1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-30 08:24:11 +01:00
LibrePilot/flight/PiOS/STM32F10x/pios_adc.c
peabody124 c2bdf624e8 OP-269 PIOS/ADC: Previous ADC driver update changed the PCLK2 divider for all
projects which messed up a timer on OP and serial on PipX.  Now this is only
changed for AHRS.  Ideally wouldn't even change for that but then ADC runs too
fast and we get a lot more CRC errors for dealing with all that data.

git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2459 ebee16cc-31ac-478f-84a7-5cbb03baadba
2011-01-16 23:00:48 +00:00

281 lines
9.1 KiB
C

/**
******************************************************************************
* @addtogroup PIOS PIOS Core hardware abstraction layer
* @{
* @addtogroup PIOS_ADC ADC Functions
* @brief STM32 ADC PIOS interface
* @{
*
* @file pios_adc.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* Parts by Thorsten Klose (tk@midibox.org) (tk@midibox.org)
* @brief Analog to Digital converstion routines
* @see The GNU Public License (GPL) Version 3
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "pios.h"
#include <pios_adc_priv.h>
// Private functions
void PIOS_ADC_downsample_data();
/* Local Variables */
static GPIO_TypeDef *ADC_GPIO_PORT[PIOS_ADC_NUM_PINS] = PIOS_ADC_PORTS;
static const uint32_t ADC_GPIO_PIN[PIOS_ADC_NUM_PINS] = PIOS_ADC_PINS;
static const uint32_t ADC_CHANNEL[PIOS_ADC_NUM_PINS] = PIOS_ADC_CHANNELS;
static ADC_TypeDef *ADC_MAPPING[PIOS_ADC_NUM_PINS] = PIOS_ADC_MAPPING;
static const uint32_t ADC_CHANNEL_MAPPING[PIOS_ADC_NUM_PINS] = PIOS_ADC_CHANNEL_MAPPING;
/**
* @brief Initialise the ADC Peripheral, configure to run at the max oversampling
*/
void PIOS_ADC_Init()
{
pios_adc_devs[0].callback_function = NULL;
/* Setup analog pins */
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
/* Enable each ADC pin in the array */
for (int32_t i = 0; i < PIOS_ADC_NUM_PINS; i++) {
GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN[i];
GPIO_Init(ADC_GPIO_PORT[i], &GPIO_InitStructure);
}
PIOS_ADC_Config(PIOS_ADC_MAX_OVERSAMPLING);
}
/**
* @brief Configure the ADC to run at a fixed oversampling
* @param[in] oversampling the amount of oversampling to run at
*/
void PIOS_ADC_Config(uint32_t oversampling)
{
pios_adc_devs[0].adc_oversample = (oversampling > PIOS_ADC_MAX_OVERSAMPLING) ? PIOS_ADC_MAX_OVERSAMPLING : oversampling;
ADC_DeInit(ADC1);
ADC_DeInit(ADC2);
/* Disable interrupts */
DMA_ITConfig(pios_adc_devs[0].cfg->dma.rx.channel, pios_adc_devs[0].cfg->dma.irq.flags, DISABLE);
/* Enable ADC clocks */
PIOS_ADC_CLOCK_FUNCTION;
/* Map channels to conversion slots depending on the channel selection mask */
for (int32_t i = 0; i < PIOS_ADC_NUM_PINS; i++) {
ADC_RegularChannelConfig(ADC_MAPPING[i], ADC_CHANNEL[i],
ADC_CHANNEL_MAPPING[i],
PIOS_ADC_SAMPLE_TIME);
}
#if (PIOS_ADC_USE_TEMP_SENSOR)
ADC_TempSensorVrefintCmd(ENABLE);
ADC_RegularChannelConfig(PIOS_ADC_TEMP_SENSOR_ADC, ADC_Channel_16,
PIOS_ADC_TEMP_SENSOR_ADC_CHANNEL,
PIOS_ADC_SAMPLE_TIME);
#endif
// return
/* Configure ADCs */
ADC_InitTypeDef ADC_InitStructure;
ADC_StructInit(&ADC_InitStructure);
ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = ((PIOS_ADC_NUM_CHANNELS + 1) >> 1);
ADC_Init(ADC1, &ADC_InitStructure);
#if (PIOS_ADC_USE_ADC2)
ADC_Init(ADC2, &ADC_InitStructure);
/* Enable ADC2 external trigger conversion (to synch with ADC1) */
ADC_ExternalTrigConvCmd(ADC2, ENABLE);
#endif
RCC_ADCCLKConfig(PIOS_ADC_ADCCLK);
/* Enable ADC1->DMA request */
ADC_DMACmd(ADC1, ENABLE);
/* ADC1 calibration */
ADC_Cmd(ADC1, ENABLE);
ADC_ResetCalibration(ADC1);
while (ADC_GetResetCalibrationStatus(ADC1)) ;
ADC_StartCalibration(ADC1);
while (ADC_GetCalibrationStatus(ADC1)) ;
#if (PIOS_ADC_USE_ADC2)
/* ADC2 calibration */
ADC_Cmd(ADC2, ENABLE);
ADC_ResetCalibration(ADC2);
while (ADC_GetResetCalibrationStatus(ADC2)) ;
ADC_StartCalibration(ADC2);
while (ADC_GetCalibrationStatus(ADC2)) ;
#endif
/* Configure DMA channel */
DMA_InitTypeDef dma_init = pios_adc_devs[0].cfg->dma.rx.init;
dma_init.DMA_MemoryBaseAddr = (uint32_t) &pios_adc_devs[0].raw_data_buffer[0];
dma_init.DMA_MemoryInc = DMA_MemoryInc_Enable;
dma_init.DMA_BufferSize = (PIOS_ADC_NUM_CHANNELS * pios_adc_devs[0].adc_oversample * 2) >> 1;
DMA_Init(pios_adc_devs[0].cfg->dma.rx.channel, &dma_init);
DMA_Cmd(pios_adc_devs[0].cfg->dma.rx.channel, ENABLE);
/* Trigger interrupt when for half conversions too to indicate double buffer */
DMA_ITConfig(pios_adc_devs[0].cfg->dma.rx.channel, DMA_IT_TC, ENABLE);
DMA_ITConfig(pios_adc_devs[0].cfg->dma.rx.channel, DMA_IT_HT, ENABLE);
/* Configure DMA interrupt */
NVIC_Init(&pios_adc_devs[0].cfg->dma.irq.init);
/* Finally start initial conversion */
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
/* Use simple averaging filter for now */
for (int32_t i = 0; i < pios_adc_devs[0].adc_oversample; i++)
pios_adc_devs[0].fir_coeffs[i] = 1;
pios_adc_devs[0].fir_coeffs[pios_adc_devs[0].adc_oversample] = pios_adc_devs[0].adc_oversample;
/* Enable DMA1 clock */
RCC_AHBPeriphClockCmd(pios_adc_devs[0].cfg->dma.ahb_clk, ENABLE);
}
/**
* Returns value of an ADC Pin
* \param[in] pin number
* \return ADC pin value - resolution depends on the selected oversampling rate
* \return -1 if pin doesn't exist
*/
int32_t PIOS_ADC_PinGet(uint32_t pin)
{
/* Check if pin exists */
if (pin >= PIOS_ADC_NUM_CHANNELS) {
return -1;
}
/* Return last conversion result */
return pios_adc_devs[0].downsampled_buffer[pin];
}
/**
* @brief Set a callback function that is executed whenever
* the ADC double buffer swaps
*/
void PIOS_ADC_SetCallback(ADCCallback new_function)
{
pios_adc_devs[0].callback_function = new_function;
}
/**
* @brief Return the address of the downsampled data buffer
*/
float * PIOS_ADC_GetBuffer(void)
{
return pios_adc_devs[0].downsampled_buffer;
}
/**
* @brief Return the address of the raw data data buffer
*/
int16_t * PIOS_ADC_GetRawBuffer(void)
{
return (int16_t *) pios_adc_devs[0].valid_data_buffer;
}
/**
* @brief Return the amount of over sampling
*/
uint8_t PIOS_ADC_GetOverSampling(void)
{
return pios_adc_devs[0].adc_oversample;
}
/**
* @brief Set the fir coefficients. Takes as many samples as the
* current filter order plus one (normalization)
*
* @param new_filter Array of adc_oversampling floats plus one for the
* filter coefficients
*/
void PIOS_ADC_SetFIRCoefficients(float * new_filter)
{
// Less than or equal to get normalization constant
for(int i = 0; i <= pios_adc_devs[0].adc_oversample; i++)
pios_adc_devs[0].fir_coeffs[i] = new_filter[i];
}
/**
* @brief Downsample the data for each of the channels then call
* callback function if installed
*/
void PIOS_ADC_downsample_data()
{
uint16_t chan;
uint16_t sample;
float * downsampled_buffer = &pios_adc_devs[0].downsampled_buffer[0];
for (chan = 0; chan < PIOS_ADC_NUM_CHANNELS; chan++) {
int32_t sum = 0;
for (sample = 0; sample < pios_adc_devs[0].adc_oversample; sample++) {
sum += pios_adc_devs[0].valid_data_buffer[chan + sample * PIOS_ADC_NUM_CHANNELS] * pios_adc_devs[0].fir_coeffs[sample];
}
downsampled_buffer[chan] = (float) sum / pios_adc_devs[0].fir_coeffs[pios_adc_devs[0].adc_oversample];
}
if(pios_adc_devs[0].callback_function)
pios_adc_devs[0].callback_function(pios_adc_devs[0].downsampled_buffer);
}
/**
* @brief Interrupt for half and full buffer transfer
*
* This interrupt handler swaps between the two halfs of the double buffer to make
* sure the ahrs uses the most recent data. Only swaps data when AHRS is idle, but
* really this is a pretense of a sanity check since the DMA engine is consantly
* running in the background. Keep an eye on the ekf_too_slow variable to make sure
* it's keeping up.
*/
void PIOS_ADC_DMA_Handler(void)
{
if (DMA_GetFlagStatus(pios_adc_devs[0].cfg->full_flag /*DMA1_IT_TC1*/)) { // whole double buffer filled
pios_adc_devs[0].valid_data_buffer = &pios_adc_devs[0].raw_data_buffer[1 * PIOS_ADC_NUM_CHANNELS * pios_adc_devs[0].adc_oversample];
DMA_ClearFlag(pios_adc_devs[0].cfg->full_flag);
PIOS_ADC_downsample_data();
}
else if (DMA_GetFlagStatus(pios_adc_devs[0].cfg->half_flag /*DMA1_IT_HT1*/)) {
pios_adc_devs[0].valid_data_buffer = &pios_adc_devs[0].raw_data_buffer[0 * PIOS_ADC_NUM_CHANNELS * pios_adc_devs[0].adc_oversample];
DMA_ClearFlag(pios_adc_devs[0].cfg->half_flag);
PIOS_ADC_downsample_data();
}
else {
// This should not happen, probably due to transfer errors
DMA_ClearFlag(pios_adc_devs[0].cfg->dma.irq.flags /*DMA1_FLAG_GL1*/);
}
}
/**
* @}
* @}
*/