) * ax + 2 * (q2 * q3 + q0 * q1) * ay +
|
|
(q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) * az + 9.81;
|
|
|
|
// qdot = Q*w
|
|
Xdot[6] = (-q1 * wx - q2 * wy - q3 * wz) / 2;
|
|
Xdot[7] = (q0 * wx - q3 * wy + q2 * wz) / 2;
|
|
Xdot[8] = (q3 * wx + q0 * wy - q1 * wz) / 2;
|
|
Xdot[9] = (-q2 * wx + q1 * wy + q0 * wz) / 2;
|
|
|
|
// best guess is that bias stays constant
|
|
Xdot[10] = Xdot[11] = Xdot[12] = 0;
|
|
}
|
|
|
|
void LinearizeFG(float X[NUMX], float U[NUMU], float F[NUMX][NUMX],
|
|
float G[NUMX][NUMW])
|
|
{
|
|
float ax, ay, az, wx, wy, wz, q0, q1, q2, q3;
|
|
|
|
// ax=U[3]-X[13]; ay=U[4]-X[14]; az=U[5]-X[15]; // subtract the biases on accels
|
|
ax = U[3];
|
|
ay = U[4];
|
|
az = U[5]; // NO BIAS STATES ON ACCELS
|
|
wx = U[0] - X[10];
|
|
wy = U[1] - X[11];
|
|
wz = U[2] - X[12]; // subtract the biases on gyros
|
|
q0 = X[6];
|
|
q1 = X[7];
|
|
q2 = X[8];
|
|
q3 = X[9];
|
|
|
|
// Pdot = V
|
|
F[0][3] = F[1][4] = F[2][5] = 1;
|
|
|
|
// dVdot/dq
|
|
F[3][6] = 2 * (q0 * ax - q3 * ay + q2 * az);
|
|
F[3][7] = 2 * (q1 * ax + q2 * ay + q3 * az);
|
|
F[3][8] = 2 * (-q2 * ax + q1 * ay + q0 * az);
|
|
F[3][9] = 2 * (-q3 * ax - q0 * ay + q1 * az);
|
|
F[4][6] = 2 * (q3 * ax + q0 * ay - q1 * az);
|
|
F[4][7] = 2 * (q2 * ax - q1 * ay - q0 * az);
|
|
F[4][8] = 2 * (q1 * ax + q2 * ay + q3 * az);
|
|
F[4][9] = 2 * (q0 * ax - q3 * ay + q2 * az);
|
|
F[5][6] = 2 * (-q2 * ax + q1 * ay + q0 * az);
|
|
F[5][7] = 2 * (q3 * ax + q0 * ay - q1 * az);
|
|
F[5][8] = 2 * (-q0 * ax + q3 * ay - q2 * az);
|
|
F[5][9] = 2 * (q1 * ax + q2 * ay + q3 * az);
|
|
|
|
// dVdot/dabias & dVdot/dna - NO BIAS STATES ON ACCELS - S0 REPEAT FOR G BELOW
|
|
// F[3][13]=G[3][3]=-q0*q0-q1*q1+q2*q2+q3*q3; F[3][14]=G[3][4]=2*(-q1*q2+q0*q3); F[3][15]=G[3][5]=-2*(q1*q3+q0*q2);
|
|
// F[4][13]=G[4][3]=-2*(q1*q2+q0*q3); F[4][14]=G[4][4]=-q0*q0+q1*q1-q2*q2+q3*q3; F[4][15]=G[4][5]=2*(-q2*q3+q0*q1);
|
|
// F[5][13]=G[5][3]=2*(-q1*q3+q0*q2); F[5][14]=G[5][4]=-2*(q2*q3+q0*q1); F[5][15]=G[5][5]=-q0*q0+q1*q1+q2*q2-q3*q3;
|
|
|
|
// dqdot/dq
|
|
F[6][6] = 0;
|
|
F[6][7] = -wx / 2;
|
|
F[6][8] = -wy / 2;
|
|
F[6][9] = -wz / 2;
|
|
F[7][6] = wx / 2;
|
|
F[7][7] = 0;
|
|
F[7][8] = wz / 2;
|
|
F[7][9] = -wy / 2;
|
|
F[8][6] = wy / 2;
|
|
F[8][7] = -wz / 2;
|
|
F[8][8] = 0;
|
|
F[8][9] = wx / 2;
|
|
F[9][6] = wz / 2;
|
|
F[9][7] = wy / 2;
|
|
F[9][8] = -wx / 2;
|
|
F[9][9] = 0;
|
|
|
|
// dqdot/dwbias
|
|
F[6][10] = q1 / 2;
|
|
F[6][11] = q2 / 2;
|
|
F[6][12] = q3 / 2;
|
|
F[7][10] = -q0 / 2;
|
|
F[7][11] = q3 / 2;
|
|
F[7][12] = -q2 / 2;
|
|
F[8][10] = -q3 / 2;
|
|
F[8][11] = -q0 / 2;
|
|
F[8][12] = q1 / 2;
|
|
F[9][10] = q2 / 2;
|
|
F[9][11] = -q1 / 2;
|
|
F[9][12] = -q0 / 2;
|
|
|
|
// dVdot/dna - NO BIAS STATES ON ACCELS - S0 REPEAT FOR G HERE
|
|
G[3][3] = -q0 * q0 - q1 * q1 + q2 * q2 + q3 * q3;
|
|
G[3][4] = 2 * (-q1 * q2 + q0 * q3);
|
|
G[3][5] = -2 * (q1 * q3 + q0 * q2);
|
|
G[4][3] = -2 * (q1 * q2 + q0 * q3);
|
|
G[4][4] = -q0 * q0 + q1 * q1 - q2 * q2 + q3 * q3;
|
|
G[4][5] = 2 * (-q2 * q3 + q0 * q1);
|
|
G[5][3] = 2 * (-q1 * q3 + q0 * q2);
|
|
G[5][4] = -2 * (q2 * q3 + q0 * q1);
|
|
G[5][5] = -q0 * q0 + q1 * q1 + q2 * q2 - q3 * q3;
|
|
|
|
// dqdot/dnw
|
|
G[6][0] = q1 / 2;
|
|
G[6][1] = q2 / 2;
|
|
G[6][2] = q3 / 2;
|
|
G[7][0] = -q0 / 2;
|
|
G[7][1] = q3 / 2;
|
|
G[7][2] = -q2 / 2;
|
|
G[8][0] = -q3 / 2;
|
|
G[8][1] = -q0 / 2;
|
|
G[8][2] = q1 / 2;
|
|
G[9][0] = q2 / 2;
|
|
G[9][1] = -q1 / 2;
|
|
G[9][2] = -q0 / 2;
|
|
|
|
// dwbias = random walk noise
|
|
G[10][6] = G[11][7] = G[12][8] = 1;
|
|
// dabias = random walk noise
|
|
// G[13][9]=G[14][10]=G[15][11]=1; // NO BIAS STATES ON ACCELS
|
|
}
|
|
|
|
void MeasurementEq(float X[NUMX], float Be[3], float Y[NUMV])
|
|
{
|
|
float q0, q1, q2, q3;
|
|
|
|
q0 = X[6];
|
|
q1 = X[7];
|
|
q2 = X[8];
|
|
q3 = X[9];
|
|
|
|
// first six outputs are P and V
|
|
Y[0] = X[0];
|
|
Y[1] = X[1];
|
|
Y[2] = X[2];
|
|
Y[3] = X[3];
|
|
Y[4] = X[4];
|
|
Y[5] = X[5];
|
|
|
|
// Bb=Rbe*Be
|
|
Y[6] =
|
|
(q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) * Be[0] +
|
|
2 * (q1 * q2 + q0 * q3) * Be[1] + 2 * (q1 * q3 -
|
|
q0 * q2) * Be[2];
|
|
Y[7] =
|
|
2 * (q1 * q2 - q0 * q3) * Be[0] + (q0 * q0 - q1 * q1 +
|
|
q2 * q2 - q3 * q3) * Be[1] +
|
|
2 * (q2 * q3 + q0 * q1) * Be[2];
|
|
Y[8] =
|
|
2 * (q1 * q3 + q0 * q2) * Be[0] + 2 * (q2 * q3 -
|
|
q0 * q1) * Be[1] +
|
|
(q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) * Be[2];
|
|
|
|
// Alt = -Pz
|
|
Y[9] = -X[2];
|
|
}
|
|
|
|
void LinearizeH(float X[NUMX], float Be[3], float H[NUMV][NUMX])
|
|
{
|
|
float q0, q1, q2, q3;
|
|
|
|
q0 = X[6];
|
|
q1 = X[7];
|
|
q2 = X[8];
|
|
q3 = X[9];
|
|
|
|
// dP/dP=I;
|
|
H[0][0] = H[1][1] = H[2][2] = 1;
|
|
// dV/dV=I;
|
|
H[3][3] = H[4][4] = H[5][5] = 1;
|
|
|
|
// dBb/dq
|
|
H[6][6] = 2 * (q0 * Be[0] + q3 * Be[1] - q2 * Be[2]);
|
|
H[6][7] = 2 * (q1 * Be[0] + q2 * Be[1] + q3 * Be[2]);
|
|
H[6][8] = 2 * (-q2 * Be[0] + q1 * Be[1] - q0 * Be[2]);
|
|
H[6][9] = 2 * (-q3 * Be[0] + q0 * Be[1] + q1 * Be[2]);
|
|
H[7][6] = 2 * (-q3 * Be[0] + q0 * Be[1] + q1 * Be[2]);
|
|
H[7][7] = 2 * (q2 * Be[0] - q1 * Be[1] + q0 * Be[2]);
|
|
H[7][8] = 2 * (q1 * Be[0] + q2 * Be[1] + q3 * Be[2]);
|
|
H[7][9] = 2 * (-q0 * Be[0] - q3 * Be[1] + q2 * Be[2]);
|
|
H[8][6] = 2 * (q2 * Be[0] - q1 * Be[1] + q0 * Be[2]);
|
|
H[8][7] = 2 * (q3 * Be[0] - q0 * Be[1] - q1 * Be[2]);
|
|
H[8][8] = 2 * (q0 * Be[0] + q3 * Be[1] - q2 * Be[2]);
|
|
H[8][9] = 2 * (q1 * Be[0] + q2 * Be[1] + q3 * Be[2]);
|
|
|
|
// dAlt/dPz = -1
|
|
H[9][2] = -1;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
* @}
|
|
*/
|