1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-01 09:24:10 +01:00
LibrePilot/flight/modules/System/systemmod.c

718 lines
24 KiB
C

/**
******************************************************************************
* @addtogroup LibrePilotModules LibrePilot Modules
* @brief The LibrePilot Modules do the majority of the control in LibrePilot. The
* @ref SystemModule "System Module" starts all the other modules that then take care
* of all the telemetry and control algorithms and such. This is done through the @ref PIOS
* "PIOS Hardware abstraction layer" which then contains hardware specific implementations
* (currently only STM32 supported)
*
* @{
* @addtogroup SystemModule System Module
* @brief Initializes PIOS and other modules runs monitoring
* After initializing all the modules (currently selected by Makefile but in
* future controlled by configuration on SD card) runs basic monitoring and
* alarms.
* @{
*
* @file systemmod.c
* @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2015.
* The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010-2015.
* @brief System module
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <openpilot.h>
// private includes
#include "inc/systemmod.h"
#include <notification.h>
#ifdef PIOS_INCLUDE_WS2811
#include <lednotification.h>
#endif
// UAVOs
#include <objectpersistence.h>
#include <flightstatus.h>
#include <systemstats.h>
#include <systemsettings.h>
#include <i2cstats.h>
#include <taskinfo.h>
#include <watchdogstatus.h>
#include <callbackinfo.h>
#include <hwsettings.h>
#include <pios_flashfs.h>
#include <pios_notify.h>
#include <pios_task_monitor.h>
#include <pios_board_init.h>
#ifdef PIOS_INCLUDE_INSTRUMENTATION
#include <instrumentation.h>
#include <pios_instrumentation.h>
#endif
#if defined(PIOS_INCLUDE_RFM22B)
#include <oplinkstatus.h>
#endif
// Flight Libraries
#include <sanitycheck.h>
// #define DEBUG_THIS_FILE
#if defined(PIOS_INCLUDE_DEBUG_CONSOLE) && defined(DEBUG_THIS_FILE)
#define DEBUG_MSG(format, ...) PIOS_COM_SendFormattedString(PIOS_COM_DEBUG, format,##__VA_ARGS__)
#else
#define DEBUG_MSG(format, ...)
#endif
// Private constants
#define SYSTEM_UPDATE_PERIOD_MS 250
#if defined(PIOS_SYSTEM_STACK_SIZE)
#define STACK_SIZE_BYTES PIOS_SYSTEM_STACK_SIZE
#else
#define STACK_SIZE_BYTES 1024
#endif
#define TASK_PRIORITY (tskIDLE_PRIORITY + 1)
// Private types
// Private variables
static xTaskHandle systemTaskHandle;
static xQueueHandle objectPersistenceQueue;
static enum { STACKOVERFLOW_NONE = 0, STACKOVERFLOW_WARNING = 1, STACKOVERFLOW_CRITICAL = 3 } stackOverflow;
static bool mallocFailed;
static HwSettingsData bootHwSettings;
static FrameType_t bootFrameType;
volatile int initTaskDone = 0;
// Private functions
static void objectUpdatedCb(UAVObjEvent *ev);
static void checkSettingsUpdatedCb(UAVObjEvent *ev);
#ifdef DIAG_TASKS
static void taskMonitorForEachCallback(uint16_t task_id, const struct pios_task_info *task_info, void *context);
static void callbackSchedulerForEachCallback(int16_t callback_id, const struct pios_callback_info *callback_info, void *context);
#endif
static void updateStats();
static void updateSystemAlarms();
static void systemTask(void *parameters);
#ifdef DIAG_I2C_WDG_STATS
static void updateI2Cstats();
static void updateWDGstats();
#endif
extern uintptr_t pios_uavo_settings_fs_id;
extern uintptr_t pios_user_fs_id;
/**
* Create the module task.
* \returns 0 on success or -1 if initialization failed
*/
int32_t SystemModStart(void)
{
// Initialize vars
stackOverflow = STACKOVERFLOW_NONE;
mallocFailed = false;
// Create system task
xTaskCreate(systemTask, "System", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &systemTaskHandle);
return 0;
}
/**
* Initialize the module, called on startup.
* \returns 0 on success or -1 if initialization failed
*/
int32_t SystemModInitialize(void)
{
// Must registers objects here for system thread because ObjectManager started in OpenPilotInit
SystemSettingsInitialize();
SystemStatsInitialize();
FlightStatusInitialize();
ObjectPersistenceInitialize();
#ifdef DIAG_TASKS
TaskInfoInitialize();
CallbackInfoInitialize();
#endif
#ifdef DIAG_I2C_WDG_STATS
I2CStatsInitialize();
WatchdogStatusInitialize();
#endif
#ifdef PIOS_INCLUDE_INSTRUMENTATION
InstrumentationInit();
#endif
objectPersistenceQueue = xQueueCreate(1, sizeof(UAVObjEvent));
if (objectPersistenceQueue == NULL) {
return -1;
}
return 0;
}
MODULE_INITCALL(SystemModInitialize, 0);
/**
* System task, periodically executes every SYSTEM_UPDATE_PERIOD_MS
*/
static void systemTask(__attribute__((unused)) void *parameters)
{
/* calibrate the cpu usage monitor */
PIOS_TASK_MONITOR_CalibrateIdleCounter();
/* board driver init */
PIOS_Board_Init();
/* Initialize all modules */
MODULE_INITIALISE_ALL;
while (!initTaskDone) {
vTaskDelay(10);
}
#ifndef PIOS_INCLUDE_WDG
// if no watchdog is enabled, don't reset watchdog in MODULE_TASKCREATE_ALL loop
#define PIOS_WDG_Clear()
#endif
/* create all modules thread */
MODULE_TASKCREATE_ALL;
/* start the delayed callback scheduler */
PIOS_CALLBACKSCHEDULER_Start();
// Register task
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_SYSTEM, systemTaskHandle);
if (mallocFailed) {
/* We failed to malloc during task creation,
* system behaviour is undefined. Reset and let
* the BootFault code recover for us.
*/
PIOS_SYS_Reset();
}
#if defined(PIOS_INCLUDE_IAP)
/* Record a successful boot */
PIOS_IAP_WriteBootCount(0);
#endif
// Listen for SettingPersistance object updates, connect a callback function
ObjectPersistenceConnectQueue(objectPersistenceQueue);
// Load a copy of HwSetting active at boot time
HwSettingsGet(&bootHwSettings);
bootFrameType = GetCurrentFrameType();
// Whenever the configuration changes, make sure it is safe to fly
HwSettingsConnectCallback(checkSettingsUpdatedCb);
SystemSettingsConnectCallback(checkSettingsUpdatedCb);
#ifdef DIAG_TASKS
TaskInfoData taskInfoData;
CallbackInfoData callbackInfoData;
#endif
// Main system loop
while (1) {
NotificationUpdateStatus();
// Update the system statistics
updateStats();
// Update the system alarms
updateSystemAlarms();
#ifdef DIAG_I2C_WDG_STATS
updateI2Cstats();
updateWDGstats();
#endif
#ifdef PIOS_INCLUDE_INSTRUMENTATION
InstrumentationPublishAllCounters();
#endif
#ifdef DIAG_TASKS
// Update the task status object
PIOS_TASK_MONITOR_ForEachTask(taskMonitorForEachCallback, &taskInfoData);
TaskInfoSet(&taskInfoData);
// Update the callback status object
// if(FALSE){
PIOS_CALLBACKSCHEDULER_ForEachCallback(callbackSchedulerForEachCallback, &callbackInfoData);
CallbackInfoSet(&callbackInfoData);
// }
#endif
// }
UAVObjEvent ev;
int delayTime = SYSTEM_UPDATE_PERIOD_MS;
#if defined(PIOS_INCLUDE_RFM22B)
// Update the OPLinkStatus UAVO
OPLinkStatusData oplinkStatus;
OPLinkStatusGet(&oplinkStatus);
if (pios_rfm22b_id) {
// Get the other device stats.
PIOS_RFM22B_GetPairStats(pios_rfm22b_id, oplinkStatus.PairIDs, oplinkStatus.PairSignalStrengths, OPLINKSTATUS_PAIRIDS_NUMELEM);
// Get the stats from the radio device
struct rfm22b_stats radio_stats;
PIOS_RFM22B_GetStats(pios_rfm22b_id, &radio_stats);
// Update the OPLInk status
static bool first_time = true;
static uint16_t prev_tx_count = 0;
static uint16_t prev_rx_count = 0;
static uint16_t prev_tx_seq = 0;
static uint16_t prev_rx_seq = 0;
oplinkStatus.HeapRemaining = xPortGetFreeHeapSize();
oplinkStatus.DeviceID = PIOS_RFM22B_DeviceID(pios_rfm22b_id);
oplinkStatus.RxGood = radio_stats.rx_good;
oplinkStatus.RxCorrected = radio_stats.rx_corrected;
oplinkStatus.RxErrors = radio_stats.rx_error;
oplinkStatus.RxMissed = radio_stats.rx_missed;
oplinkStatus.RxFailure = radio_stats.rx_failure;
oplinkStatus.TxDropped = radio_stats.tx_dropped;
oplinkStatus.TxFailure = radio_stats.tx_failure;
oplinkStatus.Resets = radio_stats.resets;
oplinkStatus.Timeouts = radio_stats.timeouts;
oplinkStatus.RSSI = radio_stats.rssi;
oplinkStatus.LinkQuality = radio_stats.link_quality;
if (first_time) {
first_time = false;
} else {
uint16_t tx_count = radio_stats.tx_byte_count;
uint16_t rx_count = radio_stats.rx_byte_count;
uint16_t tx_packets = radio_stats.tx_seq - prev_tx_seq;
uint16_t rx_packets = radio_stats.rx_seq - prev_rx_seq;
uint16_t tx_bytes = (tx_count < prev_tx_count) ? (0xffff - prev_tx_count + tx_count) : (tx_count - prev_tx_count);
uint16_t rx_bytes = (rx_count < prev_rx_count) ? (0xffff - prev_rx_count + rx_count) : (rx_count - prev_rx_count);
oplinkStatus.TXRate = (uint16_t)((float)(tx_bytes * 1000) / SYSTEM_UPDATE_PERIOD_MS);
oplinkStatus.RXRate = (uint16_t)((float)(rx_bytes * 1000) / SYSTEM_UPDATE_PERIOD_MS);
oplinkStatus.TXPacketRate = (uint16_t)((float)(tx_packets * 1000) / SYSTEM_UPDATE_PERIOD_MS);
oplinkStatus.RXPacketRate = (uint16_t)((float)(rx_packets * 1000) / SYSTEM_UPDATE_PERIOD_MS);
prev_tx_count = tx_count;
prev_rx_count = rx_count;
prev_tx_seq = radio_stats.tx_seq;
prev_rx_seq = radio_stats.rx_seq;
}
oplinkStatus.TXSeq = radio_stats.tx_seq;
oplinkStatus.RXSeq = radio_stats.rx_seq;
oplinkStatus.LinkState = radio_stats.link_state;
} else {
oplinkStatus.LinkState = OPLINKSTATUS_LINKSTATE_DISABLED;
}
OPLinkStatusSet(&oplinkStatus);
#endif /* if defined(PIOS_INCLUDE_RFM22B) */
if (xQueueReceive(objectPersistenceQueue, &ev, delayTime) == pdTRUE) {
// If object persistence is updated call the callback
objectUpdatedCb(&ev);
}
}
}
/**
* Function called in response to object updates
*/
static void objectUpdatedCb(UAVObjEvent *ev)
{
ObjectPersistenceData objper;
UAVObjHandle obj;
// If the object updated was the ObjectPersistence execute requested action
if (ev->obj == ObjectPersistenceHandle()) {
// Get object data
ObjectPersistenceGet(&objper);
int retval = 1;
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
// When this is called because of this method don't do anything
if (objper.Operation == OBJECTPERSISTENCE_OPERATION_ERROR || objper.Operation == OBJECTPERSISTENCE_OPERATION_COMPLETED) {
return;
}
// Execute action if disarmed
if (flightStatus.Armed != FLIGHTSTATUS_ARMED_DISARMED) {
retval = -1;
} else if (objper.Operation == OBJECTPERSISTENCE_OPERATION_LOAD) {
if (objper.Selection == OBJECTPERSISTENCE_SELECTION_SINGLEOBJECT) {
// Get selected object
obj = UAVObjGetByID(objper.ObjectID);
if (obj == 0) {
return;
}
// Load selected instance
retval = UAVObjLoad(obj, objper.InstanceID);
} else if (objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLSETTINGS || objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLOBJECTS) {
retval = UAVObjLoadSettings();
} else if (objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLMETAOBJECTS || objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLOBJECTS) {
retval = UAVObjLoadMetaobjects();
}
} else if (objper.Operation == OBJECTPERSISTENCE_OPERATION_SAVE) {
if (objper.Selection == OBJECTPERSISTENCE_SELECTION_SINGLEOBJECT) {
// Get selected object
obj = UAVObjGetByID(objper.ObjectID);
if (obj == 0) {
return;
}
// Save selected instance
retval = UAVObjSave(obj, objper.InstanceID);
// Not sure why this is needed
vTaskDelay(10);
// Verify saving worked
if (retval == 0) {
retval = UAVObjLoad(obj, objper.InstanceID);
}
} else if (objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLSETTINGS || objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLOBJECTS) {
retval = UAVObjSaveSettings();
} else if (objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLMETAOBJECTS || objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLOBJECTS) {
retval = UAVObjSaveMetaobjects();
}
} else if (objper.Operation == OBJECTPERSISTENCE_OPERATION_DELETE) {
if (objper.Selection == OBJECTPERSISTENCE_SELECTION_SINGLEOBJECT) {
// Get selected object
obj = UAVObjGetByID(objper.ObjectID);
if (obj == 0) {
return;
}
// Delete selected instance
retval = UAVObjDelete(obj, objper.InstanceID);
} else if (objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLSETTINGS || objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLOBJECTS) {
retval = UAVObjDeleteSettings();
} else if (objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLMETAOBJECTS || objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLOBJECTS) {
retval = UAVObjDeleteMetaobjects();
}
} else if (objper.Operation == OBJECTPERSISTENCE_OPERATION_FULLERASE) {
#if defined(PIOS_INCLUDE_FLASH_LOGFS_SETTINGS)
retval = PIOS_FLASHFS_Format(0);
#else
retval = -1;
#endif
}
switch (retval) {
case 0:
objper.Operation = OBJECTPERSISTENCE_OPERATION_COMPLETED;
ObjectPersistenceSet(&objper);
break;
case -1:
objper.Operation = OBJECTPERSISTENCE_OPERATION_ERROR;
ObjectPersistenceSet(&objper);
break;
default:
break;
}
}
}
/**
* Called whenever hardware settings changed
*/
static void checkSettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
HwSettingsData currentHwSettings;
HwSettingsGet(&currentHwSettings);
FrameType_t currentFrameType = GetCurrentFrameType();
// check whether the Hw Configuration has changed from the one used at boot time
if ((memcmp(&bootHwSettings, &currentHwSettings, sizeof(HwSettingsData)) != 0) ||
(currentFrameType != bootFrameType)) {
ExtendedAlarmsSet(SYSTEMALARMS_ALARM_BOOTFAULT, SYSTEMALARMS_ALARM_CRITICAL, SYSTEMALARMS_EXTENDEDALARMSTATUS_REBOOTREQUIRED, 0);
}
}
#ifdef DIAG_TASKS
static void taskMonitorForEachCallback(uint16_t task_id, const struct pios_task_info *task_info, void *context)
{
TaskInfoData *taskData = (TaskInfoData *)context;
// By convention, there is a direct mapping between task monitor task_id's and members
// of the TaskInfoXXXXElem enums
PIOS_DEBUG_Assert(task_id < TASKINFO_RUNNING_NUMELEM);
TaskInfoRunningToArray(taskData->Running)[task_id] = task_info->is_running ? TASKINFO_RUNNING_TRUE : TASKINFO_RUNNING_FALSE;
((uint16_t *)&taskData->StackRemaining)[task_id] = task_info->stack_remaining;
((uint8_t *)&taskData->RunningTime)[task_id] = task_info->running_time_percentage;
}
static void callbackSchedulerForEachCallback(int16_t callback_id, const struct pios_callback_info *callback_info, void *context)
{
CallbackInfoData *callbackData = (CallbackInfoData *)context;
if (callback_id < 0) {
return;
}
// delayed callback scheduler reports callback stack overflows as remaininng: -1
#if !defined(ARCH_POSIX) && !defined(ARCH_WIN32)
if (callback_info->stack_remaining < 0 && stackOverflow == STACKOVERFLOW_NONE) {
stackOverflow = STACKOVERFLOW_WARNING;
}
#endif
// By convention, there is a direct mapping between (not negative) callback scheduler callback_id's and members
// of the CallbackInfoXXXXElem enums
PIOS_DEBUG_Assert(callback_id < CALLBACKINFO_RUNNING_NUMELEM);
((uint8_t *)&callbackData->Running)[callback_id] = callback_info->is_running;
((uint32_t *)&callbackData->RunningTime)[callback_id] = callback_info->running_time_count;
((int16_t *)&callbackData->StackRemaining)[callback_id] = callback_info->stack_remaining;
}
#endif /* ifdef DIAG_TASKS */
/**
* Called periodically to update the I2C statistics
*/
#ifdef DIAG_I2C_WDG_STATS
static void updateI2Cstats()
{
#if defined(PIOS_INCLUDE_I2C)
I2CStatsData i2cStats;
I2CStatsGet(&i2cStats);
struct pios_i2c_fault_history history;
PIOS_I2C_GetDiagnostics(&history, &i2cStats.event_errors);
for (uint8_t i = 0; (i < I2C_LOG_DEPTH) && (i < I2CSTATS_EVENT_LOG_NUMELEM); i++) {
i2cStats.evirq_log[i] = history.evirq[i];
i2cStats.erirq_log[i] = history.erirq[i];
i2cStats.event_log[i] = history.event[i];
i2cStats.state_log[i] = history.state[i];
}
i2cStats.last_error_type = history.type;
I2CStatsSet(&i2cStats);
#endif
}
static void updateWDGstats()
{
WatchdogStatusData watchdogStatus;
watchdogStatus.BootupFlags = PIOS_WDG_GetBootupFlags();
watchdogStatus.ActiveFlags = PIOS_WDG_GetActiveFlags();
WatchdogStatusSet(&watchdogStatus);
}
#endif /* ifdef DIAG_I2C_WDG_STATS */
/**
* Called periodically to update the system stats
*/
static uint16_t GetFreeIrqStackSize(void)
{
uint32_t i = 0x200;
#if !defined(ARCH_POSIX) && !defined(ARCH_WIN32) && defined(CHECK_IRQ_STACK)
extern uint32_t _irq_stack_top;
extern uint32_t _irq_stack_end;
uint32_t pattern = 0x0000A5A5;
uint32_t *ptr = &_irq_stack_end;
#if 1 /* the ugly way accurate but takes more time, useful for debugging */
uint32_t stack_size = (((uint32_t)&_irq_stack_top - (uint32_t)&_irq_stack_end) & ~3) / 4;
for (i = 0; i < stack_size; i++) {
if (ptr[i] != pattern) {
i = i * 4;
break;
}
}
#else /* faster way but not accurate */
if (*(volatile uint32_t *)((uint32_t)ptr + IRQSTACK_LIMIT_CRITICAL) != pattern) {
i = IRQSTACK_LIMIT_CRITICAL - 1;
} else if (*(volatile uint32_t *)((uint32_t)ptr + IRQSTACK_LIMIT_WARNING) != pattern) {
i = IRQSTACK_LIMIT_WARNING - 1;
} else {
i = IRQSTACK_LIMIT_WARNING;
}
#endif
#endif /* if !defined(ARCH_POSIX) && !defined(ARCH_WIN32) && defined(CHECK_IRQ_STACK) */
return i;
}
/**
* Called periodically to update the system stats
*/
static void updateStats()
{
SystemStatsData stats;
// Get stats and update
SystemStatsGet(&stats);
stats.FlightTime = xTaskGetTickCount() * portTICK_RATE_MS;
#if defined(ARCH_POSIX) || defined(ARCH_WIN32)
// POSIX port of FreeRTOS doesn't have xPortGetFreeHeapSize()
stats.SystemModStackRemaining = 128;
stats.HeapRemaining = 10240;
#else
stats.HeapRemaining = xPortGetFreeHeapSize();
stats.SystemModStackRemaining = uxTaskGetStackHighWaterMark(NULL) * 4;
#endif
// Get Irq stack status
stats.IRQStackRemaining = GetFreeIrqStackSize();
#if !defined(ARCH_POSIX) && !defined(ARCH_WIN32) && defined(PIOS_INCLUDE_FLASH_LOGFS_SETTINGS)
static struct PIOS_FLASHFS_Stats fsStats;
if (pios_uavo_settings_fs_id) {
PIOS_FLASHFS_GetStats(pios_uavo_settings_fs_id, &fsStats);
stats.SysSlotsFree = fsStats.num_free_slots;
stats.SysSlotsActive = fsStats.num_active_slots;
}
if (pios_user_fs_id) {
PIOS_FLASHFS_GetStats(pios_user_fs_id, &fsStats);
stats.UsrSlotsFree = fsStats.num_free_slots;
stats.UsrSlotsActive = fsStats.num_active_slots;
}
#endif
stats.CPUIdleTicks = PIOS_TASK_MONITOR_GetIdleTicksCount();
stats.CPUZeroLoadTicks = PIOS_TASK_MONITOR_GetZeroLoadTicksCount();
stats.CPULoad = 100 - (uint8_t)((100 * stats.CPUIdleTicks) / stats.CPUZeroLoadTicks);
#if defined(PIOS_INCLUDE_ADC) && defined(PIOS_ADC_USE_TEMP_SENSOR)
float temp_voltage = PIOS_ADC_PinGetVolt(PIOS_ADC_TEMPERATURE_PIN);
stats.CPUTemp = PIOS_CONVERT_VOLT_TO_CPU_TEMP(temp_voltage);;
#endif
SystemStatsSet(&stats);
}
/**
* Update system alarms
*/
static void updateSystemAlarms()
{
SystemStatsData stats;
UAVObjStats objStats;
EventStats evStats;
SystemStatsGet(&stats);
// Check heap, IRQ stack and malloc failures
if (mallocFailed || (stats.HeapRemaining < HEAP_LIMIT_CRITICAL)
#if !defined(ARCH_POSIX) && !defined(ARCH_WIN32) && defined(CHECK_IRQ_STACK)
|| (stats.IRQStackRemaining < IRQSTACK_LIMIT_CRITICAL)
#endif
) {
AlarmsSet(SYSTEMALARMS_ALARM_OUTOFMEMORY, SYSTEMALARMS_ALARM_CRITICAL);
} else if ((stats.HeapRemaining < HEAP_LIMIT_WARNING)
#if !defined(ARCH_POSIX) && !defined(ARCH_WIN32) && defined(CHECK_IRQ_STACK)
|| (stats.IRQStackRemaining < IRQSTACK_LIMIT_WARNING)
#endif
) {
AlarmsSet(SYSTEMALARMS_ALARM_OUTOFMEMORY, SYSTEMALARMS_ALARM_WARNING);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_OUTOFMEMORY);
}
// Check CPU load
if (stats.CPULoad > CPULOAD_LIMIT_CRITICAL) {
AlarmsSet(SYSTEMALARMS_ALARM_CPUOVERLOAD, SYSTEMALARMS_ALARM_CRITICAL);
} else if (stats.CPULoad > CPULOAD_LIMIT_WARNING) {
AlarmsSet(SYSTEMALARMS_ALARM_CPUOVERLOAD, SYSTEMALARMS_ALARM_WARNING);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_CPUOVERLOAD);
}
// Check for stack overflow
switch (stackOverflow) {
case STACKOVERFLOW_NONE:
AlarmsClear(SYSTEMALARMS_ALARM_STACKOVERFLOW);
break;
case STACKOVERFLOW_WARNING:
AlarmsSet(SYSTEMALARMS_ALARM_STACKOVERFLOW, SYSTEMALARMS_ALARM_WARNING);
break;
default:
AlarmsSet(SYSTEMALARMS_ALARM_STACKOVERFLOW, SYSTEMALARMS_ALARM_CRITICAL);
}
// Check for event errors
UAVObjGetStats(&objStats);
EventGetStats(&evStats);
UAVObjClearStats();
EventClearStats();
if (objStats.eventCallbackErrors > 0 || objStats.eventQueueErrors > 0 || evStats.eventErrors > 0) {
AlarmsSet(SYSTEMALARMS_ALARM_EVENTSYSTEM, SYSTEMALARMS_ALARM_WARNING);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_EVENTSYSTEM);
}
if (objStats.lastCallbackErrorID || objStats.lastQueueErrorID || evStats.lastErrorID) {
SystemStatsData sysStats;
SystemStatsGet(&sysStats);
sysStats.EventSystemWarningID = evStats.lastErrorID;
sysStats.ObjectManagerCallbackID = objStats.lastCallbackErrorID;
sysStats.ObjectManagerQueueID = objStats.lastQueueErrorID;
SystemStatsSet(&sysStats);
}
}
/**
* Called by the RTOS when the CPU is idle,
*/
void vApplicationIdleHook(void)
{
PIOS_TASK_MONITOR_IdleHook();
NotificationOnboardLedsRun();
#ifdef PIOS_INCLUDE_WS2811
LedNotificationExtLedsRun();
#endif
}
/**
* Called by the RTOS when a stack overflow is detected.
*/
#define DEBUG_STACK_OVERFLOW 0
void vApplicationStackOverflowHook(__attribute__((unused)) xTaskHandle *pxTask,
__attribute__((unused)) signed portCHAR *pcTaskName)
{
#if !defined(ARCH_POSIX) && !defined(ARCH_WIN32)
stackOverflow = STACKOVERFLOW_CRITICAL;
#if DEBUG_STACK_OVERFLOW
static volatile bool wait_here = true;
while (wait_here) {
;
}
wait_here = true;
#endif
#endif
}
/**
* Called by the RTOS when a malloc call fails.
*/
#define DEBUG_MALLOC_FAILURES 0
void vApplicationMallocFailedHook(void)
{
mallocFailed = true;
#if DEBUG_MALLOC_FAILURES
static volatile bool wait_here = true;
while (wait_here) {
;
}
wait_here = true;
#endif
}
/**
* @}
* @}
*/