1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-10 20:52:11 +01:00
LibrePilot/ground/openpilotgcs/src/plugins/config/calibration/gyrobiascalibrationmodel.cpp

194 lines
7.5 KiB
C++

/**
******************************************************************************
*
* @file gyrobiascalibrationmodel.cpp
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
* @addtogroup board level calibration
* @{
* @addtogroup ConfigPlugin Config Plugin
* @{
* @brief Telemetry configuration panel
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "calibration/gyrobiascalibrationmodel.h"
#include "calibration/calibrationutils.h"
#include "calibration/calibrationuiutils.h"
#include "extensionsystem/pluginmanager.h"
static const int LEVEL_SAMPLES = 100;
namespace OpenPilot {
GyroBiasCalibrationModel::GyroBiasCalibrationModel(QObject *parent) :
QObject(parent), collectingData(false), m_dirty(false)
{
gyroState = GyroState::GetInstance(getObjectManager());
Q_ASSERT(gyroState);
gyroSensor = GyroSensor::GetInstance(getObjectManager());
Q_ASSERT(gyroSensor);
revoCalibration = RevoCalibration::GetInstance(getObjectManager());
Q_ASSERT(revoCalibration);
attitudeSettings = AttitudeSettings::GetInstance(getObjectManager());
Q_ASSERT(attitudeSettings);
accelGyroSettings = AccelGyroSettings::GetInstance(getObjectManager());
Q_ASSERT(accelGyroSettings);
}
void GyroBiasCalibrationModel::start()
{
// Store and reset board rotation before calibration starts
storeAndClearBoardRotation();
RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData();
memento.revoCalibrationData = revoCalibrationData;
revoCalibrationData.BiasCorrectedRaw = RevoCalibration::BIASCORRECTEDRAW_FALSE;
revoCalibration->setData(revoCalibrationData);
// Disable gyro bias correction while calibrating
AttitudeSettings::DataFields attitudeSettingsData = attitudeSettings->getData();
memento.attitudeSettingsData = attitudeSettingsData;
attitudeSettingsData.BiasCorrectGyro = AttitudeSettings::BIASCORRECTGYRO_FALSE;
attitudeSettings->setData(attitudeSettingsData);
UAVObject::Metadata gyroStateMetadata = gyroState->getMetadata();
memento.gyroStateMetadata = gyroStateMetadata;
UAVObject::SetFlightTelemetryUpdateMode(gyroStateMetadata, UAVObject::UPDATEMODE_PERIODIC);
gyroStateMetadata.flightTelemetryUpdatePeriod = 100;
gyroState->setMetadata(gyroStateMetadata);
UAVObject::Metadata gyroSensorMetadata = gyroSensor->getMetadata();
memento.gyroSensorMetadata = gyroSensorMetadata;
UAVObject::SetFlightTelemetryUpdateMode(gyroSensorMetadata, UAVObject::UPDATEMODE_PERIODIC);
gyroSensorMetadata.flightTelemetryUpdatePeriod = 100;
gyroSensor->setMetadata(gyroSensorMetadata);
gyro_accum_x.clear();
gyro_accum_y.clear();
gyro_accum_z.clear();
gyro_state_accum_x.clear();
gyro_state_accum_y.clear();
gyro_state_accum_z.clear();
// reset dirty state to forget previous unsaved runs
m_dirty = false;
started();
progressChanged(0);
displayVisualHelp(CALIBRATION_HELPER_PLANE_PREFIX + CALIBRATION_HELPER_IMAGE_NED);
displayInstructions(tr("Calibrating the gyroscopes. Keep the vehicle steady..."));
// Now connect to the accels and mag updates, gather for 100 samples
collectingData = true;
connect(gyroState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *)));
connect(gyroSensor, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *)));
}
/**
Updates the gyro bias raw values
*/
void GyroBiasCalibrationModel::getSample(UAVObject *obj)
{
QMutexLocker lock(&sensorsUpdateLock);
switch (obj->getObjID()) {
case GyroState::OBJID:
{
GyroState::DataFields gyroStateData = gyroState->getData();
gyro_state_accum_x.append(gyroStateData.x);
gyro_state_accum_y.append(gyroStateData.y);
gyro_state_accum_z.append(gyroStateData.z);
break;
}
case GyroSensor::OBJID:
{
GyroSensor::DataFields gyroSensorData = gyroSensor->getData();
gyro_accum_x.append(gyroSensorData.x);
gyro_accum_y.append(gyroSensorData.y);
gyro_accum_z.append(gyroSensorData.z);
break;
}
default:
Q_ASSERT(0);
}
// Work out the progress based on whichever has less
double p1 = (double)gyro_state_accum_x.size() / (double)LEVEL_SAMPLES;
double p2 = (double)gyro_accum_y.size() / (double)LEVEL_SAMPLES;
progressChanged(((p1 > p2) ? p1 : p2) * 100);
if ((gyro_accum_y.size() >= LEVEL_SAMPLES || (gyro_accum_y.size() == 0 && gyro_state_accum_y.size() >= LEVEL_SAMPLES)) &&
collectingData == true) {
collectingData = false;
m_dirty = true;
disconnect(gyroSensor, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *)));
disconnect(gyroState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *)));
gyroState->setMetadata(memento.gyroStateMetadata);
gyroSensor->setMetadata(memento.gyroSensorMetadata);
revoCalibration->setData(memento.revoCalibrationData);
attitudeSettings->setData(memento.attitudeSettingsData);
// Recall saved board rotation
recallBoardRotation();
stopped();
displayInstructions(tr("Gyroscope calibration completed successfully."), WizardModel::Success);
displayVisualHelp(CALIBRATION_HELPER_IMAGE_EMPTY);
}
}
void GyroBiasCalibrationModel::save()
{
if (!m_dirty) {
return;
}
// Update biases based on collected data
AccelGyroSettings::DataFields accelGyroSettingsData = accelGyroSettings->getData();
// check whether the board does supports gyroSensor (updates were received)
if (gyro_accum_x.count() < LEVEL_SAMPLES / 10) {
accelGyroSettingsData.gyro_bias[AccelGyroSettings::GYRO_BIAS_X] += OpenPilot::CalibrationUtils::listMean(gyro_state_accum_x);
accelGyroSettingsData.gyro_bias[AccelGyroSettings::GYRO_BIAS_Y] += OpenPilot::CalibrationUtils::listMean(gyro_state_accum_y);
accelGyroSettingsData.gyro_bias[AccelGyroSettings::GYRO_BIAS_Z] += OpenPilot::CalibrationUtils::listMean(gyro_state_accum_z);
} else {
accelGyroSettingsData.gyro_bias[AccelGyroSettings::GYRO_BIAS_X] += OpenPilot::CalibrationUtils::listMean(gyro_accum_x);
accelGyroSettingsData.gyro_bias[AccelGyroSettings::GYRO_BIAS_Y] += OpenPilot::CalibrationUtils::listMean(gyro_accum_y);
accelGyroSettingsData.gyro_bias[AccelGyroSettings::GYRO_BIAS_Z] += OpenPilot::CalibrationUtils::listMean(gyro_accum_z);
}
accelGyroSettings->setData(accelGyroSettingsData);
m_dirty = false;
}
UAVObjectManager *GyroBiasCalibrationModel::getObjectManager()
{
ExtensionSystem::PluginManager *pm = ExtensionSystem::PluginManager::instance();
UAVObjectManager *objMngr = pm->getObject<UAVObjectManager>();
Q_ASSERT(objMngr);
return objMngr;
}
}