1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-05 16:46:06 +01:00
LibrePilot/flight/PiOS/STM32F10x/pios_adc.c
gussy 3b32b89839 Updated copyright headers.
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@146 ebee16cc-31ac-478f-84a7-5cbb03baadba
2010-01-31 17:56:54 +00:00

262 lines
8.3 KiB
C
Raw Blame History

/**
******************************************************************************
*
* @file pios_adc.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* Parts by Thorsten Klose (tk@midibox.org) (tk@midibox.org)
* @brief Analog to Digital converstion routines
* @see The GNU Public License (GPL) Version 3
* @defgroup PIOS_ADC ADC Functions
* @{
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Project Includes */
#include "pios.h"
/* Local Variables */
/* following two arrays are word aligned, so that DMA can transfer two hwords at once */
static uint16_t adc_conversion_values[NUM_ADC_PINS] __attribute__((aligned(4)));
static uint16_t adc_conversion_values_sum[NUM_ADC_PINS] __attribute__((aligned(4)));
static uint16_t adc_pin_values[NUM_ADC_PINS];
static uint32_t adc_pin_changed[NUM_ADC_PINS];
/**
* Initialise the ADC Peripheral
*/
void PIOS_ADC_Init(void)
{
int32_t i;
/* Clear arrays and variables */
for(i=0; i < NUM_ADC_PINS; ++i) {
adc_conversion_values[i] = 0;
adc_conversion_values_sum[i] = 0;
}
for(i=0; i < NUM_ADC_PINS; ++i) {
adc_pin_values[i] = 0;
}
for(i=0; i < NUM_ADC_PINS; ++i) {
adc_pin_changed[i] = 1;
}
/* Setup analog pins */
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_InitStructure.GPIO_Pin = ADC_Z_PIN | ADC_A_PIN | ADC_B_PIN;
GPIO_Init(GPIOC, &GPIO_InitStructure);
/* Enable ADC1/2 clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2, ENABLE);
/* Map channels to conversion slots depending on the channel selection mask */
/* Distribute this over the three ADCs, so that channels can be converted in parallel */
/* Sample time: */
/* With an ADCCLK = 14 MHz and a sampling time of 293.5 cycles: */
/* Tconv = 239.5 + 12.5 = 252 cycles = 18<31>s */
/* To be pedantic, we take A and B simultaneously, and Z and Temp simultaneously */
ADC_RegularChannelConfig(ADC1, ADC_A_CHANNEL, 1, ADC_SampleTime_239Cycles5);
ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 2, ADC_SampleTime_239Cycles5);
ADC_RegularChannelConfig(ADC2, ADC_B_CHANNEL, 1, ADC_SampleTime_239Cycles5);
ADC_RegularChannelConfig(ADC2, ADC_Z_CHANNEL, 2, ADC_SampleTime_239Cycles5);
/* Configure ADCs */
ADC_InitTypeDef ADC_InitStructure;
ADC_StructInit(&ADC_InitStructure);
ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 2;
ADC_Init(ADC1, &ADC_InitStructure);
ADC_Init(ADC2, &ADC_InitStructure);
/* Enable ADC2 external trigger conversion (to synch with ADC1) */
ADC_ExternalTrigConvCmd(ADC2, ENABLE);
/* Enable ADC1->DMA request */
ADC_DMACmd(ADC1, ENABLE);
/* ADC1 calibration */
ADC_Cmd(ADC1, ENABLE);
ADC_ResetCalibration(ADC1);
while(ADC_GetResetCalibrationStatus(ADC1));
ADC_StartCalibration(ADC1);
while(ADC_GetCalibrationStatus(ADC1));
/* ADC2 calibration */
ADC_Cmd(ADC2, ENABLE);
ADC_ResetCalibration(ADC2);
while(ADC_GetResetCalibrationStatus(ADC2));
ADC_StartCalibration(ADC2);
while(ADC_GetCalibrationStatus(ADC2));
/* Enable DMA1 clock */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
/* Configure DMA1 channel 1 to fetch data from ADC result register */
DMA_InitTypeDef DMA_InitStructure;
DMA_StructInit(&DMA_InitStructure);
DMA_DeInit(DMA1_Channel1);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&adc_conversion_values;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = 2; /* Number of conversions depends on number of used channels */
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &DMA_InitStructure);
DMA_Cmd(DMA1_Channel1, ENABLE);
/* Trigger interrupt when all conversion values have been fetched */
DMA_ITConfig(DMA1_Channel1, DMA_IT_TC, ENABLE);
/* Configure and enable DMA interrupt */
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = ADC_IRQ_PRIO;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Finally start initial conversion */
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
}
/**
* Returns value of an ADC Pin
* \param[in] pin number
* \return ADC pin value - resolution depends on the selected oversampling rate
* \return -1 if pin doesn't exist
*/
int32_t PIOS_ADC_PinGet(uint32_t pin)
{
/* Check if pin exists */
if(pin >= NUM_ADC_PINS) {
return -1;
}
/* Return last conversion result */
return adc_pin_values[pin];
}
/**
* Checks for pin changes, and calls given callback function with following parameters on pin changes:
* \code
* void ADCNotifyChanged(uint32_t pin, uint16_t value)
* \endcode
* \param[in] _callback pointer to callback function
* \return < 0 on errors
*/
int32_t PIOS_ADC_Handler(void *_callback)
{
/* No callback function? */
if(_callback == NULL) {
return -1;
}
int pin;
void (*callback)(int32_t pin, uint32_t value) = _callback;
/* Check for changed ADC conversion values */
for(pin = 0; pin < NUM_ADC_PINS; pin++) {
PIOS_IRQ_Disable();
uint32_t pin_value = adc_pin_values[pin];
PIOS_IRQ_Enable();
/* Call application hook */
/* Note that due to dual conversion approach, we have to convert the pin number */
/* If an uneven number of channels selected */
if(adc_pin_changed[pin] == 1) {
callback(pin, pin_value);
}
}
/* Start next scan */
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
/* No error */
return 0;
}
/**
* DMA channel interrupt is triggered when all ADC channels have been converted
* \note shouldn't be called directly from application
*/
void DMA1_Channel1_IRQHandler(void)
{
int32_t i;
uint16_t *src_ptr, *dst_ptr, *changed_ptr;
/* Clear the pending flag(s) */
DMA_ClearFlag(DMA1_FLAG_TC1 | DMA1_FLAG_TE1 | DMA1_FLAG_HT1 | DMA1_FLAG_GL1);
/* Copy conversion values to adc_pin_values */
// src_ptr = (uint16_t *)adc_conversion_values;
// dst_ptr = (uint16_t *)&adc_pin_values[NUM_ADC_PINS];
// changed_ptr = (uint16_t *)&adc_pin_changed[NUM_ADC_PINS];
//
// for(i = 0; i < NUM_ADC_PINS; ++i) {
// /* Takeover new value */
// if(*dst_ptr != *src_ptr) {
// *dst_ptr = *src_ptr;
// *changed_ptr = 1;
// } else {
// *changed_ptr = 0;
// }
//
// /* Switch to next results */
// ++dst_ptr;
// ++src_ptr;
// ++changed_ptr;
// }
src_ptr = (uint16_t *)adc_conversion_values;
for(i = 0; i < NUM_ADC_PINS; ++i) {
/* Takeover new value */
if(adc_pin_values[i] != *src_ptr) {
adc_pin_values[i] = *src_ptr;
adc_pin_changed[i] = 1;
} else {
adc_pin_changed[i] = 0;
}
++src_ptr;
}
/* Request next conversion */
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
}