1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-11 19:24:10 +01:00
LibrePilot/flight/Modules/Attitude/revolution/attitude.c

771 lines
23 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup Attitude Copter Control Attitude Estimation
* @brief Acquires sensor data and computes attitude estimate
* Specifically updates the the @ref AttitudeActual "AttitudeActual" and @ref AttitudeRaw "AttitudeRaw" settings objects
* @{
*
* @file attitude.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Module to handle all comms to the AHRS on a periodic basis.
*
* @see The GNU Public License (GPL) Version 3
*
******************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input objects: None, takes sensor data via pios
* Output objects: @ref AttitudeRaw @ref AttitudeActual
*
* This module computes an attitude estimate from the sensor data
*
* The module executes in its own thread.
*
* UAVObjects are automatically generated by the UAVObjectGenerator from
* the object definition XML file.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include "pios.h"
#include "attitude.h"
#include "accels.h"
#include "attitudeactual.h"
#include "attitudesettings.h"
#include "baroaltitude.h"
#include "flightstatus.h"
#include "gpsposition.h"
#include "gyros.h"
#include "gyrosbias.h"
#include "homelocation.h"
#include "magnetometer.h"
#include "nedposition.h"
#include "positionactual.h"
#include "revocalibration.h"
#include "revosettings.h"
#include "velocityactual.h"
#include "CoordinateConversions.h"
// Private constants
#define STACK_SIZE_BYTES 2240
#define TASK_PRIORITY (tskIDLE_PRIORITY+3)
#define FAILSAFE_TIMEOUT_MS 10
#define F_PI 3.14159265358979323846f
#define PI_MOD(x) (fmodf(x + F_PI, F_PI * 2) - F_PI)
// Private types
// Private variables
static xTaskHandle attitudeTaskHandle;
static xQueueHandle gyroQueue;
static xQueueHandle accelQueue;
static xQueueHandle magQueue;
static xQueueHandle baroQueue;
static xQueueHandle gpsQueue;
static AttitudeSettingsData attitudeSettings;
static HomeLocationData homeLocation;
static RevoCalibrationData revoCalibration;
static RevoSettingsData revoSettings;
const uint32_t SENSOR_QUEUE_SIZE = 10;
// Private functions
static void AttitudeTask(void *parameters);
static int32_t updateAttitudeComplimentary(bool first_run);
static int32_t updateAttitudeINSGPS(bool first_run, bool outdoor_mode);
static void settingsUpdatedCb(UAVObjEvent * objEv);
static int32_t getNED(GPSPositionData * gpsPosition, float * NED);
/**
* API for sensor fusion algorithms:
* Configure(xQueueHandle gyro, xQueueHandle accel, xQueueHandle mag, xQueueHandle baro)
* Stores all the queues the algorithm will pull data from
* FinalizeSensors() -- before saving the sensors modifies them based on internal state (gyro bias)
* Update() -- queries queues and updates the attitude estiamte
*/
/**
* Initialise the module. Called before the start function
* \returns 0 on success or -1 if initialisation failed
*/
int32_t AttitudeInitialize(void)
{
AttitudeActualInitialize();
AttitudeSettingsInitialize();
NEDPositionInitialize();
PositionActualInitialize();
VelocityActualInitialize();
RevoSettingsInitialize();
RevoCalibrationInitialize();
// Initialize this here while we aren't setting the homelocation in GPS
HomeLocationInitialize();
// Initialize quaternion
AttitudeActualData attitude;
AttitudeActualGet(&attitude);
attitude.q1 = 1;
attitude.q2 = 0;
attitude.q3 = 0;
attitude.q4 = 0;
AttitudeActualSet(&attitude);
// Cannot trust the values to init right above if BL runs
GyrosBiasData gyrosBias;
GyrosBiasGet(&gyrosBias);
gyrosBias.x = 0;
gyrosBias.y = 0;
gyrosBias.z = 0;
GyrosBiasSet(&gyrosBias);
AttitudeSettingsConnectCallback(&settingsUpdatedCb);
RevoSettingsConnectCallback(&settingsUpdatedCb);
RevoCalibrationConnectCallback(&settingsUpdatedCb);
HomeLocationConnectCallback(&settingsUpdatedCb);
return 0;
}
/**
* Start the task. Expects all objects to be initialized by this point.
* \returns 0 on success or -1 if initialisation failed
*/
int32_t AttitudeStart(void)
{
// Create the queues for the sensors
gyroQueue = xQueueCreate(1, sizeof(UAVObjEvent));
accelQueue = xQueueCreate(1, sizeof(UAVObjEvent));
magQueue = xQueueCreate(1, sizeof(UAVObjEvent));
baroQueue = xQueueCreate(1, sizeof(UAVObjEvent));
gpsQueue = xQueueCreate(1, sizeof(UAVObjEvent));
// Start main task
xTaskCreate(AttitudeTask, (signed char *)"Attitude", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &attitudeTaskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_ATTITUDE, attitudeTaskHandle);
PIOS_WDG_RegisterFlag(PIOS_WDG_ATTITUDE);
GyrosConnectQueue(gyroQueue);
AccelsConnectQueue(accelQueue);
MagnetometerConnectQueue(magQueue);
BaroAltitudeConnectQueue(baroQueue);
GPSPositionConnectQueue(gpsQueue);
return 0;
}
MODULE_INITCALL(AttitudeInitialize, AttitudeStart)
/**
* Module thread, should not return.
*/
static void AttitudeTask(void *parameters)
{
bool first_run;
uint32_t last_algorithm;
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
// Force settings update to make sure rotation loaded
settingsUpdatedCb(AttitudeSettingsHandle());
settingsUpdatedCb(RevoSettingsHandle());
// Wait for all the sensors be to read
vTaskDelay(100);
// Invalidate previous algorithm to trigger a first run
last_algorithm = 0xfffffff;
// Main task loop
while (1) {
if (last_algorithm != revoSettings.FusionAlgorithm) {
last_algorithm = revoSettings.FusionAlgorithm;
first_run = true;
}
// This function blocks on data queue
switch (revoSettings.FusionAlgorithm ) {
case REVOSETTINGS_FUSIONALGORITHM_COMPLIMENTARY:
updateAttitudeComplimentary(first_run);
break;
case REVOSETTINGS_FUSIONALGORITHM_INSOUTDOOR:
updateAttitudeINSGPS(first_run, true);
break;
case REVOSETTINGS_FUSIONALGORITHM_INSINDOOR:
updateAttitudeINSGPS(first_run, false);
break;
default:
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_ERROR);
break;
}
first_run = false;
PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);
}
}
float accel_mag;
float qmag;
float attitudeDt;
float mag_err[3];
float magKi = 0.000001f;
float magKp = 0.0001f;
static int32_t updateAttitudeComplimentary(bool first_run)
{
UAVObjEvent ev;
GyrosData gyrosData;
AccelsData accelsData;
static int32_t timeval;
float dT;
static uint8_t init = 0;
// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
if ( xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE )
{
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING);
return -1;
}
if ( xQueueReceive(accelQueue, &ev, 0) != pdTRUE )
{
// When one of these is updated so should the other
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING);
return -1;
}
AccelsGet(&accelsData);
// During initialization and
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
if(first_run) {
AttitudeActualData attitudeActual;
AttitudeActualGet(&attitudeActual);
MagnetometerData magData;
MagnetometerGet(&magData);
init = 0;
float rpy[3];
float q[4];
rpy[0] = atan2f(-accelsData.y, -accelsData.z) * 180.0f / F_PI;
rpy[1] = atan2f(accelsData.x, -accelsData.z) * 180.0f / F_PI;
rpy[2] = atan2f(-magData.y, magData.x) * 180.0f / F_PI;
RPY2Quaternion(rpy,q);
quat_copy(q, &attitudeActual.q1);
// Convert into eueler degrees (makes assumptions about RPY order)
Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll);
AttitudeActualSet(&attitudeActual);
}
if((init == 0 && xTaskGetTickCount() < 7000) && (xTaskGetTickCount() > 1000)) {
// For first 7 seconds use accels to get gyro bias
attitudeSettings.AccelKp = 1;
attitudeSettings.AccelKi = 0.9;
attitudeSettings.YawBiasRate = 0.23;
} else if ((attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE) && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) {
attitudeSettings.AccelKp = 1;
attitudeSettings.AccelKi = 0.9;
attitudeSettings.YawBiasRate = 0.23;
init = 0;
} else if (init == 0) {
// Reload settings (all the rates)
AttitudeSettingsGet(&attitudeSettings);
init = 1;
}
GyrosGet(&gyrosData);
// Compute the dT using the cpu clock
dT = PIOS_DELAY_DiffuS(timeval) / 1000000.0f;
timeval = PIOS_DELAY_GetRaw();
float q[4];
AttitudeActualData attitudeActual;
AttitudeActualGet(&attitudeActual);
float grot[3];
float accel_err[3];
// Get the current attitude estimate
quat_copy(&attitudeActual.q1, q);
// Rotate gravity to body frame and cross with accels
grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2]));
grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1]));
grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]);
CrossProduct((const float *) &accelsData.x, (const float *) grot, accel_err);
// Account for accel magnitude
accel_mag = accelsData.x*accelsData.x + accelsData.y*accelsData.y + accelsData.z*accelsData.z;
accel_mag = sqrtf(accel_mag);
accel_err[0] /= accel_mag;
accel_err[1] /= accel_mag;
accel_err[2] /= accel_mag;
if ( xQueueReceive(magQueue, &ev, 0) != pdTRUE )
{
// Rotate gravity to body frame and cross with accels
float brot[3];
float Rbe[3][3];
MagnetometerData mag;
HomeLocationData home;
Quaternion2R(q, Rbe);
MagnetometerGet(&mag);
HomeLocationGet(&home);
rot_mult(Rbe, home.Be, brot);
float mag_len = sqrtf(mag.x * mag.x + mag.y * mag.y + mag.z * mag.z);
mag.x /= mag_len;
mag.y /= mag_len;
mag.z /= mag_len;
float bmag = sqrtf(brot[0] * brot[0] + brot[1] * brot[1] + brot[2] * brot[2]);
brot[0] /= bmag;
brot[1] /= bmag;
brot[2] /= bmag;
// Only compute if neither vector is null
if (bmag < 1 || mag_len < 1)
mag_err[0] = mag_err[1] = mag_err[2] = 0;
else
CrossProduct((const float *) &mag.x, (const float *) brot, mag_err);
} else {
mag_err[0] = mag_err[1] = mag_err[2] = 0;
}
// Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s
GyrosBiasData gyrosBias;
GyrosBiasGet(&gyrosBias);
gyrosBias.x += accel_err[0] * attitudeSettings.AccelKi;
gyrosBias.y += accel_err[1] * attitudeSettings.AccelKi;
gyrosBias.z += mag_err[2] * magKi;
GyrosBiasSet(&gyrosBias);
// Correct rates based on error, integral component dealt with in updateSensors
gyrosData.x += accel_err[0] * attitudeSettings.AccelKp / dT;
gyrosData.y += accel_err[1] * attitudeSettings.AccelKp / dT;
gyrosData.z += accel_err[2] * attitudeSettings.AccelKp / dT + mag_err[2] * magKp / dT;
// Work out time derivative from INSAlgo writeup
// Also accounts for the fact that gyros are in deg/s
float qdot[4];
qdot[0] = (-q[1] * gyrosData.x - q[2] * gyrosData.y - q[3] * gyrosData.z) * dT * F_PI / 180 / 2;
qdot[1] = (q[0] * gyrosData.x - q[3] * gyrosData.y + q[2] * gyrosData.z) * dT * F_PI / 180 / 2;
qdot[2] = (q[3] * gyrosData.x + q[0] * gyrosData.y - q[1] * gyrosData.z) * dT * F_PI / 180 / 2;
qdot[3] = (-q[2] * gyrosData.x + q[1] * gyrosData.y + q[0] * gyrosData.z) * dT * F_PI / 180 / 2;
// Take a time step
q[0] = q[0] + qdot[0];
q[1] = q[1] + qdot[1];
q[2] = q[2] + qdot[2];
q[3] = q[3] + qdot[3];
if(q[0] < 0) {
q[0] = -q[0];
q[1] = -q[1];
q[2] = -q[2];
q[3] = -q[3];
}
// Renomalize
qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
q[0] = q[0] / qmag;
q[1] = q[1] / qmag;
q[2] = q[2] / qmag;
q[3] = q[3] / qmag;
// If quaternion has become inappropriately short or is nan reinit.
// THIS SHOULD NEVER ACTUALLY HAPPEN
if((fabs(qmag) < 1.0e-3f) || (qmag != qmag)) {
q[0] = 1;
q[1] = 0;
q[2] = 0;
q[3] = 0;
}
quat_copy(q, &attitudeActual.q1);
// Convert into eueler degrees (makes assumptions about RPY order)
Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll);
AttitudeActualSet(&attitudeActual);
// Flush these queues for avoid errors
xQueueReceive(baroQueue, &ev, 0);
if ( xQueueReceive(gpsQueue, &ev, 0) == pdTRUE && homeLocation.Set == HOMELOCATION_SET_TRUE ) {
float NED[3];
// Transform the GPS position into NED coordinates
GPSPositionData gpsPosition;
GPSPositionGet(&gpsPosition);
getNED(&gpsPosition, NED);
PositionActualData positionActual;
PositionActualGet(&positionActual);
positionActual.North = NED[0];
positionActual.East = NED[1];
positionActual.Down = NED[2];
PositionActualSet(&positionActual);
VelocityActualData velocityActual;
VelocityActualGet(&velocityActual);
velocityActual.North = gpsPosition.Groundspeed * cosf(gpsPosition.Heading * F_PI / 180.0f);
velocityActual.East = gpsPosition.Groundspeed * sinf(gpsPosition.Heading * F_PI / 180.0f);
velocityActual.Down = 0;
VelocityActualSet(&velocityActual);
}
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
return 0;
}
#include "insgps.h"
int32_t ins_failed = 0;
extern struct NavStruct Nav;
int32_t init_stage = 0;
/**
* @brief Use the INSGPS fusion algorithm in either indoor or outdoor mode (use GPS)
* @params[in] first_run This is the first run so trigger reinitialization
* @params[in] outdoor_mode If true use the GPS for position, if false weakly pull to (0,0)
* @return 0 for success, -1 for failure
*/
static int32_t updateAttitudeINSGPS(bool first_run, bool outdoor_mode)
{
UAVObjEvent ev;
GyrosData gyrosData;
AccelsData accelsData;
MagnetometerData magData;
BaroAltitudeData baroData;
GPSPositionData gpsData;
GyrosBiasData gyrosBias;
HomeLocationData home;
static bool mag_updated;
static bool baro_updated;
static bool gps_updated;
static uint32_t ins_last_time = 0;
static bool inited;
float NED[3] = {0.0f, 0.0f, 0.0f};
float vel[3] = {0.0f, 0.0f, 0.0f};
float zeros[3] = {0.0f, 0.0f, 0.0f};
// Perform the update
uint16_t sensors = 0;
float dT;
if (first_run) {
inited = false;
init_stage = 0;
}
// Wait until the gyro and accel object is updated, if a timeout then go to failsafe
if ( (xQueueReceive(gyroQueue, &ev, 10 / portTICK_RATE_MS) != pdTRUE) ||
(xQueueReceive(accelQueue, &ev, 10 / portTICK_RATE_MS) != pdTRUE) )
{
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING);
return -1;
}
if (inited) {
mag_updated = 0;
baro_updated = 0;
gps_updated = 0;
}
mag_updated |= (xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && homeLocation.Set == HOMELOCATION_SET_TRUE;
baro_updated |= xQueueReceive(baroQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE;
gps_updated |= (xQueueReceive(gpsQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && outdoor_mode;
// Get most recent data
GyrosGet(&gyrosData);
AccelsGet(&accelsData);
MagnetometerGet(&magData);
BaroAltitudeGet(&baroData);
GPSPositionGet(&gpsData);
HomeLocationGet(&home);
// Have a minimum requirement for gps usage
gps_updated &= (gpsData.Satellites >= 7) && (gpsData.PDOP <= 4.0f) && (homeLocation.Set == HOMELOCATION_SET_TRUE);
if (!inited)
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_ERROR);
else if (outdoor_mode && gpsData.Satellites < 7)
AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_ERROR);
else
AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
if (!inited && mag_updated && baro_updated && (gps_updated || !outdoor_mode)) {
// Don't initialize until all sensors are read
if (init_stage == 0 && !outdoor_mode) {
float Pdiag[16]={25.0f,25.0f,25.0f,5.0f,5.0f,5.0f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-4f,1e-4f,1e-4f};
float q[4];
float pos[3] = {0.0f, 0.0f, 0.0f};
pos[2] = baroData.Altitude * -1.0f;
// Reset the INS algorithm
INSGPSInit();
INSSetMagVar(revoCalibration.mag_var);
INSSetAccelVar(revoCalibration.accel_var);
INSSetGyroVar(revoCalibration.gyro_var);
// Set initial attitude
float rpy[3];
rpy[0] = atan2f(-accelsData.y, -accelsData.z) * 180.0f / F_PI;
rpy[1] = atan2f(accelsData.x, -accelsData.z) * 180.0f / F_PI;
rpy[2] = atan2f(-magData.y, magData.x) * 180.0f / F_PI;
RPY2Quaternion(rpy,q);
/*float Rbe[3][3];
float ge[3] = {0,0,-9.81f};
RotFrom2Vectors(&accelsData.x, ge, &magData.x, home.Be, Rbe);
R2Quaternion(Rbe,q);*/
INSSetState(pos, zeros, q, zeros, zeros);
INSResetP(Pdiag);
} else if (init_stage == 0 && outdoor_mode) {
float Pdiag[16]={25.0f,25.0f,25.0f,5.0f,5.0f,5.0f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-4f,1e-4f,1e-4f};
float rpy[3];
float q[4];
float NED[3];
// Reset the INS algorithm
INSGPSInit();
INSSetMagVar(revoCalibration.mag_var);
INSSetAccelVar(revoCalibration.accel_var);
INSSetGyroVar(revoCalibration.gyro_var);
INSSetMagNorth(home.Be);
GPSPositionData gpsPosition;
GPSPositionGet(&gpsPosition);
// Transform the GPS position into NED coordinates
getNED(&gpsPosition, NED);
// Set initial attitude
rpy[0] = atan2f(-accelsData.y, -accelsData.z) * 180.0f / F_PI;
rpy[1] = atan2f(accelsData.x, -accelsData.z) * 180.0f / F_PI;
rpy[2] = atan2f(-magData.y, magData.x) * 180.0f / F_PI;
RPY2Quaternion(rpy,q);
INSSetState(NED, zeros, q, zeros, zeros);
INSResetP(Pdiag);
} else if (init_stage > 0) {
// Run prediction a bit before any corrections
GyrosBiasGet(&gyrosBias);
float gyros[3] = {(gyrosData.x + gyrosBias.x) * F_PI / 180.0f,
(gyrosData.y + gyrosBias.y) * F_PI / 180.0f,
(gyrosData.z + gyrosBias.z) * F_PI / 180.0f};
INSStatePrediction(gyros, &accelsData.x, 0.002f);
}
init_stage++;
if(init_stage > 10)
inited = true;
ins_last_time = PIOS_DELAY_GetRaw();
return -1;
}
if (!inited)
return -1;
dT = PIOS_DELAY_DiffuS(ins_last_time) / 1.0e6f;
ins_last_time = PIOS_DELAY_GetRaw();
// This should only happen at start up or at mode switches
if(dT > 0.01f)
dT = 0.01f;
else if(dT <= 0.001f)
dT = 0.001f;
// Because the sensor module remove the bias we need to add it
// back in here so that the INS algorithm can track it correctly
GyrosBiasGet(&gyrosBias);
float gyros[3] = {(gyrosData.x + gyrosBias.x) * F_PI / 180.0f,
(gyrosData.y + gyrosBias.y) * F_PI / 180.0f,
(gyrosData.z + gyrosBias.z) * F_PI / 180.0f};
// Advance the state estimate
INSStatePrediction(gyros, &accelsData.x, dT);
// Copy the attitude into the UAVO
AttitudeActualData attitude;
AttitudeActualGet(&attitude);
attitude.q1 = Nav.q[0];
attitude.q2 = Nav.q[1];
attitude.q3 = Nav.q[2];
attitude.q4 = Nav.q[3];
Quaternion2RPY(&attitude.q1,&attitude.Roll);
AttitudeActualSet(&attitude);
// Copy the gyro bias into the UAVO
gyrosBias.x = Nav.gyro_bias[0];
gyrosBias.y = Nav.gyro_bias[1];
gyrosBias.z = Nav.gyro_bias[2];
GyrosBiasSet(&gyrosBias);
// Advance the covariance estimate
INSCovariancePrediction(dT);
if(mag_updated)
sensors |= MAG_SENSORS;
if(baro_updated)
sensors |= BARO_SENSOR;
INSSetMagNorth(home.Be);
if(gps_updated && outdoor_mode)
{
INSSetPosVelVar(1.0e0f, 1.0e0f);
sensors |= POS_SENSORS | HORIZ_SENSORS;
GPSPositionData gpsPosition;
GPSPositionGet(&gpsPosition);
vel[0] = gpsPosition.Groundspeed * cosf(gpsPosition.Heading * F_PI / 180.0f);
vel[1] = gpsPosition.Groundspeed * sinf(gpsPosition.Heading * F_PI / 180.0f);
vel[2] = 0;
// Transform the GPS position into NED coordinates
getNED(&gpsPosition, NED);
// Store this for inspecting offline
NEDPositionData nedPos;
NEDPositionGet(&nedPos);
nedPos.North = NED[0];
nedPos.East = NED[1];
nedPos.Down = NED[2];
NEDPositionSet(&nedPos);
} else if (!outdoor_mode) {
INSSetPosVelVar(1e2f, 1e2f);
vel[0] = vel[1] = vel[2] = 0;
NED[0] = NED[1] = 0;
NED[2] = baroData.Altitude;
sensors |= HORIZ_SENSORS | HORIZ_POS_SENSORS;
sensors |= POS_SENSORS |VERT_SENSORS;
}
/*
* TODO: Need to add a general sanity check for all the inputs to make sure their kosher
* although probably should occur within INS itself
*/
if (sensors)
INSCorrection(&magData.x, NED, vel, baroData.Altitude, sensors);
// Copy the position and velocity into the UAVO
PositionActualData positionActual;
PositionActualGet(&positionActual);
positionActual.North = Nav.Pos[0];
positionActual.East = Nav.Pos[1];
positionActual.Down = Nav.Pos[2];
PositionActualSet(&positionActual);
VelocityActualData velocityActual;
VelocityActualGet(&velocityActual);
velocityActual.North = Nav.Vel[0];
velocityActual.East = Nav.Vel[1];
velocityActual.Down = Nav.Vel[2];
VelocityActualSet(&velocityActual);
if(fabs(Nav.gyro_bias[0]) > 0.1f || fabs(Nav.gyro_bias[1]) > 0.1f || fabs(Nav.gyro_bias[2]) > 0.1f) {
float zeros[3] = {0.0f,0.0f,0.0f};
INSSetGyroBias(zeros);
}
return 0;
}
/**
* @brief Convert the GPS LLA position into NED coordinates
* @note this method uses a taylor expansion around the home coordinates
* to convert to NED which allows it to be done with all floating
* calculations
* @param[in] Current GPS coordinates
* @param[out] NED frame coordinates
* @returns 0 for success, -1 for failure
*/
float T[3];
const float DEG2RAD = 3.141592653589793f / 180.0f;
static int32_t getNED(GPSPositionData * gpsPosition, float * NED)
{
float dL[3] = {(gpsPosition->Latitude - homeLocation.Latitude) / 10.0e6f * DEG2RAD,
(gpsPosition->Longitude - homeLocation.Longitude) / 10.0e6f * DEG2RAD,
(gpsPosition->Altitude + gpsPosition->GeoidSeparation - homeLocation.Altitude)};
NED[0] = T[0] * dL[0];
NED[1] = T[1] * dL[1];
NED[2] = T[2] * dL[2];
return 0;
}
static void settingsUpdatedCb(UAVObjEvent * objEv)
{
float lat, alt;
AttitudeSettingsGet(&attitudeSettings);
RevoCalibrationGet(&revoCalibration);
RevoSettingsGet(&revoSettings);
HomeLocationGet(&homeLocation);
GyrosBiasData gyrosBias;
GyrosBiasGet(&gyrosBias);
gyrosBias.x = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_X] / 100.0f;
gyrosBias.y = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Y] / 100.0f;
gyrosBias.z = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Z] / 100.0f;
GyrosBiasSet(&gyrosBias);
// Compute matrix to convert deltaLLA to NED
lat = homeLocation.Latitude / 10.0e6f * DEG2RAD;
alt = homeLocation.Altitude;
// In case INS currently running
INSSetMagVar(revoCalibration.mag_var);
INSSetAccelVar(revoCalibration.accel_var);
INSSetGyroVar(revoCalibration.gyro_var);
T[0] = alt+6.378137E6f;
T[1] = cosf(lat)*(alt+6.378137E6f);
T[2] = -1.0f;
}
/**
* @}
* @}
*/