1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-30 08:24:11 +01:00
LibrePilot/flight/Modules/ManualControl/manualcontrol.c
pip beedb7fdad Added center stick deadband code - currently deadband is set to '0' so not used)
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2927 ebee16cc-31ac-478f-84a7-5cbb03baadba
2011-03-01 21:43:20 +00:00

600 lines
22 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup ManualControlModule Manual Control Module
* @brief Provide manual control or allow it alter flight mode.
* @{
*
* Reads in the ManualControlCommand FlightMode setting from receiver then either
* pass the settings straght to ActuatorDesired object (manual mode) or to
* AttitudeDesired object (stabilized mode)
*
* @file manualcontrol.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief ManualControl module. Handles safety R/C link and flight mode.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "openpilot.h"
#include "manualcontrol.h"
#include "manualcontrolsettings.h"
#include "stabilizationsettings.h"
#include "manualcontrolcommand.h"
#include "actuatordesired.h"
#include "attitudedesired.h"
#include "flighttelemetrystats.h"
// Private constants
#if defined(PIOS_MANUAL_STACK_SIZE)
#define STACK_SIZE_BYTES PIOS_MANUAL_STACK_SIZE
#else
#define STACK_SIZE_BYTES 824
#endif
#define TASK_PRIORITY (tskIDLE_PRIORITY+4)
#define UPDATE_PERIOD_MS 20
#define THROTTLE_FAILSAFE -0.1
#define FLIGHT_MODE_LIMIT 1.0/3.0
#define ARMED_TIME_MS 1000
//safe band to allow a bit of calibration error or trim offset (in microseconds)
#define CONNECTION_OFFSET 150
// Private types
typedef enum
{
ARM_STATE_DISARMED,
ARM_STATE_ARMING_MANUAL,
ARM_STATE_ARMED,
ARM_STATE_DISARMING_MANUAL,
ARM_STATE_DISARMING_TIMEOUT
} ArmState_t;
// Private variables
static xTaskHandle taskHandle;
static ArmState_t armState;
// Private functions
static void manualControlTask(void *parameters);
static float scaleChannel(int16_t value, int16_t max, int16_t min, int16_t neutral, int16_t deadband_percent);
static uint32_t timeDifferenceMs(portTickType start_time, portTickType end_time);
static bool okToArm(void);
#define assumptions1 ( \
((int)MANUALCONTROLSETTINGS_POS1STABILIZATIONSETTINGS_NONE == (int)MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_NONE) && \
((int)MANUALCONTROLSETTINGS_POS1STABILIZATIONSETTINGS_RATE == (int)MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_RATE) && \
((int)MANUALCONTROLSETTINGS_POS1STABILIZATIONSETTINGS_ATTITUDE == (int)MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_ATTITUDE) \
)
#define assumptions2 ( \
((int)MANUALCONTROLSETTINGS_POS1FLIGHTMODE_MANUAL == (int)MANUALCONTROLCOMMAND_FLIGHTMODE_MANUAL) && \
((int)MANUALCONTROLSETTINGS_POS1FLIGHTMODE_STABILIZED == (int)MANUALCONTROLCOMMAND_FLIGHTMODE_STABILIZED) && \
((int)MANUALCONTROLSETTINGS_POS1FLIGHTMODE_AUTO == (int)MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO) \
)
#define assumptions3 ( \
((int)MANUALCONTROLSETTINGS_POS2STABILIZATIONSETTINGS_NONE == (int)MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_NONE) && \
((int)MANUALCONTROLSETTINGS_POS2STABILIZATIONSETTINGS_RATE == (int)MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_RATE) && \
((int)MANUALCONTROLSETTINGS_POS2STABILIZATIONSETTINGS_ATTITUDE == (int)MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_ATTITUDE) \
)
#define assumptions4 ( \
((int)MANUALCONTROLSETTINGS_POS2FLIGHTMODE_MANUAL == (int)MANUALCONTROLCOMMAND_FLIGHTMODE_MANUAL) && \
((int)MANUALCONTROLSETTINGS_POS2FLIGHTMODE_STABILIZED == (int)MANUALCONTROLCOMMAND_FLIGHTMODE_STABILIZED) && \
((int)MANUALCONTROLSETTINGS_POS2FLIGHTMODE_AUTO == (int)MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO) \
)
#define assumptions5 ( \
((int)MANUALCONTROLSETTINGS_POS3STABILIZATIONSETTINGS_NONE == (int)MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_NONE) && \
((int)MANUALCONTROLSETTINGS_POS3STABILIZATIONSETTINGS_RATE == (int)MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_RATE) && \
((int)MANUALCONTROLSETTINGS_POS3STABILIZATIONSETTINGS_ATTITUDE == (int)MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_ATTITUDE) \
)
#define assumptions6 ( \
((int)MANUALCONTROLSETTINGS_POS3FLIGHTMODE_MANUAL == (int)MANUALCONTROLCOMMAND_FLIGHTMODE_MANUAL) && \
((int)MANUALCONTROLSETTINGS_POS3FLIGHTMODE_STABILIZED == (int)MANUALCONTROLCOMMAND_FLIGHTMODE_STABILIZED) && \
((int)MANUALCONTROLSETTINGS_POS3FLIGHTMODE_AUTO == (int)MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO) \
)
#define ARMING_CHANNEL_ROLL 0
#define ARMING_CHANNEL_PITCH 1
#define ARMING_CHANNEL_YAW 2
#define assumptions7 ( \
( ((int)MANUALCONTROLSETTINGS_ARMING_ROLLLEFT -(int)MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)/2 == ARMING_CHANNEL_ROLL) && \
( ((int)MANUALCONTROLSETTINGS_ARMING_ROLLRIGHT -(int)MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)/2 == ARMING_CHANNEL_ROLL) && \
( ((int)MANUALCONTROLSETTINGS_ARMING_PITCHFORWARD -(int)MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)/2 == ARMING_CHANNEL_PITCH) && \
( ((int)MANUALCONTROLSETTINGS_ARMING_PITCHAFT -(int)MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)/2 == ARMING_CHANNEL_PITCH) && \
( ((int)MANUALCONTROLSETTINGS_ARMING_YAWLEFT -(int)MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)/2 == ARMING_CHANNEL_YAW) && \
( ((int)MANUALCONTROLSETTINGS_ARMING_YAWRIGHT -(int)MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)/2 == ARMING_CHANNEL_YAW) \
)
#define assumptions8 ( \
( ((int)MANUALCONTROLSETTINGS_ARMING_ROLLLEFT -(int)MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)%2 == 0) && \
( ((int)MANUALCONTROLSETTINGS_ARMING_ROLLRIGHT -(int)MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)%2 != 0) && \
( ((int)MANUALCONTROLSETTINGS_ARMING_PITCHFORWARD -(int)MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)%2 == 0) && \
( ((int)MANUALCONTROLSETTINGS_ARMING_PITCHAFT -(int)MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)%2 != 0) && \
( ((int)MANUALCONTROLSETTINGS_ARMING_YAWLEFT -(int)MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)%2 == 0) && \
( ((int)MANUALCONTROLSETTINGS_ARMING_YAWRIGHT -(int)MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)%2 != 0) \
)
#define assumptions (assumptions1 && assumptions2 && assumptions3 && assumptions4 && assumptions5 && assumptions6 && assumptions7 && assumptions8)
/**
* Module initialization
*/
int32_t ManualControlInitialize()
{
// The following line compiles to nothing when the assumptions are correct
if (!assumptions)
return 1;
// In case the assumptions are incorrect, this module will not initialise and so will not function
// Start main task
xTaskCreate(manualControlTask, (signed char *)"ManualControl", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &taskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_MANUALCONTROL, taskHandle);
PIOS_WDG_RegisterFlag(PIOS_WDG_MANUAL);
return 0;
}
/**
* Module task
*/
static void manualControlTask(void *parameters)
{
ManualControlSettingsData settings;
StabilizationSettingsData stabSettings;
ManualControlCommandData cmd;
ActuatorDesiredData actuator;
AttitudeDesiredData attitude;
portTickType lastSysTime;
float flightMode;
uint8_t disconnected_count = 0;
uint8_t connected_count = 0;
enum { CONNECTED, DISCONNECTED } connection_state = DISCONNECTED;
// Make sure unarmed on power up
ManualControlCommandGet(&cmd);
cmd.Armed = MANUALCONTROLCOMMAND_ARMED_FALSE;
ManualControlCommandSet(&cmd);
armState = ARM_STATE_DISARMED;
// Main task loop
lastSysTime = xTaskGetTickCount();
while (1) {
float scaledChannel[MANUALCONTROLCOMMAND_CHANNEL_NUMELEM];
// Wait until next update
vTaskDelayUntil(&lastSysTime, UPDATE_PERIOD_MS / portTICK_RATE_MS);
PIOS_WDG_UpdateFlag(PIOS_WDG_MANUAL);
// Read settings
ManualControlSettingsGet(&settings);
StabilizationSettingsGet(&stabSettings);
if (ManualControlCommandReadOnly(&cmd)) {
FlightTelemetryStatsData flightTelemStats;
FlightTelemetryStatsGet(&flightTelemStats);
if(flightTelemStats.Status != FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) {
/* trying to fly via GCS and lost connection. fall back to transmitter */
UAVObjMetadata metadata;
UAVObjGetMetadata(&cmd, &metadata);
metadata.access = ACCESS_READWRITE;
UAVObjSetMetadata(&cmd, &metadata);
}
}
if (!ManualControlCommandReadOnly(&cmd)) {
// Check settings, if error raise alarm
if (settings.Roll >= MANUALCONTROLSETTINGS_ROLL_NONE ||
settings.Pitch >= MANUALCONTROLSETTINGS_PITCH_NONE ||
settings.Yaw >= MANUALCONTROLSETTINGS_YAW_NONE ||
settings.Throttle >= MANUALCONTROLSETTINGS_THROTTLE_NONE ||
settings.FlightMode >= MANUALCONTROLSETTINGS_FLIGHTMODE_NONE) {
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_CRITICAL);
cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO;
cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_FALSE;
ManualControlCommandSet(&cmd);
continue;
}
// Read channel values in us
// TODO: settings.InputMode is currently ignored because PIOS will not allow runtime
// selection of PWM and PPM. The configuration is currently done at compile time in
// the pios_config.h file.
for (int n = 0; n < MANUALCONTROLCOMMAND_CHANNEL_NUMELEM; ++n) {
#if defined(PIOS_INCLUDE_PWM)
cmd.Channel[n] = PIOS_PWM_Get(n);
#elif defined(PIOS_INCLUDE_PPM)
cmd.Channel[n] = PIOS_PPM_Get(n);
#elif defined(PIOS_INCLUDE_SPEKTRUM)
cmd.Channel[n] = PIOS_SPEKTRUM_Get(n);
#endif
scaledChannel[n] = scaleChannel(cmd.Channel[n], settings.ChannelMax[n], settings.ChannelMin[n], settings.ChannelNeutral[n], 0);
}
// Scale channels to -1 -> +1 range
cmd.Roll = scaledChannel[settings.Roll];
cmd.Pitch = scaledChannel[settings.Pitch];
cmd.Yaw = scaledChannel[settings.Yaw];
cmd.Throttle = scaledChannel[settings.Throttle];
flightMode = scaledChannel[settings.FlightMode];
if (settings.Accessory1 != MANUALCONTROLSETTINGS_ACCESSORY1_NONE)
cmd.Accessory1 = scaledChannel[settings.Accessory1];
else
cmd.Accessory1 = 0;
if (settings.Accessory2 != MANUALCONTROLSETTINGS_ACCESSORY2_NONE)
cmd.Accessory2 = scaledChannel[settings.Accessory2];
else
cmd.Accessory2 = 0;
if (settings.Accessory3 != MANUALCONTROLSETTINGS_ACCESSORY3_NONE)
cmd.Accessory3 = scaledChannel[settings.Accessory3];
else
cmd.Accessory3 = 0;
if (flightMode < -FLIGHT_MODE_LIMIT) {
// Position 1
for(int i = 0; i < 3; i++) {
cmd.StabilizationSettings[i] = settings.Pos1StabilizationSettings[i]; // See assumptions1
}
cmd.FlightMode = settings.Pos1FlightMode; // See assumptions2
} else if (flightMode > FLIGHT_MODE_LIMIT) {
// Position 3
for(int i = 0; i < 3; i++) {
cmd.StabilizationSettings[i] = settings.Pos3StabilizationSettings[i]; // See assumptions5
}
cmd.FlightMode = settings.Pos3FlightMode; // See assumptions6
} else {
// Position 2
for(int i = 0; i < 3; i++) {
cmd.StabilizationSettings[i] = settings.Pos2StabilizationSettings[i]; // See assumptions3
}
cmd.FlightMode = settings.Pos2FlightMode; // See assumptions4
}
// Update the ManualControlCommand object
ManualControlCommandSet(&cmd);
// This seems silly to set then get, but the reason is if the GCS is
// the control input, the set command will be blocked by the read only
// setting and the get command will pull the right values from telemetry
} else
ManualControlCommandGet(&cmd); /* Under GCS control */
// Implement hysteresis loop on connection status
// Must check both Max and Min in case they reversed
if (!ManualControlCommandReadOnly(&cmd) &&
cmd.Channel[settings.Throttle] < settings.ChannelMax[settings.Throttle] - CONNECTION_OFFSET &&
cmd.Channel[settings.Throttle] < settings.ChannelMin[settings.Throttle] - CONNECTION_OFFSET) {
if (disconnected_count++ > 10) {
connection_state = DISCONNECTED;
connected_count = 0;
disconnected_count = 0;
} else
disconnected_count++;
} else {
if (connected_count++ > 10) {
connection_state = CONNECTED;
connected_count = 0;
disconnected_count = 0;
} else
connected_count++;
}
if (connection_state == DISCONNECTED) {
cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_FALSE;
cmd.Throttle = -1; // Shut down engine with no control
cmd.Roll = 0;
cmd.Yaw = 0;
cmd.Pitch = 0;
//cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO; // don't do until AUTO implemented and functioning
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
ManualControlCommandSet(&cmd);
} else {
cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_TRUE;
AlarmsClear(SYSTEMALARMS_ALARM_MANUALCONTROL);
ManualControlCommandSet(&cmd);
}
//
// Arming and Disarming mechanism
//
// Look for state changes and write in newArmState
uint8_t newCmdArmed = cmd.Armed; // By default, keep the arming state the same
if (settings.Arming == MANUALCONTROLSETTINGS_ARMING_ALWAYSDISARMED) {
// In this configuration we always disarm
newCmdArmed = MANUALCONTROLCOMMAND_ARMED_FALSE;
} else {
// In all other cases, we will not change the arm state when disconnected
if (connection_state == CONNECTED)
{
if (settings.Arming == MANUALCONTROLSETTINGS_ARMING_ALWAYSARMED) {
// In this configuration, we go into armed state as soon as the throttle is low, never disarm
if (cmd.Throttle < 0) {
newCmdArmed = MANUALCONTROLCOMMAND_ARMED_TRUE;
}
} else {
// When the configuration is not "Always armed" and no "Always disarmed",
// the state will not be changed when the throttle is not low
if (cmd.Throttle < 0) {
static portTickType armedDisarmStart;
float armingInputLevel = 0;
// Calc channel see assumptions7
switch ( (settings.Arming-MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)/2 ) {
case ARMING_CHANNEL_ROLL: armingInputLevel = cmd.Roll; break;
case ARMING_CHANNEL_PITCH: armingInputLevel = cmd.Pitch; break;
case ARMING_CHANNEL_YAW: armingInputLevel = cmd.Yaw; break;
}
bool manualArm = false;
bool manualDisarm = false;
if (connection_state == CONNECTED) {
// Should use RC input only if RX is connected
if (armingInputLevel <= -0.90)
manualArm = true;
else if (armingInputLevel >= +0.90)
manualDisarm = true;
}
// Swap arm-disarming see assumptions8
if ((settings.Arming-MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)%2) {
bool temp = manualArm;
manualArm = manualDisarm;
manualDisarm = temp;
}
switch(armState) {
case ARM_STATE_DISARMED:
newCmdArmed = MANUALCONTROLCOMMAND_ARMED_FALSE;
if (manualArm)
{
if (okToArm()) // only allow arming if it's OK too
{
armedDisarmStart = lastSysTime;
armState = ARM_STATE_ARMING_MANUAL;
}
}
break;
case ARM_STATE_ARMING_MANUAL:
if (manualArm) {
if (timeDifferenceMs(armedDisarmStart, lastSysTime) > ARMED_TIME_MS)
armState = ARM_STATE_ARMED;
}
else
armState = ARM_STATE_DISARMED;
break;
case ARM_STATE_ARMED:
// When we get here, the throttle is low,
// we go immediately to disarming due to timeout, also when the disarming mechanism is not enabled
armedDisarmStart = lastSysTime;
armState = ARM_STATE_DISARMING_TIMEOUT;
newCmdArmed = MANUALCONTROLCOMMAND_ARMED_TRUE;
break;
case ARM_STATE_DISARMING_TIMEOUT:
// We get here when armed while throttle low, even when the arming timeout is not enabled
if (settings.ArmedTimeout != 0)
if (timeDifferenceMs(armedDisarmStart, lastSysTime) > settings.ArmedTimeout)
armState = ARM_STATE_DISARMED;
// Switch to disarming due to manual control when needed
if (manualDisarm) {
armedDisarmStart = lastSysTime;
armState = ARM_STATE_DISARMING_MANUAL;
}
break;
case ARM_STATE_DISARMING_MANUAL:
if (manualDisarm) {
if (timeDifferenceMs(armedDisarmStart, lastSysTime) > ARMED_TIME_MS)
armState = ARM_STATE_DISARMED;
}
else
armState = ARM_STATE_ARMED;
break;
} // End Switch
} else {
// The throttle is not low, in case we where arming or disarming, abort
switch(armState) {
case ARM_STATE_DISARMING_MANUAL:
case ARM_STATE_DISARMING_TIMEOUT:
armState = ARM_STATE_ARMED;
break;
case ARM_STATE_ARMING_MANUAL:
armState = ARM_STATE_DISARMED;
break;
default:
// Nothing needs to be done in the other states
break;
}
}
}
}
}
// Update cmd object when needed
if (newCmdArmed != cmd.Armed) {
cmd.Armed = newCmdArmed;
ManualControlCommandSet(&cmd);
}
//
// End of arming/disarming
//
// Depending on the mode update the Stabilization or Actuator objects
if (cmd.FlightMode == MANUALCONTROLCOMMAND_FLIGHTMODE_MANUAL) {
actuator.Roll = cmd.Roll;
actuator.Pitch = cmd.Pitch;
actuator.Yaw = cmd.Yaw;
actuator.Throttle = cmd.Throttle;
ActuatorDesiredSet(&actuator);
} else if (cmd.FlightMode == MANUALCONTROLCOMMAND_FLIGHTMODE_STABILIZED) {
switch(cmd.StabilizationSettings[MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_ROLL]) {
case MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_RATE:
attitude.Roll = cmd.Roll * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_ROLL];
break;
case MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_ATTITUDE:
attitude.Roll = cmd.Roll * stabSettings.RollMax;
break;
case MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_NONE:
attitude.Roll = cmd.Roll;
break;
}
switch(cmd.StabilizationSettings[MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_PITCH]) {
case MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_RATE:
attitude.Pitch = cmd.Pitch * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_PITCH];
break;
case MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_ATTITUDE:
attitude.Pitch = cmd.Pitch * stabSettings.PitchMax;
break;
case MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_NONE:
attitude.Pitch = cmd.Pitch;
break;
}
switch(cmd.StabilizationSettings[MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_YAW]) {
case MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_RATE:
attitude.Yaw = cmd.Yaw * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_YAW];
break;
case MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_ATTITUDE:
attitude.Yaw = fmod(cmd.Yaw * 180.0, 360);
break;
case MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_NONE:
attitude.Yaw = cmd.Yaw;
break;
}
attitude.Throttle = (cmd.Throttle < 0) ? -1 : cmd.Throttle;
for(int i = 0; i < 3; i++) {
attitude.StabilizationSettings[i] = cmd.StabilizationSettings[i];
}
AttitudeDesiredSet(&attitude);
}
}
}
/**
* Convert channel from servo pulse duration (microseconds) to scaled -1/+1 range.
*/
static float scaleChannel(int16_t value, int16_t max, int16_t min, int16_t neutral, int16_t deadband_percent)
{
float valueScaled;
// Scale
if ((max > min && value >= neutral) || (min > max && value <= neutral))
{
if (max != neutral)
valueScaled = (float)(value - neutral) / (float)(max - neutral);
else
valueScaled = 0;
}
else
{
if (min != neutral)
valueScaled = (float)(value - neutral) / (float)(neutral - min);
else
valueScaled = 0;
}
// Neutral RC stick position dead band
if (deadband_percent > 0)
{
if (deadband_percent > 50) deadband_percent = 50; // limit deadband to a maximum of 50%
float deadband = (float)deadband_percent / 100;
if (fabs(valueScaled) <= deadband)
valueScaled = 0; // deadband the value
else
if (valueScaled < 0)
valueScaled = (valueScaled + deadband) / (1.0 - deadband); // value scales 0.0 to -1.0 after deadband
else
valueScaled = (valueScaled - deadband) / (1.0 - deadband); // value scales 0.0 to +1.0 after deadband
}
// Bound
if (valueScaled > 1.0) valueScaled = 1.0;
else
if (valueScaled < -1.0) valueScaled = -1.0;
return valueScaled;
}
static uint32_t timeDifferenceMs(portTickType start_time, portTickType end_time) {
if(end_time > start_time)
return (end_time - start_time) * portTICK_RATE_MS;
return ((((portTICK_RATE_MS) -1) - start_time) + end_time) * portTICK_RATE_MS;
}
/**
* @brief Determine if the aircraft is safe to arm
* @returns True if safe to arm, false otherwise
*/
static bool okToArm(void)
{
// read alarms
SystemAlarmsData alarms;
SystemAlarmsGet(&alarms);
// Check each alarm
for (int i = 0; i < SYSTEMALARMS_ALARM_NUMELEM; i++)
{
if (alarms.Alarm[i] >= SYSTEMALARMS_ALARM_ERROR)
{ // found an alarm thats set
if (i == SYSTEMALARMS_ALARM_GPS || i == SYSTEMALARMS_ALARM_TELEMETRY)
continue;
return false;
}
}
return true;
}
//
//static void armingMechanism(uint8_t* armingState, const ManualControlSettingsData* settings, const ManualControlCommandData* cmd)
//{
// if (settings->Arming == MANUALCONTROLSETTINGS_ARMING_ALWAYSDISARMED) {
// *armingState = MANUALCONTROLCOMMAND_ARMED_FALSE;
// return;
// }
//
//
//}
/**
* @}
* @}
*/